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Abstract

Climate data science faces persistent barriers stemming from the fragmented nature of
data sources, heterogeneous formats, and the steep technical expertise required to identify,
acquire, and process datasets. These challenges limit participation, slow discovery, and re-
duce the reproducibility of scientific workflows. In this paper, we present a proof of concept
for addressing these barriers through the integration of a curated knowledge graph (KG) with
Al agents designed for cloud-native scientific workflows. The KG provides a unifying layer
that organizes datasets, tools, and workflows, while Al agents—powered by generative Al ser-
vices—enable natural language interaction, automated data access, and streamlined analysis.
Together, these components drastically lower the technical threshold for engaging in climate
data science, enabling non-specialist users to identify and analyze relevant datasets. By lever-
aging existing cloud-ready API data portals, we demonstrate that “a knowledge graph is all you
need” to unlock scalable and agentic workflows for scientific inquiry. The open-source design
of our system further supports community contributions, ensuring that the KG and associated
tools can evolve as a shared commons. Our results illustrate a pathway toward democratizing
access to climate data and establishing a reproducible, extensible framework for human—Al
collaboration in scientific research.
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1 Introduction

1.1 Current Bottlenecks in Climate Data Science

Climate research is broadly understood as the scientific investigation of Earth’s climate systems,
their variability, and the effects of climate change on both natural and human environments [Eyring
et al., 2024]]. This work often draws from a growing body of observational datasets, simulation out-
puts, and analytical tools that span multiple scientific domains [Gettelman et al., 2022]]. The central
task remains consistent: to extract meaningful, reproducible insights about how climate behaves,
and how those changes interact with societal and ecological systems. This endeavor is complicated
by the immense volume of climate data, which requires sophisticated methods to bridge theory with
observation. The successful application of these techniques hinges on thoughtful workflow design
that carefully integrates physical knowledge with data-driven approaches [Karniadakis et al., 2021,
Selz and Craig, [2023]]. Despite the proliferation of data sources, the research process itself remains
deeply fragmented. Observational datasets and Earth System Model outputs are stored in heteroge-
neous formats, described through inconsistent metadata, and distributed across institutions without
standardized mechanisms for access or integration. Researchers are often forced to spend signif-
icant time reconciling structural differences before scientific questions are even posed [[Ceccato
et al., 2012]. This not only slows progress but also limits the extent to which new computational
methods are reliably integrated into climate science workflows. Perhaps more fundamentally, ex-
isting systems are designed for retrieval rather than reasoning. Climate data repositories, like
NASA CMR, rely on keyword search for data retrieval [Shum et al., 2017]]. These systems assume
a user already knows what they are looking for. These assumptions become problematic as re-
search questions grow more interdisciplinary and data-driven tools play a larger role in hypothesis
generation and evaluation. In such settings, the inability to express research intent in ways that
systems interpret and act on becomes a bottleneck.

1.2 Opportunities with Agentic Al

Agentic Al systems [Acharya et al., 2025], defined as artificial intelligence models capable of
autonomous reasoning, planning, and tool use, offer a promising avenue for overcoming these
limitations. Recent evidence underscores the transformative potential of human—AlI collaboration,
particularly in domains that demand both scale and precision. A large workplace study [Moreno,
2023|] found that access to a generative Al assistant boosted worker productivity by 14% on av-
erage, with the greatest improvements observed among less-experienced users who were able to
match or even surpass the performance of more seasoned colleagues. This finding is striking be-
cause it suggests that Al not only accelerate routine workflows but also actively narrows expertise
gaps, allowing broader participation in complex, data-driven tasks.

In the context of climate data science, where research bottlenecks often stem from techni-
cal barriers, these results imply that Agentic Al could play a similar equalizing role—elevating
entry-level researchers while simultaneously streamlining the work of experts. Beyond efficiency,
the productivity gains translate into more time for higher-order reasoning and hypothesis gener-
ation, positioning Al systems as genuine collaborators rather than passive tools. Such evidence
strengthens the case that knowledge-graph-enabled Agentic Al could fundamentally shift how cli-
mate research is conducted, making discovery more inclusive, reproducible, and rapid. As GenAl



continues to improve with time, the reliance on Agentic Al tools will grow too.

1.3 Related Work

Several initiatives have sought to improve climate data access and interoperability. Foundational
projects like NASA Earthdata [nas|], the Coupled Model Intercomparison Project (CMIP) archives
[Meehl et al., 2000], and the Earth System Grid Federation (ESGF) [Williams et al., 2011]] pro-
vide access to a wealth of observational and model datasets. Computational tools such as Pangeo
[Odaka et al.l 2019] and ESMValTool [Righi et al., 2020] have further facilitated cloud-based
analysis and model evaluation, while ontologies like Semantic Web for Earth and Environmental
Terminology (SWEET) [Raskin and Pan, 2005]] and frameworks like GeoLink [Zhou et al., [2020]
offer structured vocabularies for Earth science concepts. While invaluable, these platforms were
designed as passive repositories and toolkits for human researchers. They excel at data provision
but lack the integrated, machine-readable structure required to support autonomous Climate Data
Science Al Agents. Such agents require a relational understanding of how to select, combine,
and process that data to achieve a specific scientific goal. More critically, existing systems do not
capture researcher intent or support automated, problem-aware workflow composition.

