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Abstract

We present an adaptive online gradient de-
scent algorithm to solve online convex op-
timization problems with long-term con-
straints, which are constraints that need to
be satisfied when accumulated over a finite
number of rounds T, but can be violated in
intermediate rounds. For some user-defined
trade-off parameter 8 € (0,1), the pro-
posed algorithm achieves cumulative regret
bounds of O(T™>{8:1=8}) and O(T*~#/2) for
the loss and the constraint violations respec-
tively.  Our results hold for convex losses
and can handle arbitrary convex constraints
without requiring knowledge of the number
of rounds in advance. Our contributions im-
prove over the best known cumulative regret
bounds by Mahdavi, et al. (2012) that are re-
spectively O(T*/?) and O(T?/*) for general
convex domains, and respectively O(T2/3)
and O(T?/3) when further restricting to poly-
hedral domains. We supplement the analysis
with experiments validating the performance
of our algorithm in practice.

1 Introduction

Online convex optimization (OCO) plays a key role in
machine learning applications, such as adaptive rout-
ing in networks [2] and online display advertising [I].
In general, an OCO problem can be formulated as a
sequential and repeated game between a learner and
an adversary. In each round t, the learner first plays
a vector x; € X C RP, where & is a compact convex
set corresponding to the set of possible solutions. The
learner then incurs a loss f;(x;) for playing vector x;.
The function fi(x): X — R, is defined by the adver-
sary and can vary in each round, but it is assumed to
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be convex. We say that a function f; : R? s R, is
strongly conver with modulus o > 0 if

Jux) < £i(y) + V1) T (x = y) = Slx -yl

for any x,y € R%. We use the notation V f;(x) to refer
to any (sub-)gradient of f; at x. Furthermore, we say
that f; is convez if o = 0.

The learner’s objective is to generate a sequence of
vectors x; € X for t = 1,2,--- ,T that minimizes the
cumulative regret over T rounds relative to the optimal
vector x*:

T T
RGQTBtT(X*)éth(Xt) *th(X*)- (1)

The latter measures the difference between the cumu-
lative loss of the learner’s sequence of vectors {x;}7_;
and the accumulated loss that would be incurred if
the sequence of loss functions f; would be known in
advance and the learner could choose the best vector
x* in hindsight.

Several algorithms have been developed over the past
decade that achieve sub-linear cumulative regret in the
OCO setting. The problem was formalized in the sem-
inal work of [26], which presents an online algorithm
based on projected gradient descent [3] that guaran-
tees a cumulative regret of O(T?/?) when the set X’ is
convex and the loss functions are Lipschitz-continuous
over X. In [1I] and [22], algorithms with logarithmic
regret bounds were proposed for strongly convex loss
functions. Notably, online gradient descent achieves
an O(log T') regret bound for strongly convex loss func-
tions for appropriate choices of step size.

In the aforementioned work, the constraint on vector
X is assumed to hold in round ¢, such that a projection
step is applied in every round to enforce the feasibility
of each x;. For general convex sets X, the projec-
tion step may require solving an auxiliary optimiza-
tion problem, which can be computationally expensive
(e.g., projections onto the semi-definite cone). More
importantly, in practical applications, the learner may
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in fact only be concerned with satisfying long-term
constraints, that is, the cumulative constraint viola-
tions resulting from the sequence of vectors {x;}Z_;
should not exceed a certain amount by the final round
T. An example of such an application is in online dis-
play advertising, where x; corresponds to a vector of
ad budget allocations and the learner is primarily con-
cerned in enforcing the long-term constraint that each
ad consumes its budget in full over the lifetime of the
ad. Another example is from wireless communications
[18], where x; is a vector of power allocations across
multiple devices, and the learner must satisfy average
power consumption constraints per device.

