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Abstract

With recent advancements in video backbone architectures,
combined with the remarkable achievements of large lan-
guage models (LLMs), the analysis of long-form videos
spanning tens of minutes has become both feasible and in-
creasingly prevalent. However, the inherently redundant
nature of video sequences poses significant challenges for
contemporary state-of-the-art models. These challenges
stem from two primary aspects: 1) efficiently incorporating
a larger number of frames within memory constraints, and
2) extracting discriminative information from the vast vol-
ume of input data. In this paper, we introduce a novel end-
to-end schema for long-form video understanding, which
includes an information-density-based adaptive video sam-
pler (AVS) and an autoencoder-based spatiotemporal video
compressor (SVC) integrated with a multimodal large lan-
guage model (MLLM). Our proposed system offers two ma-
jor advantages: it adaptively and effectively captures essen-
tial information from video sequences of varying durations,
and it achieves high compression rates while preserving
crucial discriminative information. The proposed frame-
work demonstrates promising performance across various
benchmarks, excelling in both long-form video understand-
ing tasks and standard video understanding benchmarks.
These results underscore the versatility and efficacy of our
approach, particularly in managing the complexities of pro-
longed video sequences.

1. Introduction
”The whole is greater than the sum of its parts.”

— Aristotle

Long-form video understanding has emerged as a hot topic
in the research community, presenting significant chal-
lenges due to its complexity and dynamic nature, and re-
mains an unsolved problem despite ongoing advancements.
Conventional approaches [11, 15, 40, 43, 47] often focus
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(a) Clip-level caption aggregation

(b) Uniform sampling and text-guided compression

(c) Ours: High compression rates while preserving crucial discriminative information.
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Figure 1. An overview of our method and previous works, showing
the different way of modeling long-form video with LLM. Specif-
ically, (a) interpret clip into clip-level caption and aggregate via
LLM in the linguistic space, (b) uniformly sample the video frame
and leverage paired text to compress video tokens, and (c) our pro-
posed method that leverage adaptive video sampler (AVS) and au-
toencoder based spatiotemporal video compressor (SVC).

on classification tasks, where the goal is to map an entire
video to one or a few predefined ground truth labels. These
methods typically treat the video as a single, unified entity,
aiming to assign a label that best represents the overall con-
tent. Although effective in some contexts [15, 40, 47], these
approaches are insufficient to understand long-form video,
as they do not capture the complexity and contextual rela-
tionships unfolded across multiple scenes over time.

Recently, multimodal large language models
(MLLMs) [18, 26, 26, 29, 37, 38, 49] have made a
significant impact on the field of video understanding,
showcasing remarkable emergent capabilities across a
variety of video-related tasks, such as perception, common



sense reasoning, and open dialogue [20, 30, 33, 48, 54].
However, many of these models face challenges in ef-
fectively learning and modeling long-form video. This
difficulty arises from the redundant nature of video se-
quences, which often results in an overwhelming number
of visual tokens, leading to substantial computational
overhead in LLMs. RoPe [39] provides a solution to
handle the extended context during inference. However, the
complexity of a long-form video sequence requires a more
effective encoding solution during training.

To address these challenges, one successful attempt [12,
25, 45, 56], illustrated in Figure 1 (a), is to represent the
long-video hierarchy with the natural language, which seg-
ments the long video sequences into several short clips and
produces video segment captions. These short captions are
subsequently fed into the LLMs for inference. However,
these models interpret video clips into natural languages in
the early stage, leading to the loss of much low-level visual
information. Additionally, aggregated hallucinations from
segment-level captions may result in poor generalizability
and performance across various tasks and models. Another
direction [23, 38] focuses on reducing the large number of
tokens in long-form videos by introducing a learnable com-
pression or token merging module, or a memory bank linked
to the LLM, as shown in Figure 1 (b). However, scaling
these methods is challenging, as they require a large volume
of video-text pairs, with the linguistic information serving
as guidance for training the compressor. Finally, parameter-
free pooling operations (such as average pooling) have been
proven effective [18, 26, 26, 29, 37, 38, 49], but information
loss remains unavoidable and is even more severe in long-
form videos, where the diversity within video sequences is
greater than in short videos.