The development of knowledge graphs for climate science represents a significant step toward
solving this challenge. Recent efforts such as LinkClimate [Wu et al., 2022] have demonstrated
the potential of knowledge graph infrastructures to support interoperable access to observational
climate datasets. However, its underlying design reflects a static view of data usage, where dis-
covery is driven by keyword matching. The system treats datasets as endpoints for retrieval. It
does not represent the procedural knowledge or scientific reasoning—such as task dependencies
or model-data compatibility—that would allow an Al system to construct or adapt a workflow.
As a result, while LinkClimate enhances data discovery for a human user, it does not provide the
necessary framework to support agentic behavior effectively. This reveals a critical gap in exist-
ing infrastructure: the lack of a system designed explicitly to serve as the reasoning backbone for
an Agentic Al. The transition from data retrieval to automated scientific discovery requires a new
paradigm where the infrastructure itself encodes the knowledge needed for an agent to plan, exe-
cute, and adapt complex research pipelines. Our work addresses this gap by developing a knowl-
edge graph tailored to empower a new class of Climate Data Science Al Agents, demonstrating
that ”a knowledge graph is all you need”.

1.4 Contributions of This Paper

In this work, we introduce a semantic infrastructure that encodes climate data entities into a uni-
fied, queryable knowledge graph (KG). Our contribution is twofold. First, we present an ontology-
driven methodology for integrating heterogeneous NASA Common Metadata Repository (CMR)
records and institutional catalogs into a semantically consistent graph using OpenCypher [Green
et al., 2018|]. To align raw observational metadata with standardized Earth System Model vari-
ables, we develop a fine-tuned transformer classifier built on ClimateBERT [Webersinke et al.,
2021]], achieving 99.17% semantic accuracy in linking text to CESM variable labels [Kay et al.,
2015]. Second, we demonstrate how this KG becomes the reasoning substrate for our Agentic
Al system, AutoClimDS, capable of reproducing scientific workflows end-to-end. Given only a
research objective expressed in natural language, the agent leverages the KG to autonomously
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identify relevant data sources, reconcile their metadata, and execute preprocessing steps before
generating analytical outputs such as figures and graphs. In doing so, the system replicates results
from published climate studies, thereby illustrating a new paradigm of Al-driven scientific repro-
ducibility. Through this design, our approach addresses three key goals of climate data science:
enabling intent-aware data discovery, streamlining data acquisition, and supporting reproducible
climate modeling.

2 Method

2.1 Graph Ontology

To enable semantic reasoning over heterogeneous climate datasets, we define a domain-specific
ontology that captures the conceptual schema of climate research workflows. Metadata from the
NASA Common Metadata Repository (CMR) was ingested via their API and structured into a
JSON format, where each entry corresponds to a dataset and its associated metadata fields. Based
on this representationn, we constructed the structural backbone of the knowledge graph using a
combination of entity-centric (e.g., datasets, variables, model components) and process-centric
nodes (e.g., workflows, analytical tasks). This hybrid design allows the graph to encode both the
content of the scientific data and also their procedural context, enabling reasoning over both what
data exist and how it can be operationalized within research pipelines.

2.1.1 Dual-Format Metadata Integration

The foundation of our knowledge graph construction rests on a data fusion that harmonizes NASA’s
Common Metadata Repository (CMR) dual-format architecture. Let D;5oy and Dy, represent the
sets of metadata records retrieved fromthe collections. jsonand collections.umm_json
endpoints, respectively. For each dataset with concept identifier ¢, we define the merge operation
as:

M(C) = merge(DJSON [0]7 DUMM[C]) (D

where the merge function implements a field-wise preference hierarchy:

DUMM[C]field if DUMM[C]field#m

Dison|c].-field otherwise.

field(c) = { (2)

This strategy ensures maximal metadata completeness while preserving the structured seman-
tics of the Unified Metadata Model format. The resulting harmonized dataset H = { M (c) : c € C}

contains approximately |F| ~ 60 standardized attributes per record, where C represents the set of
all concept identifiers and F the attribute schema.

2.1.2 Geospatial Processing

To enable consistent spatial reasoning across heterogeneous datasets, we developed a geospatial
processing pipeline that standardizes spatial representations in CMR and resolves their geographic
context via boundary-based classification. The pipeline consists of three stages: (1) geometry stan-
dardization, (2) boundary-based classification, and (3) spatial scope determination. Each dataset
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record d € H is transformed into a standardized polygonal representation. The pipeline supports
three types of CMR spatial formats: bounding boxes, complex polygons, and point coordinates.
Bounding boxes are converted into polygons as follows:

B(b;) = Polygon{(w,s), (e, s),(e,n), (w,n), (w,s)}, b =][s,w,n,e]. 3)
Complex polygons are parsed from alternating latitude—longitude pairs:
P(p;) = Polygon{(Ae, dx) : dx = Cory Ak = Copr1} “4)

where ring closure is enforced when necessary.
All shapes are unified into a single geometry:

shapes|0] |shapes| =1,
U(d) = ¢ unary union(shapes) |shapes|> 1, (5)
None |shapes| = 0.

Only valid polygonal geometries are retained:
U(d) U(d) € {Polygon,MultiPolygon, }
G(d) = S unary_union({g € U(d).geoms}), U(d) = GeometryCollection

None otherwise.