In this work, we consider OCO problems where the
learner is required to satisfy long-term constraints. For
such problems, we will be concerned both with a) the
learner’s cumulative regret as defined by and b)
the learner’s ability to satisfy long-term constraints —
the notion of long-term shall be made more formal in
Section This class of problems was studied previ-
ously in [I5] [16]. In particular, [I6] considered online
exponentially-weighted average in the case where the
loss and constraints are linear, while [I5] presented on-
line algorithms based on projected subgradients and
the mirror prox method [20]. The authors derived cu-
mulative regret bounds for the cumulative loss and cu-
mulative constraint violations respectively of O(T"/2)
and O(T®/*) in the case of online projected subgra-
dients, and respectively of O(T%/3) and O(T?%/3) in
the case of mirror prox. To our knowledge, these are
the best-known regret bounds for OCO with long-term
constraints. The analysis of [I5] assumes the number
of rounds is known ahead of time, which enables the
authors to set the various constants in the algorithm
that lead to the desired regret bounds. For the mir-
ror prox method, it is additionally required that the
constraint set X is fully specified by a finite number
of linear constraints.

The concept of long-term constraints also enables us
to avoid the computation of potentially expensive pro-
jections onto the domain X of x in each round. This
is closely related to recent work in stochastic opti-
mization that aims to minimize the number of expen-
sive projection steps [I7]. The guarantees sought in
our analysis have also similarities with the results ob-
tained in the context of the online alternating direction
method [23], where regret bounds are provided for the
violation of equality constraints.

Contributions: Building on the work of [I5], we pro-
pose an algorithm based on a saddle-point formula-
tion of the OCO problem with long-term constraints,
which is adaptive (i.e., the step sizes and the regular-
isation parameter depend on the round ¢). We show
that the algorithm satisfies cumulative regret bounds

of O(T?/3) for both the cumulative loss and the cu-
mulative constraint violations without requiring us to
know the number of rounds 7" in advance to set the
algorithmic hyperparameters. Unlike mirror prox, our
method can deal with any convex constraint set X,
making it amenable to a wider range of OCO problems.
Also, the algorithm we derive allows us to interpolate
between the regret bounds of O(T'/?) and O(T3/%)
from [I5] and the above bound of O(T%/3), depending
on how we wish to trade off between the cumulative
regret associated to the loss and the long-term con-
straints. In addition to our analysis of regret bounds,
we empirically validate our algorithm by comparing it
to the methods of [I5] on a) the online estimation of
doubly stochastic matrices and b) the online learning
of sparse logistic regression based on the elastic net
penalty [27].

2  Online Convex Optimization with
Long-term Constraints

2.1 Preliminaries
Consider m convex functions g; : R? — R which in-
duce a convex constraint set

Xé{XERd: max

je{tl,--,m}

9;(x) < 0.

We assume that the set X is bounded so that it is
included in some Euclidean ball B with radius R > 0
(to be further discussed in Section :

XQBé{xeRd:HnggR}.

Along with the functions g;, we consider a sequence of
convex functions f; : R? — R, such that
/
ma ma x) — fi(x')| < F for some F > 0.

te{l,mX,T} x,x’EXB |ft( ) ft( )l -

As is typically assumed in online learning [6], the func-
tions g; and f; shall be taken to be Lipschitz contin-
uous. We do not generally assume g; and f; to be

differentiable. We further assume that for some finite
G > 0 the (sub-)gradients of f and g, are bounded

max

Vg, <G
je{l,..,m}gleagu gi(x)[l2 <G,

max

\Y <G.
efax, max Vi)l <

We take the same constant G for, both, g; and f; for
simplicity as we can always take the maximum be-
tween that of g; and that of f;. Finally, we assume
that there exists a finite D > 0 such that the con-
straint functions are bounded over B:
max max|g;(x)| < D.

el oy xeB lgj(x)| <
Finally, we note that the set of assumptions enumer-
ated in this section are equivalent to the ones in [I5].
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2.2 Problem Statement

Let {x;}_, be the sequence of vectors played by the
learner and {f;(x:)}7_; the corresponding sequence of
incurred losses. We aim at efficiently solving the fol-
lowing optimization problem in online fashion:

rnir%3 {fT(xT) +...

X7 €
T
©jmin {200) + iy fixu) ) i 3 Ai)

subject to the following long-term constraint:
T

fh (x2) < 0.
je{1,...,m};gj( 1) <

3 Adaptive Online Algorithms based
on a Saddle-point Formulation

Following [15], we consider a saddle-point formulation
of the optimization problem. For any A € R*,x € B
we define the following function:

0

— Zty2
2

Li(x,2) 2 fi(x) + Ag(x)
where g(x) £ max;e(1,... .} 95(x) and {6, }7_; is a se-
quence of positive numbers to be specified later. The
role of g is to aggregate the m constraints into a single
function. It otherwise preserves the same properties as
those of individual g;’s (sub-differentiability, bounded
(sub-)gradients and bounded values; see Proposition
6 in [I5] or Section 2.3 in [5] for a proof). In the
saddle-point formulation , we will alternate between
minimizing with respect to the primal variable x and
maximizing with respect to the dual parameter A\. A
closer look at the function A — L;(x, A) indicates that
we penalize the violation of the constraint g(x) < 0
through, using [u]; £ max{0,u},

0

oGl = sup gl — %

2

20, AER A }’ @)
which is a penalty commonly used when going from
constrained to unconstrained problems (e.g., Section
17.1 in [21]). Also, we can see from (2)) that 6; acts as
a regularization parameter. We note at this point that
in contrast to our method, [I5] make use of a single 0
that is constant in all rounds![T]

In the sequel, we study the following online algorithm
where we alternate between primal-descent and dual-
ascent steps:

e Initialize x; =0 and A\; =0

"More precisely, in [T5], 6 is equal to the product of a
constant step size times a constant scaling factor.

e Forte{l,---, T —1}:
X1 = Hp(xe = 0 VLo (xe, At))
A1 = g+ (A + 1 VaLe(xe, At))s

where II¢ stands for the Euclidean projection onto the
set C, while {n;}X_; and {u;}_; are sequences of non-
negative step sizes that respectively drive the update
of x and A. The algorithm is in the same vein as the
ones proposed in [I5] [3], but it is adaptive. The step
sizes, which are different for the updates of x and A,
are listed in Table[l} They result from the analysis we
provide in the next section. We also derive sub-linear
regret bounds associated to these instantiations of the

sequences {0;}{_1, {m}i—y and {um}{_;.

3.1 Main Results

We begin by listing three sufficient conditions for ob-
taining sub-linear regret bounds for the proposed al-
gorithm:

(C1): For any t > 2, - — 1

? e L1 0 < 0.

(C2): For any t > 2, n,G* + p,67 — 6, < 0.

(C3): For some finite U, > 0,

T 1 1 <
Zt:Q Nt Ne—1 g _Un'

Conditions C1 and C3 impose constraints on the de-
creasing speed of the step sizes. We note that there
is an asymmetry between p; and 7;: while we will al-
ways be able to control the norm of the variables x;
(by design, they must lie in B), the sequence {\;}7_;
is not directly upper-bounded in the absence of fur-
ther assumptions on the gradient of g, hence the most
stringent condition C1 is to avoid any dependencies on
A¢. Condition C2 couples the behaviour of the three
sequences to guarantee their validity. Finally, C1, C2
and C3 are expressed for ¢ > 2 because of our choice
for the initial conditions x; = 0 and A\; = 0.