(6)

Boundary-Based Geographic Classification. To associate geometries with geographic entities,
we employ boundary-based classification using offline boundary datasets and an R-tree spatial
index [Zhang et al., 2007]. For a dataset geometry g = G(d), candidate boundaries are efficiently
retrieved via bounding-box intersection:

Icandidates(.g) = {@ : beX(Bworld[i]) N beX(g) 7é (D} (7)
Candidate geometries are then filtered using GeoPandas [Jordahl et al., 2021]] overlay operations:

Cintersect(9) = overlay(GeoDataFrame([g]), GeoDataFrame(Coorentiar(g)), (8)

how =" intersection’).
Geographic labels are derived as:

Ncountries(g) = {name(c) .ce Cintersect(g)}y (9)
Ncontinents(Q) - {continentmap[n] inc Ncountries(g)}- (10)

Spatial Scope Determination. Spatial scope is classified hierarchically:

(ocean Cintersect (9) =0,
global Noontinents(9)] > 1,
scope(g) = continental Noontinents(9)] = 1A [Noountries(9)] > 1, 11
country |Ncountries(g)| =1,
multinational |[Niountries(g)| > 3,
| regional 1 < [Neountries(g9)] < 3.
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Implementation Details. The pipeline runs in offline-first mode (use_geocoding_api =
False) to ensure reproducibility; records without boundary data are returned with scope value
being "unclassified". The R-tree spatial index (BOUNDARIES_SINDEX) reduces candidate
searches from O(n) to O(logn) across 258 global boundaries. GeoPandas overlay operations then
refine results with minimal computational overhead, enabling efficient large-scale geospatial clas-
sification across heterogeneous climate datasets. This allows for high scalability and faster dataset
processing.

2.1.3 Resolution Extraction

Resolution metadata is extracted using predefined keyword lists and regex pattern matching. This
is necessary since the NASA CMR API does not directly come with resolution fields. The system
searches for spatial resolution using 13 predefined attribute names (e.g., spatial resolution,
grid_spacing, dx) and temporal resolution using 9 terms (e.g., time_resolution, dt,
frequency). When structured attributes are unavailable, regex patterns match resolution infor-
mation in text fields: spatial patterns capture formats like "\d+\s*km" and "\d+\s+degree",
while temporal patterns match terms like "daily" and "weekly". Rather than extracting just
numeric values, the system returns full sentences containing resolution context, preserving seman-
tic meaning for downstream processing.

2.1.4 Transformer-Based Semantic Variable Mapping.

A critical component of the Knowledge Graph involves establishing relationships between NASA
CMR datasets and standardized Earth System Model variables. To bridge this gap, we developed
a transformer-based classification system that learns to predict CESM variable names from CESM
variable descriptions, which can then be applied to match similar textual content in CMR dataset
metadata. We formulate this as a multi-class classification problem over the CESM variable space
Versy With [Vegsy| = 2, 308 distinct variables.

2.1.5 Model Architecture and Training Data

Our variable prediction system builds on ClimateBERT (distilroberta-base-climate-f) |Webersinke
et al.|[2021], a domain-adapted language model pre-trained on climate science literature. The
classifier fp : X — Vcgsy employs the following formulation:

h = DistilRoBERTac1inate(X), (12)
1

p==> hom, (13)
’T‘ teT

z = Linear(Dropout(p,p = 0.3)), (14)

y = arg max softmax(z);, (15)

where h € RY*4 denotes contextualized representations with hidden dimension d = 768, T repre-
sents valid token positions, m is the attention mask, and ® indicates attention-masked mean pool-



ing over real tokens. Training minimizes cross-entropy loss with Adam optimization (o = 1x107°,
batch size 16, 50 epochs).

Training data consists of 2,308 CESM variables extracted from model documentation, rep-
resenting atmospheric, oceanic, land, and ice component processes. Analysis reveals systematic
redundancy where of the 2,289 variables tested, 1,981 represent unique variable names with 1,830
distinct descriptions, indicating substantial description overlap where multiple variables share
identical descriptions but differ in technical specifications such as aerosol species, grid levels,
or temporal averaging.

2.1.6 Similarity-Based Semantic Clustering

To address the semantic redundancy inherent in the CESM variable space, we implement an au-
tomated clustering algorithm based on string similarity analysis. Let S : Vegsy X Vegsy — [0, 1]
denote the SequenceMatcher similarity function. We define the similarity relation:

similar(v;,v;) < S(normalize(desc(v;)),normalize(desc(v;))) > 1qV.S(v;,vj) > Ty,
(16)
where 7; = 0.7 and 7,, = 0.8 represent the description and name similarity thresholds, respectively.
The normalization function removes component prefixes and standardizes text formatting.
The clustering algorithm constructs an undirected graph G = (Vegsu, £) where (v;,v;) € E
if similar(v;,v;). Connected components of G form semantic clusters C = {Cy,Cy, ..., Cy}
where each C; C Vqggy represents variables describing identical physical processes.

2.1.7 Evaluation

Our classification system achieves strong performance on the CESM self-validation task. Let
Acxace and A,y denote exact match and similarity-group accuracies, respectively. The baseline
exact match accuracy is:

1
Aexact P —

| test|

> 1fo(d) = ya] = 93.45%, (17)

d€Dxest
where [[-] represents the indicator function and y, the ground truth label for dataset d.
With similarity grouping, the group accuracy improves significantly:

! Z I[cluster(fy(d)) = cluster(yq)] = 99.87%. (18)

deDtest

Agroup:| X t|
es

This represents a A—g—ffj;A—fm = 98% reduction in error rate, with only |£| = 3 variables (0.13%)

remaining unmatched.