Our main result is described in the following theorem,
whose proof is in Section [3.2}

Theorem 1. Consider the convex case (o0 = 0) and
the corresponding instantiations of the sequences g, ny
and 0y for some B € (0,1), as summarized in Table .
It holds for any T > 1 that

2

D 2RG
68RG

TF
1-p

T
ZAft§R§é{RG+ ]T5+
t=1

where Af; 2 fi(x¢) — fi(x*), and

d 24RG
;g(xt) < \/15 (R{F + FT)Tl—ﬂ.



| Convex (o =0) | Strongly convex (o > 0)

0 6RG 6G~
t t}g U{B
i o ¥
Hi 0.(t+1) 0.(t+1)
i | er G
R _

Sy G(l—lﬁ)Tlﬂ ’ ¢ —tloggT))
Su saRG L sacz L
U, &b 0

L g 6RG 662

1 G

Table 1: Parameter instantiations in different regimes
(8 denotes some number in (0,1)).

For the strongly convex case (o > 0), we also have
valid instantiations of 7, u:,0; (see Table , whose
resulting cumulative regret bounds are tighter than
those given in Theorem [1} but with the same lead-
ing terms. Theorem [I] can be stated in a simplified
form, forgetting momentarily about the dependencies

on {D,G,R,F}:

Sr Afy < O(max{T?, T'-#}),
ST g(xi) < O(T1=5/12),

In particular, by setting 8 = 2/3, we obtain

T T
Y Af <O and Y g(x;) < O(T?),
t=1 t=1

which matches the mirror prox guarantees of [15] while
being valid for general convex constraint sets X as
opposed to just polyhedral constraint sets. Similarly,
taking 8 = 1/2, we recover the regret bounds

T T
Y AL <OTY?) and Y g(xi) < O(T**),
t=1 t=1

of Section 3.1 in [I5]. We can, of course, also de-
fine novel trade-offs between loss and constraint vi-
olations, e.g., B = 3/4 with regret bounds of O(T3/4)
and O(T°/%) respectively.

3.2 Analysis and Proofs

To analyze the above algorithm, we first introduce a
series of lemmas. The analysis is analogous to that
developed in [I5], which we provide below for self-
containedness. We begin by upper-bounding the vari-
ations of £; with respect to its two arguments. In par-
ticular, the following lemma takes advantage of the
fact that the partial function A — Li(x¢, A) is not
only concave as considered in [I5], but strongly con-
cave with parameter 6;. This observation is at the
origin of our improved regret bounds.

Lemma 1 (Upper bound of £;(x¢, A)—Ls(X¢, A¢)). For
L:(x,\) as defined above and for non-negative 1,0,
and pi, we have

Lt(xta /\) - ﬁt(Xt, )\t) < 27;1;, [bt - bt+1] - %bt

5 VAL (x4, Ao)]?
where by = (A — \)2.

Proof. Expanding (A — A\i41)? yields
2
()\ - )\t+1)2 = ()\ — HR+ (>\t + ,utV,\Et(xt, )\t)))

< (A= O+ mVaLilxe, )\t)))Q
= (A= X)% = 2\ — M) VAL (X, At)
+ 17 (VaLe(xe, Ar))?

By strong concavity of L£¢(x¢, A) with respect to A,

N 0
Et(Xt, )\t) — Et(Xt, )\) S ()\ — )\t)V)\,Ct(Xt, )\t) — itbt

Substituting the inequality for g (A — A\p) VaLs(xz, At)
completes the proof. O

We omit the derivation for x — £;(x, \;) that follows
similar arguments. We now turn to a lower-bound of
the variations of £;.

Lemma 2. Let x* = argmingex ZtT:1 fi(x). Then

T

Z»Ct(xt; A) — Lp(x*, M) >

t=1
T T e 1 T
2
ZAft +)\Zg(xt) - 32@ + izatAt'
t=1 =1 t=1 t=1
Proof. We have Li(x¢,\) — Li(x*, \¢) equal to

Frlxe) = Fr(x") + Aglxe) — Mg (x") — %(V =)

We simply notice that g(x*) < 0 to obtain a lower
bound —g(x*) Zthl A+ to complete the proof after
summing both sides over rounds t =1,--- ,T. O