2.1.8 Text Inference

Metadata from CMR datasets—including titles, summaries, abstracts, DataCategory summaries,
and Variable fields—is combined with platform and instrument information. The text is segmented
into 2-9 word n-grams, filtered to retain up to 20 meaningful climate-related tokens per dataset.
These tokens are then input into a transformer-based classifier to generate hasCESMVariable
relationships for each corresponding dataset



2.2 Graph Construction

The final, pre-processed metadata is stored as a unified JSON document, which is then transformed
into OpenCypher-compatible [Green et al., 2018] CSVs for ingestion by Amazon Neptune Analyt-
ics. The graph construction process consists of two main phases: node synthesis and relationship
generation.

First, the diverse set of entities are materialized as nodes in the graph. This includes the pri-
mary data-centric concepts (directly retrieved from the json) outlined in Table[I](e.g., Dataset,
Platform, Variable) and the procedural workflow schemas from Table 2] Each node is as-
signed a globally unique ID using deterministic content-hashing to prevent duplication. To enable
semantic querying, text embeddings are generated for vertices marked for embedding in the tables
and stored as Neptune vectors. Following node synthesis, a comprehensive set of relationships is
generated to interconnect the graph, as detailed in Table 3] These edges include structural links,
such as hasPlatform and hasVariable, which connect datasets to their constituent parts.
ML-assisted links are also forged; for instance, the crucial hasCESMVariable edge is created
by the ClimateBERT classifier to bridge observational data with the standardized CESM vocab-
ulary. Finally, a procedural layer is integrated by connecting the workflow nodes from Table
to relevant data entities using the specialized workflow relationships, giving the graph a dynamic,
operational dimension ready to support agentic reasoning.

2.3 AutoClimDS Agentic AI Architectures

The knowledge graph provides grounding for the use of Agentic Al in climate data science appli-
cations. In this paper, we propose a Climate Data Science Agentic Al with three core objectives:
Data Discovery, Data Acquisition, and Climate Modeling and Analytics. These objectives are
achieved by using a combination of Agentic Tools and Resources. The system is implemented
using LangChain [LangChainl] and ReAct-style reasoning [[Yao et al., 2023]], with Bedrock Claude
Sonnet 4 [Amazon Web Services and Anthropic, 2025] serving as the core model.

2.3.1 Data Discovery Agent

The agent implements semantic dataset discovery by encoding research queries into 384-dimensional
vectors through the sentence-transformers model. The embedding process applies multi-layer
transformer attention mechanisms that capture contextual relationships between climate termi-
nology, mapping input query text ¢ to vector v, € R3** through attention-weighted token ag-
gregation and mean pooling operations. The core vector search functionality operates through
Neptune Analytics’ native topKByEmbedding () procedure [Amazon Web Services, [2025],
which implements hierarchical navigable small world graphs for efficient approximate nearest
neighbor retrieval. The algorithm executes through OpenCypher query construction. This ap-
proach leverages Neptune’s internal cosine similarity computation without requiring custom sim-
ilarity implementations, ensuring scalable vector search across large knowledge graphs contain-
ing thousands of climate datasets. The mathematical foundation relies on Neptune’s optimized
similarity scoring that maintains semantic consistency by ensuring climatically related concepts
cluster appropriately in the 384-dimensional embedding space. The agent implements intelli-
gent search routing through embedding availability detection, where node types are categorized



into vector-enabled and text-only categories. Vector-enabled types include DataCategory,
Variable, CESMVariable, ScienceKeyword, Location, TemporalResolution,
SpatialResolution, and various workflow node types, while remaining node types utilize
text-based Neptune query matching. The routing decision operates through conditional branch-
ing where vector search executes for embedding-enabled nodes and text search provides coverage
for non-embedding nodes, ensuring comprehensive search capability across the entire knowledge
graph schema.

The agent extends single-criterion search through composite multi-criteria functionality that
combines vector search results with relationship-based filtering. This addresses the real-world
complexity of climate dataset selection where researchers must consider temporal coverage, spa-
tial resolution, variable availability, and institutional provenance simultaneously. The multi-criteria
algorithm constructs complex OpenCypher queries that incorporate vector search results as node
constraints while applying additional filtering through temporal overlap detection, spatial rela-
tionship traversal, and organizational affiliation matching. The temporal filtering mechanism im-
plements mathematical interval intersection testing where dataset temporal bounds [t.:art, teng)
undergo comparison with query temporal constraints. For temporal extent queries, the algorithm
applies date comparison logic through OpenCypher date functions, supporting after, before, and
between temporal specifications. The spatial constraint processing leverages vector search on Lo-
cation nodes to identify relevant geographic regions, then applies relationship traversal to discover
datasets associated with those locations through hasLocat ion relationships. Unlike static query
interfaces, the agent operates with a degree of autonomy in dataset discovery. It can dynamically
reformulate queries, adjust search strategies (vector vs. text-based), and traverse the graph flexibly
to maximize relevance. Once suitable datasets are identified, their metadata and relationship infor-
mation are stored in a local SQLite database. This persistent memory allows the system to recall
previously retrieved datasets, accelerate future queries, and support iterative research workflows
by maintaining continuity across sessions.

2.3.2 Data Acquisition and Processing Pipeline Agent

Once the knowledge graph returns a set of relevant datasets, the Agentic Al system transitions
from discovery to acquisition. Each dataset entry in the research database is inspected, and the
agent retrieves the corresponding links from the hasLink relationship of the dataset node. These
links may point to NASA Earthdata, NOAA archives, or AWS Open Data S3 buckets. Based on
the research query ¢, the Agent determines the next action a € A, where

A ={retrieve,preprocess,analyze}.

If a = retrieve, the agent invokes the appropriate API (with authentication handled via pre-
configured tokens) to fetch the dataset. The raw data, denoted D = {d;,d,...,d,}, may ar-
rive in heterogeneous formats such as CSV, NetCDF, HDF, or JSON. An automated transfor-
mation function 7' : D +— D standardizes the collection into tabular or array-based structures,
enabling interoperability. Quality validation steps are expressed as a constraint-checking func-
tion V(D) e {0, 1}, which enforces link validity, accessibility, and structural consistency. Only
datasets satisfying V(D) = 1 are retained for downstream workflows. These steps are executed
through the CodeExecution tool, which grants the Data Acquisition Agent controlled access

to a secure runtime environment for code execution and data manipulation. The adaptive nature
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of the pipeline allows for domain-specific preprocessing, including spatial subsetting, temporal
aggregation, or variable-level transformations, as well as analytics such as automated graphing.

By integrating discovery, retrieval, validation, and preprocessing into a single agent-driven
workflow. This makes data acquisition not only reproducible and cloud-resilient but also adaptive
to evolving research needs. In particular, the linkages between the graph and cloud-hosted data
repositories ensure persistence, while the transformation 7" and validation V' guarantee that datasets
are continuously usable for climate modeling or machine learning applications.

2.3.3 Climate Modeling and Analytics Agent

The CESM LENS Climate Ensemble modeling and analytics agent provides direct access to the
Community Earth System Model Large Ensemble (CESM-LENS) dataset, enabling sophisticated
climate modeling workflows through automated ensemble analysis and uncertainty quantification.
The agent operates on the 40-member CESM-LENS ensemble spanning 1920-2100, with histor-
ical simulations (1920-2005) and RCP8.5 future projections (2006-2100) stored in AWS S3 at
approximately 1-degree global resolution across atmospheric, oceanic, land, and ice components.

Ensemble Data Access and Optimization. The climate modeling pipeline implements efficient
data loading which leverages the official Intake-ESM catalog for standardized access to CESM-
LENS datasets. The system automatically handles CESM’s non-standard calendar format through
cftime [cftime] decoding, converting temporal coordinates to pandas-compatible datetime ob-
jects while preserving calendar-specific attributes. For large datasets exceeding memory con-
straints, the agent applies intelligent subsampling strategies where spatial resolution is reduced
by factor s and temporal resolution by factor ¢, maintaining statistical representativeness while
ensuring computational feasibility.

The data transformation pipeline converts multidimensional xarray [Hoyer and Hamman, 2017]]
datasets to efficient tabular format through function, which implements chunked processing to
handle datasets exceeding available memory. The algorithm processes ensemble data in chunks of
size

Mavailable )
'5-sizeof (float32)
where M ,,qi1qn1e TEPrEsents available system memory, ensuring stable processing of large climate
datasets. The resulting Polars DataFrame [Polars Developers, 2025] structure enables vectorized
operations for subsequent ensemble analysis while maintaining memory efficiency through colum-
nar storage.

C = min(10°

Observational-Model Integration. The climate modeling workflow leverages the knowledge
graph’s semantic structure to bridge observational datasets with CESM-LENS simulations through
automated discovery and variable mapping. The system initiates observational dataset retrieval
by querying the knowledge graph for datasets D, that contain hasCESMVariable relation-
ships, identifying observational records already linked to CESM variable nomenclature. When
researchers specify observational dataset identifiers, the agent traverses knowledge graph relation-
ships to extract connected CESM variables, their metadata, and temporal constraints [¢%05 . #°b%)]

from the observational record. This relationship-driven approach enables the system to automat-
ically determine which CESM-LENS variables correspond to the observational measurements,
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then execute targeted queries against the CESM ensemble using the CESMLENSDataTool with
matching temporal bounds and spatial domains. The knowledge graph thus serves as the semantic
bridge that transforms observational dataset specifications into executable CESM-LENS queries,
ensuring variable compatibility and temporal alignment between observed and modeled climate
data.

Spatial and Temporal Subsetting Pipeline. Spatial subsetting capabilities enable regional cli-
mate analysis through coordinate-based filtering, where geographical constraints (lat i, latnaz ) ¥
(lonmin, loNma,) are applied during data loading to reduce computational overhead. The agent
handles longitude convention differences automatically, converting between [-180°, 180°] and [0°,
360°] coordinate systems as needed for seamless integration with different climate datasets. Tem-
poral subsetting operates through year-based filtering that respects CESM experiment boundaries,
automatically selecting appropriate experiments (20C for historical periods, RCP85 for future sce-
narios) based on requested time ranges, ensuring temporal continuity while maximizing data avail-
ability across the full CESM-LENS temporal domain.

The climate modeling and analytics agent architecture enables researchers to transition seam-
lessly from dataset discovery through the knowledge graph to ensemble analysis of CESM-LENS
simulations, providing a comprehensive framework for climate research that spans observational
data integration, model analysis, and uncertainty quantification within a unified Agentic Al system.