Lemma 3. Let a; = ||x; — x||2. For any o,0; >0,

1
T[at - at+1] — - <
=1 It
R? 1 {1 1 ]
5o+ =S | = - — o,
2 " 2; e e
Ty )
ZT[bt—th}— by <
= Mt
A2 1« {1 1 }
) by | — — -0
2 2; e g i
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A A
where we have used 6, = L _ 5 and = L _ 9.
m M1

Proof. Shifting indices in the sums for terms that de-
pend on az11 /M, bey1 /e and collecting terms that de-
pend on ay, by, we then use a; = ||x; — x||3 = ||x[|2 <
R? and b; = (A — A1) = A2 to conclude. O

We now present the key lemma of the analysis.
Lemma 4. [Cumulative regret bound] Let x* =
arg minge y ZtT:1 fi(x) and assume C1, C2 and C3
hold. Define RY, & B25, 4GS, + DS, + R2U,,, where
we have introduced S, = E;F:l Nes Sy = Zle W and
Sy & Zthl 0;. Then, it holds that

Zthl Aft S ’R{w
and

ST glx:) < \/2(S0 + 8,) (R} + FT).

Proof. By the triangle inequality, we have
IVxLi(x, A3 < 2G2(1 4+ A2) and (VaLi(x,))? <
2(D? + 02)\2). We then combine Lemmas
starting from  Li(xy, A) Li(x* ) =
Et(Xt,A) — Et(xt,)\t) + Et(xt,)\t) — Et(x*,/\t)7
yielding

ST AL AT o) — A [Se ; 54 <
Ré: + 23:1 Y {UtGQ + 1107 — éet:| .

Maximizing the left-hand side with respect to A € R,
we obtain:

2
T (S, g6x)]
A L= 9]
ZtZI ft + 2[59+5u]
RE+ S0 A eGP + b7 — 301 |-

The regret bound on the loss is obtained by using C2
and [, g(x:)]2/(2[Se + 6,]) > 0. The bound on
constraint violations is obtained as above, but by sub-
stituting the lower bound >, Afy > —FT. O

In order to discuss the scaling of our regret bounds,
we state the next simple lemma without proof

Lemma 5. Let 5 € (0,1). Then Zthl & < Tl%f.

With the above lemmas, we now prove Theorem

Proof of Theorem 1. For the proposed choices of 0;, p;
and 7, we can verify that C1, C2 and C3 hold. Here
we focus on the convex case, the strongly convex one
following along the same lines. First, we can easily see
that C1 is true as long as 6; is non-increasing. Then,
we can notice that, given the choice of i, condition C2

is implied by the stronger condition 7; < % (satisfied
by the choice of 7; and 6; in Table 1). This results in

t=1 t=1
T
RT-8 6RG _ 6RG
S Sp =Y —~ < -8
n ;Ut_Gl_ﬁ, 0 tz:; B = 1_ )

along with 1/pq7 — 61 = 6RG and 1/m — 0 = G/R.
The term U, can be obtained by summing the series
Une — 1/ = (G/R)(#? — (t — 1)?) over t, which
directly simplifies by telescoping for the ¢ = 0 case,
and is identically equal to zero for o > 0. As a result,
we obtain from Lemma [4]

D2
66RG

RG RG
T8 Ti=8 4 77
] + -5 + B

T
ZAftSR{;é[RG +
t=1

and for the constraint

T
> glx) < \/ 2R + FT) [f]fC;Tl—B +6RG|.
t=1

We obtain the desired conclusion by noticing that for
any T'> 1 and 8 € (0,1), we have%Zl. O

3.3 Towards No Violation of Constraints

We next show that our extension also applies to the
more specific setting developed in Section 3.2 from
[15], where additional assumptions on the gradient of
g can translate into no constraint violations. For the
sake of self-containedness, we briefly recall it. Assume
that there exist v > 0 and r > 0 such that the varia-
tions of g are lower bounded as

min Va(x)lo > r. 5
XE]Rd:g(x)_A'_,y:O” g( )”2 = ( )