Orchestrator Agent

Verification Data DiSCDVEI'}" Data Acquisili[:-n Modeling &
Agent Agent Agent Analytics Agent
Verifies Neptune AFI Fetcher, Retrieve and
Information and Queries, Vector Preprocessing Analyze
Datasets, Search, Graph Data Pipelines, Simulation
Praevents Analytics Graphing and Datasets
Hallucination Exploration Analytics

Figure 1: An overview of the multi-agent system architecture.
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2.3.4 AutoClimDS: Multi-Agentic AI System

The multi-agentic AI system (Figure [I] is designed to modularize climate research tasks through
a central Orchestrator Agent, which interprets user objectives, maintains research state, and del-
egates sub-tasks to specialized agents. The Data Discovery Agent queries the Knowledge Graph
using semantic search to identify relevant resources, while the Data Acquisition Agent retrieves
and preprocesses datasets from sources such as AWS OpenData S3. The Climate modeling and an-
alytics agent then integrates these datasets with climate model ensembles to produce harmonized,
comparable simulations. Supporting this pipeline, a Verification Agent serves as an automated
peer reviewer, validating data quality, logical consistency, and adherence to physical constraints.
Together, these agents form a coordinated workflow that mirrors the collaborative dynamics of a
human research team.

-

Frontend

b - LLM Analysis

- Recommendatio}

WebApp React i Ghieway | - Queries
(CloudFront) (S3 - Static hosting) - Chat

@ Submit Question @ Get Schema @ LLM (generate openCypher query for the question, schema & prompt) @ Neptune exectte openCypher query. @ LLM Convery query results back to natural query @ Response back to AP

Figure 2: End-to-end architecture for our deployed, scalable AutoClimDS Agentic Al knowl-
edge graph pipeline on AWS. The frontend (CloudFront, React, API Gateway, and Cognito) en-
ables user interaction, while the backend integrates Bedrock LL.Ms, Neptune Graph Database, and
SageMaker for ingestion, querying, and reasoning. Data flows include schema extraction, entity-
relationship ingestion, natural language to OpenCypher translation, and Agentic AI workflows for
collaborative or autonomous decision-making.

2.4 Cloud Deployment and Workflow

To ensure scalability, adaptability, and continuous integration of new climate datasets, the proposed
AutoClimDS system is deployed within an AWS-based architecture (Figure[2)). The workflow fol-
lows a modular design: data are periodically ingested from external sources into Amazon S3,
transformed into a standardized CSV-based format, and harmonized through automated routines
executed via AWS Lambda. This standardized representation enables consistent integration of
heterogeneous datasets and allows the knowledge graph to be continuously updated as new data
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becomes available. Each dataset is enriched according to the ontology and stored in Amazon Nep-
tune, which supports both symbolic querying and vector-based similarity search through Neptune
Analytics.

Future Scalability and Computational Considerations: The architecture is designed to ac-
commodate future growth in both data volume and analytical complexity. The ingestion pipeline
can be extended to handle streaming or real-time data, while graph and machine learning compo-
nents can scale through Amazon ECS and SageMaker for more advanced analytics. Additional
components, such as Neptune Analytics for high-throughput GraphRAG search or Bedrock for
LLM-powered query generation, can be seamlessly integrated without major architectural changes.
While leveraging cloud services provides elasticity and ensures accessibility across domains, it also
introduces computational costs tied to storage, data transfer, and on-demand processing. These
costs scale with dataset size, update frequency, and analytical intensity, highlighting the trade-off
between maintaining an up-to-date, continuously enriched knowledge graph and the resources re-
quired to sustain such infrastructure. AWS offers a Pricing Calculator that allows you to estimate
the cost of various AWS services based on your specific usage requirements.

3 Case Study: Sea Level Trends

To demonstrate the effectiveness of our AutoClimDS system, we replicate selected figures and
graphs from the New York City Climate Risk Information 2022 (NPCC4) report [Braneon et al.,
2024]]. These replications validate the ability of the Knowledge Graph and Agentic Al Pipeline to
reproduce key climate risk indicators using openly available data and automated workflows. Data
were found using natural language queries to the Data Discovery Agent, while data was loaded
and plotted using natural language instructions to the Data Acquisition Agent.

Figure [3] and Figure [Sa] show sea level trends produced using the AutoClimDS system through
only natural language queries. AutoClimDS successfully replicated the original NPCC4 figures
(Figure [4] and Figure [5b) from Braneon et al|[2024]]. Following natural language instructions, the
Agentic Al system ran the entire workflow, from data discovery to data acquisition. The natural
language instructions followed a three-part structure:

1. Objective — the broad analytical task (e.g., “analyze historical sea level change for New York
City”).

2. Context/Constraints — scope of analysis such as time span, geographic region, or variable
of interest.

3. Desired Output — specification of both the form of the result (e.g., figure, time series plot,
table) and the measures to be extracted (e.g., long-term trend, annual anomalies, regression
slope).

Crucially, no underlying datasets, numerical values, or regression coefficients were provided by
the user. The agents autonomously located appropriate datasets, carried out preprocessing, calcu-
lated the requested measures, and generated the figures. By using AutoClimDS, the user receives
not only the figures themselves but also the underlying datasets locally, along with a file containing
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information about the data sources and interactive agents that can acquire other similar datasets,
transform the data in different ways, and analyze the data further. This prompt structure highlights
how AutoClimDS transforms high-level natural language requests into complete analytical work-
flows. The Modeling and Analytics agent reproduced the linear sea level rise trend and overall
graph structure with high fidelity. In particular, the replicated graph aligns exactly with the orig-
inal in terms of numerical trends, and, in some aspects, the agent-generated version demonstrates
improved precision. All logs, data files, and figures are available on the GitHub repository.