Denote X, = {x € R? : g(x) +v < 0} C X. It can
then be shown that (see Theorem 7 in [I5]):

Yoy flx) = S filx)| < €Ty, (4)

where x* and x, are solutions of minyex ZtT:1 fi(x)
and minyex, 23;1 f+(x) respectively. In words, the
gap between the optimal value of the original opti-
mization problem and that of the problem over X
is well-controlled as a function of (y,r). Examples
where holds include the positive semi-definite cone,
as described in Section 4 of [I7]. For space limitation
reasons, we state our result in a simplified form, only
briefly sketching its proof that follows the same logic
as that of the previous section.



Corollary 1. Assume (@ holds. Consider the convex
case (0 =0) and some instantiations of the sequences
pe,ne and 0y for some B € (0,1), differing from Tablel]]
only up to numerical constants. There exist ¢y and
c1 depending on {D,G, R, F,r} such that setting v =
caiT~P/2, we have for any T > ¢

ZtT:1 Afy < O(max{T? T8, T1-8/2}),

and no constraint violations 23:1 g(x¢) <0.

Sketch of proof. We can apply the same analysis as
before to the function g,(x) £ g(x) + 7, replacing
D by D + ~ and adapting the constants in both C2
(i.e., nG* + 311,67 — 16,) as well as for the instantia-
tions of us,n: and ;. The regret bound on ZZ;I Afy
is identical as earlier, with additional additive terms
3725,,/2 and GTy/r introduced as a result of . As
for Zle g(x¢), the term [23:1 g(x.)]% becomes here
[ g(x¢) + 4T)%, which in turn leads to the same
regret bound as previously stated, minus the contribu-
tion —yT. We cancel out the constraint violations—
scaling in O(T*~#/2) according to Theorem by set-
ting v = ¢;T~#/2. Note that ¢ is determined by ex-
amining when the extra term 372S,/2 can be upper
bounded by those in R; O

The regret bound presented in Corollary 1 is mini-
mized for 8 = 2/3, leading to a regret of O(T2/3) with
no constraint violations. This result extends Theorem
8 and Corollary 13 from [I5] in that it holds for gen-
eral convex domains X’ (as opposed to only polyhedral
ones).

4 Experiments

We ran two sets of experiments to validate the regret
bounds obtained for our adaptive algorithms for OCO
with long-term constraints and compare to the algo-
rithms proposed in [I5]. First, we examine the on-
line estimation of doubly-stochastic matrices where the
convex domain of interest X is polyhedral but whose
projection operator is difficult to compute [12] [10].
Second, we consider sparse online binary classification
based on the elastic net penalty [27].

We shall refer to our adaptive online gradient de-
scent (A-OGD) for convex f; (i.e., 0) as
Convex A-0GD and for strongly convex f; (i.e., o > 0)
as Strongly convex A-0GD, which enjoy the same re-
gret guarantees of O(T?/3) for the loss and constraint.
The method of [15] that handles general convex do-
mains X will be referred to as Convex 0GD, while
the mirror prox method analyzed in [I5], which is
only applicable to polyhedral domains, will be de-
noted by Convex mirror prox. The parameters of

g =

Convex 0GD and Convex mirror prox are instanti-
ated according to [15].

Although we generate the sequence of losses {f;}7_;
stochastically in the experiments, we would like to em-
phasize that the regret bounds we obtain are also valid
for adversarially-generated sequences, so that it is not
required that {f;}._; are generated in i.i.d. fashion.

4.1 Doubly-Stochastic Matrices

Doubly-stochastic matrices appear in many machine
learning and optimization problems, such as cluster-
ing applications [25] or learning permutations [12} [10].
Briefly, for a sequence of matrices {Y,;}7_; in RP*? we
solve the following optimization problem in an online
fashion:

T

1
i Y, — X||? )
in, 3 3 1Ye - X 5)

subject to the (linear) convex constraints
X>0, Xl=1andX'1=1.

This problem can easily be mapped to OCO setting
by assuming that the sequence {Y}7_, is generated
by random permutation matrices which are known to
constitute the extreme points of the set of doubly-
stochastic matrices [4]. We have d = p?, f,(X) =
1Yy — X2 and m = p? + 4p to describe all the
linear constraints, more specifically there are p? non-
negativity constraints, along with 4p inequalities to
model the 2p equality constraints. This leads to the
following instantiations of the parameters controlling
frand g: R=,/p, G=2R and D = R. Note that we
can apply a) Strongly convex A-0GD (since f; is by
construction strongly convex with parameter o = 1),
and b) Convex mirror prox since X is polyhedral.

The cumulative regret for the loss and the long-term
constraint are shown in Figures [I] and 2] They are
computed over 7" = 1000 iterations with d = 64, and
are averaged over 10 random sequences {Y;}7 ; (the
standard deviations are not shown since they are negli-
gible). The offline solutions of (b)) required for various
te{l,---,T} to compute the regret are obtained us-
ing CVXPY [8].

The results shown in Figure and indicate
that although the cumulative regret bounds for
Strongly convex A-0GD were not demonstrated to be
tighter in our analysis than those for Convex A-0GD,
they achieve a better cumulative regret for this
problem, especially with respect to the long-term
constraint.  Also, while Convex mirror prox and
Convex A-0GD should theoretically exhibit the same
behavior, the results suggest that mirror prox is
not able to decrease cumulative regret at the same
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Figure 1: Cumulative regret of the loss function for the
online estimation of doubly-stochastic matrices. We
display the mean computed over 10 random sequences
{Y .} ;. (Best viewed in colour.)

rate as our proposed method. We surmise that
this may be due to the fact that the guarantees of
Convex mirror prox proved in [I5] only hold for very

large TE|

4.2 Sparse Online Binary Classification

Next, we examine the application of sparse online bi-
nary classification. Our goal will be to minimize the
log-loss subject to a constrained elastic-net penaltyﬂ

T
min Z log(1 + efyth“t), (6)

xR [|x|[1+3IxI3<p S5

where {y;,u;}X ; denotes a sequence of label/feature-
vector pairs and p > 0 is a parameter that measures
the degree of the sparsity of the solutions of @

This problem is mapped to our formulation by set-
ting fi(x) = log(1 + e‘yfxT“f) with m = 1, g(x) =
Il + 1113 = p, B = vTF2p— 1] G = max{Vid +
R, max; |[u||o} and D = v/dR + R?/2. The sequences
{ys, s }]_; are generated by drawing pairs at random
with replacement.

We solve the above problem using the datasets ijcnnl
and covtype, consisting respectively of 49,990 and
581,012 samples of dimension d = 22 and d = 54

2Theorem 12 from L15] requires T > 164(m +1)2, which
translates into 7" > 10" in our setting.

3Constraint formulations with sparsity-inducing terms
are sometimes preferred over their penalized counterparts
when they express some concrete physical budget, e.g., in
the context of learning predictors with low-latency [24].

“The value for R is found by noticing that ||x||: +
LIx[13 > |Ix/l2 + 3|Ix/|3 and solving the resulting second-
order polynomial inequality.
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Figure 2: Cumulative regret of the long-term con-
straint for the estimation of doubly-stochastic matri-
ces. We display the mean computed over 10 random
sequences {Y;}Z_;. The embedded graph is a zoom of
the area of interest in the original figure. (Best viewed
in colour.)
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Figure 3: Cumulative regret of the loss function for
the sparse online binary classification (left: ijcnni,
right: covtype). We display the mean computed over
10 random sequences {y;, u; i ;.

eac}ﬂ The parameter p is set to obtain approximately
30% of non-zero variables. Moreover, and in order to
best display cumulative regret, we compute offline so-
lutions of (6) for various ¢ € {1,---, T} thanks to an
implementation of [7].