Long-term Sea Level Trends at The Battery, New York (Station 8518750) Mean sea level rise (global)

Mean Sea Level (inches, MSL)
i

Time

Figure 3: AutoClimDS replicated NPCC4 observed sea level trends.

Relative sea level rise The Battery,New York X
. Mean sea levelrise Global
35

—— Linear sea level rise trend 18502017 (0.11 in/year)
— Linear sea level rise trend 19932017 (0.15 in/year)

— Linear sea level rise trend (0.12 in/year)

25

Mean sea-level {in)

05
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Figure 3.1. Global mean sea level rise during the satellite era, 19932018 (AVISO, France; posted March 26, 2018).

ty at The Battery (NOAA, 2017). Black tr
htly higher trend from 1993 to 2017, whi

Figure 4: Original figures of sea level trends from Braneon et al.|[2024], under the terms of the CC
BY-NC license.

In this case study, AutoClimDS demonstrated a nuanced understanding of the analytical objec-
tive, distinguishing between observed and corrected sea level rise, correctly interpreted specialized
climate terminology, such as vertical land motion (VLM) and handled higher-level statistical con-
siderations inherent in the data.
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Sea Level Decomposition: The Battery, New York (1856-2022)

Sea levels for NYC since 1856 are shown in Figure & along with SLR
drivenby VLM and rising sea levels alone. These showthat the total SLR

@

=

has resulted from similar contributions of continual (linear) land sub-
sidence (VLM) and accelerating SLR. Studies of RSLR impacts at NYC
“henci th ong temlnar e ofp Smmr =012 mrom i
entire period that is available from NOAA,”” but Figure  helps demon-
strate that NYC's RSLR is accelerating, as is GMSLR. An estimate of the
recent RSLR rate is obtained from taking the B-year running average
at September 2018 minus the 8-year running average at 1990, which
A key uncertainty in future SLR is the behavior of the ice sheets,
and in particular, the Antarctic Ice Sheet, which holds the equivalent of
58.3m (191.2 ft) of global SLRif all its ice melted. Therefore, NPCC3%5 | 4 l i ) L | i !
also considered one high-end, low-probability scenario—the Antarc- o 2\ 860 1880 1000 1920 1040 1960 1980 2000 2020
tic Rapid Ice Melt (ARIM] scenaria, which includes potential instability Year
of the West Antarctic Ice Sheet (WAIS). Much of the WAIS lies on
land below sea level, on reverse slopes that tilt toward the continen-
tal interior. This is an inherently unstable topographic configuration
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FIGURE 6  New York Harbor sealevel from 1856 to 2022 with
1-year (gray) and 8-year (black) averaging, and as partitioned into
change due to vertical land motion only (VLM; green) and rising sea
which could lead to MISI, a potential process in which an ice Streamar jeyels anly (red). A VLM estimate of —1.5 mmiyr (+/— 0.2 mm 95%
1860 1880 1900 1920 1990 1960 1980 2000 2020 glacier on a reverse slope near the grounding line accelerates, discharg- confidence) for the Battery tide gauge is utilized.”*

Year

(a) Replicated by AutoClimDS (b) Original [Braneon et al., 2024]]

Figure 5: Sea level trends with SLR driven by VLM and rising sea levels alone.

4 Open Science and Community Contributions

A central goal of this project is also to advance open science by making our proof of concept fully
accessible and extensible by the community. Reproducibility, transparency, and accessibility are
guiding principles: by sharing both the knowledge graph (KG) and the AI agent workflows, we
aim to lower barriers not only for end-users but also for researchers and practitioners who wish to
build upon this work.

All resources associated with this proof of concept are openly available through a GitHub
repositoryﬂ The repository includes the KG schema and seed entries, example Al agent workflows,
scripts for data access and processing, as well as documentation and tutorials. These materials
allow users to reproduce our experiments and adapt the workflows for their own scientific inquiries.

The repository also serves as a hub for community contributions. We welcome contributions
through GitHub pull requests in several forms:

* Submission of new KG entries, such as datasets, workflows, or domain-specific ontologies;
* addition of scripts and tools for data acquisition or processing;

* improvements to documentation, tutorials, or examples; and

* reporting issues or suggesting enhancements through the GitHub Issues interface.

A list of open issues can be found in our GitHub repository cited in the paper.

To maintain quality and consistency, contributions are reviewed before incorporation. The KG
and agent framework are designed for modularity, so that new resources can be integrated without
disrupting existing workflows. This ensures that the system can evolve as a shared commons,
enriched by a diversity of perspectives and expertise.

Looking ahead, we envision the repository as a foundation for collaborative growth. By lower-
ing the technical threshold for participation, the project invites contributions not only from climate
scientists and data scientists but also from educators, students, and citizen science communities.
Future activities such as community challenges can further expand the resource base and strengthen
the socio-technical infrastructure of open, reproducible science.

Thttps://github.com/Ajaberr/AutoClimDS
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5 Conclusion

In this paper, we built a proof of concept for utilizing a well-curated knowledge graph (KG) to
develop highly capable Al agents for climate data science workflows. We demonstrated that these
agents can substantially lower barriers to data identification, acquisition, processing, and analysis
for non-technical users. The system we built integrates cloud-ready API data portals with genera-
tive Al tools from AWS, illustrating that “a knowledge graph is all you need” can be a reachable
vision for Agentic Al workflows in scientific inquiry. By leveraging the KG as both an extensible
memory and a unifying reasoning layer across tools and datasets, our approach aligns with existing
cloud data science solutions while creating space for community contributions in the form of KG
entries, data access utilities, and workflow scripts.

Beyond the technical proof of concept, this work highlights the broader potential of KGs and
Al agents to democratize climate data science. Lowering technical barriers opens opportunities
for participation from policy, education, and citizen science communities, while the modular and
cloud-native design ensures scalability and interoperability. Crucially, the KG provides a foun-
dation for an evolving, community-driven commons that can grow with new datasets, tools, and
domain knowledge, positioning it as both a technical and socio-technical infrastructure for col-
laborative science. Looking forward, this approach provides a pathway toward integrating more
advanced reasoning capabilities, fostering reproducibility, and ultimately accelerating discovery
through human—AlI partnerships in climate and beyond.
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Table 1: Node classes defined in the Knowledge Graph

Node label Description Emb.
Dataset One CMR collection: identifiers, title, DOI, temporal coverage, spatial footprint, data- No
centre flags.
DataCategory Text summary of a dataset. Yes
DataFormat Physical file/packaging format (e.g. NetCDF-4, HDF-EOS2, GeoTIFF). No
CoordinateSystem CRS / projection definition (name, datum, units). No
Location Bounding boxes, polygons or points plus derived place-names. Yes
Station Ground station or deployment site linked to a dataset. No
Organization Data provider, processing centre, or programme office. No
Platform Spacecraft, aircraft, float, buoy, or other carrier of instruments. No
Consortium Multilateral project or data-sharing alliance. No
Temporal Extent Start and end timestamps and last-update time. No
Variable Native CMR variable extracted per dataset (name, units, description). Yes
CESM Variable Canonical CESM variable (domain, component, long-name, units). No
Component CESM Model Components (ATM, OCN, LND, ICE, ROF, GLC, WAV). No
Contact Person or group: name, roles, email/phone, affiliation. No
Project NASA/NOAA mission or research campaign. No
Link Ancillary link (documentation, OPeNDAP, visualiser, etc.). No
SpatialResolution Parsed horizontal grid size with units. Yes
TemporalResolution  Parsed reporting or output frequency (e.g. 3-hourly). Yes
ScienceKeyword Controlled GCMD / SWEET keyword hierarchy levels 0-3. Yes
ProcessingLevel NASA processing level 0—4 descriptor. No
Table 2: Workflow node classes defined in the Knowledge Graph
Workflow Node Label Description Emb.
SurrogateModelingWorkflow Learned surrogate model trained to emulate physical simulations. Yes
HybridMLPhysicsWorkflow Hybrid system combining ML components with physics-based simulation.  Yes
EquationDiscovery Workflow Process that extracts governing equations from data. Yes
ParameterizationBenchmark Evaluation setup for comparing parameterization methods. Yes
UncertaintyQuantification Process for estimating predictive uncertainty. Yes
ParameterInference Workflow Inference system for estimating physical parameters from data. Yes
SubseasonalForecastingWorkflow Forecasting models for 2-6 week prediction horizons. Yes
TransferLearningWorkflow Transfer pipeline from synthetic to observational datasets. Yes
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Table 3: Relationship (edge) types in the Knowledge Graph

Edge Label From — To Meaning / semantics

hasDataCategory Dataset — DataCategory Links a dataset to its summary.

hasDataFormat Dataset — DataFormat Declares the physical file format.

usesCoordinateSystem Dataset — CoordinateSystem Specifies the projection of the dataset.

hasLocation Dataset — Location Attaches the spatial footprint (boxes /
polygons / points).

hasStation Dataset — Station Associates ground station or platform
deployment sites.

hasOrganization Dataset — Organization Producing or archiving centre.

hasPlatform Dataset — Platform Carrier of the measuring instrument(s).

hasConsortium Dataset — Consortium Higher-level project or alliance.

hasTemporalExtent Dataset — TemporalExtent Time coverage start / end.

hasVariable Dataset — Variable Native CMR variables parsed directly
from metadata.

hasCESM Variable Dataset — CESM Variable ML-predicted CESM counterparts.

hasSpatialResolution Dataset — SpatialResolution Parsed horizontal grid spacing.

hasTemporalResolution
hasProcessingLevel
hasLink

hasProject

hasScienceKeyword
hasContact
belongsToComponent

describesVariable

operatesAtLocation
worksForOrganization
belongsToConsortium

similarCESM Variables

Dataset — TemporalResolution
Dataset — ProcessingLevel
Dataset — Link

Dataset — Project

Dataset — ScienceKeyword
Dataset — Contact
CESM Variable — Component

ScienceKeyword — CESM Variable

Platform — Location
Contact — Organization
Organization — Consortium

CESM Variable — CESM Variable

Parsed reporting or output frequency.
NASA processing level (0-4).

Ancillary documentation / access links.
NASA/NOAA mission or research cam-
paign.

Controlled GCMD / SWEET tags.
Person or group responsible for dataset.

Maps a CESM variable to its parent
model component.

Semantic bridge from keyword hierarchy
to CESM variable.

Deployment area of the platform.

Staff affiliation / stewardship.
Organization’s membership in a larger
alliance.

Groups similar CESM variables together
based on string similarity.
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