The results are summarized in Figures[3|and [d]and rep-
resent an average over 10 random sequences {y;, us } 7,
(the standard deviations are not shown since they are
negligible). The number of iterations T is equal to the
number of samples in each dataset. Interestingly, we
observe that the constraint is not violated on average
(i.e., via a negative cumulative regret) and the iterates
x; remain feasible within the domain [|x[|; + ||x[|3 <
p. This tendency is more pronounced for Convex 0GD

Swww.csie.ntu.edu. tw/ cjlin/libsvmtools/datasets/binary.html
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Figure 4: Cumulative regret of the constraint for
the sparse online binary classification (left: ijcnni,
right: covtype). We display the mean computed over
10 random sequences {y;, us}_;.

since a closer inspection of the sequence {n;}7_; shows
numerical values smaller than those of our approach
Convex A-0GD (by 2 to 3 orders of magnitude). As a
result, starting from x; = 0, we found that the iterates
generated by Convex 0GD do not approach the bound-
ary of the domain, hence increasing regret on cumula-
tive loss. We also note that the offline solutions of @
always saturate the constraint. Although our analysis
predicts that the cumulative regret of Convex 0GD as-
sociated to the loss (i.e., O(T'/?)) should be smaller
than that associated to Convex A-0GD (i.e., O(T?%/3)),
Convex A-0GD achieves here a lower cumulative regret.
This observation may be explained by the same argu-
ment as that described previously, namely that the
larger step sizes {n;}7_; of Convex A-0GD enables us
to make faster progress.

5 Discussion
In this section, we discuss several generalizations.

Broader families of step sizes. We have assumed
that the updates of the primal variable x are driven by
a projected gradient step controlled through a single
step size n:. Following the ideas developed in [19] 9],
we could analyze the regret guarantees of our algo-
rithm when there is a vector of step sizes 7, that is
given by a diagonal matrix Diag(n,) € R¥*?, updat-
ing adaptively and separately each coordinate of x.

Can we identify a better penalty? In the light of
(2)), it is tempting to ask whether we can find a penalty
function that will lead to lower cumulative regret guar-
antees. To this end, we could for example introduce
a smooth, 1-strongly-convex function ¢ with domain
Q. The saddle-point formulation of the new problem
is then given by

Li(x,A) £ fo(x) + Ag(x) = 0:6(N),

where {0}, is, as earlier, a sequence of non-negative
numbers to be specified subsequently for any A €
Q,x € B. Interestingly, it can be shown that condition
C2 becomes a first-order nonlinear ordinary differen-
tial inequality in this setting, leading to

d 2
NG\ + 11,07 [d‘f] —0:p(\) <0, for all A € Q.

Hence, the above differential inequality suggests a fam-
ily of penalty functions which we could use. In par-
ticular, we see that ¢ must grow at least quadrati-
cally and stay greater than its squared first derivative,
which rules out a softmax penalty like A — log(1+¢*).
Moreover, the maximization with respect to A in the
last step of Lemma [4] introduces the Moreau envelope
[14] of the Fenchel conjugate of ¢, namely

2
¢, (u) = sup [)\u — Spp(A) — 5#% .
A€Q

The goal is then to find a feasible penalty ¢ of which
the inverse mapping u — [¢%5,]™" (u) would minimize
the regret bound. For instance, the inverse mapping
would scale as u — /u when using the squared /o
norm over £ = RT. We defer to future work the study
of this admissible family of penalties.

Which enclosing set for X7 Our current analysis
relies on the idea that instead of having to perform a
projection on X in each update (which could be com-
putationally costly and perhaps intractable in some
cases), we restrict the iterates x; to remain within a
simpler convex set B 2 X. While we assumed de facto
an Euclidean ball for B, we could consider sets en-
closing X more tightly, while preserving the appeal-
ing computational properties. Having a principled
methodology to choose B and carefully assessing its
impact on the regret bounds is an interesting avenue
for future research.
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