In this paper, we introduce a comprehensive schema
for long-form video understanding, covering the entire
pipeline, from sampling to compression to high-level in-
terpretation. This system includes: 1) an Adaptive Video
Sampler (AVS) that selects video frames based on informa-
tion density, 2) an Auto-Encoder based [36] Spatiotempo-
ral Video Compressor (SVC) that can be effectively trained
with video-only data, and 3) a MLLM that integrates seam-
lessly with both the compressor and sampler. The AVS
works jointly with SVC delivering 64-time compression to
save the token budget for MLLMs. An overview of our pro-
posed system is illustrated in Figure 1 (c). Our approach
significantly reduces the token budget by 64 times, enabling
MLLMs to process hours-long video sequences in their en-
tirety. The proposed AVS and SVC modules ensure a suffi-
cient capture of discriminative information while consider-
ably expanding the perception field of the MLLM in long-
form videos.

We conducted extensive experiments in a diverse range
of tasks and problem settings to evaluate the proposed

method. Our approach significantly outperforms state-of-
the-art methods on various video benchmark downstream
tasks while demonstrating superior efficiency by using sub-
stantially fewer visual tokens and reducing computational
overhead. Notably, our method surpasses Llava-OV [18] by
2.6% and 3.3% on the EgoSchema and PercepTest tasks,
respectively, while utilizing 80% fewer visual tokens. Our
contributions are as follows.

• We proposed a novel long-form video understanding
schema to equip MLLM, which includes two novel
components: Adaptive Video Sampler (AVS) which
samples frames based on the information density, and
Spatio-temporal Video Compressor (SVC) that is an
AE-based video compressor.

• The proposed AVS and SVC work jointly to deliver 64-
time compression ratio, which significantly save the to-
ken budget in MLLM while preserving the discrimina-
tive information of the long-form videos.

• Compared to baseline and competitive counterparts, we
demonstrate the effectiveness of the proposed elements
and achieve performance on par with the SoTA meth-
ods in various video understanding benchmarks, while
only utilizing 20% video tokens compared to the previ-
ous SoTA method [18].

2. Related Work

2.1. MLLMs in Long-form videos
In contrast to conventional long-form video understanding
tasks that classify entire long video as one or a few ground
truth labels [11, 15, 40, 43, 47], Multi-modal Large Lan-
guage Models (MLLMs) interpret long-form video within
a well-defined linguistic space, thus expanding the scope
of video understanding to include tasks such as contextual
reasoning, open-ended dialogue about video content, and
complex question-answering across long-video sequences.
However, the high computational cost of transformer-based
LLMs poses a significant barrier to effectively processing
entire sequences of long-form videos within memory con-
straints. To address this issue, one solution is to divide the
entire long-form video into short clips and generate clip-
level captions, which will be hierarchically aggregated as
long-form video representation via LLM [12, 25, 45, 56].
However, these models often lose significant low-level vi-
sual information, and the accumulated hallucinations from
segment-level captions can lead to poor generalizability and
reduced performance across various tasks and models. To
this end, an efficient and effective video encoding scheme
is required in long-form video understanding tasks.

2.2. Long-form Video Encoding
Token Reduction Token reduction is one of the most ef-
fective methods to relieve computational burden. It can be



further categorized as 1) Token Selection, 2) Token Merging
and 3) Token Compression.
Token Selection: Token selection is a common strategy for
improving model efficiency, utilizing lightweight modules
to retain only the most ”useful” tokens while discarding
those considered less essential. Typical works, such as
STTS [42], AdaViT [31] and similar methods [24, 31, 34,
42] introduce a selection mechanism to assign importance
scores to each token and selects the top-K important ones.
However, it is impractical for a lightweight selection mod-
ule to select discriminative information from a large volume
of long-form video data without risking a loss of contextual
information.
Token Merging: Originally proposed by [2], token merging
is designed to enhance throughput in vision transformers
without the need for further training. The merging tech-
nique splits visual tokens into two equal groups; for each
token on the edge of one group, it identifies the closest
matching token in the other group, merges them using av-
erage pooling, and then recombines the groups. Although
this method is effective and straightforward, its use has been
mainly limited to the image and short video domains [1, 21,
35]. This is due to the high diversity in long-form videos,
which often leads to mismatches in a similarity-based merg-
ing system. More practically, a sliding window-based aver-
aging pooling cubic is widely adapted in recent long-form
video understanding works [6, 18, 26, 29, 49]. In partic-
ular, Video-ChatGPT [26] and SlowFast-LLaVA [49] em-
ploy two distinct pooling strategies across spatial and tem-
poral dimensions to capture object and motion information,
respectively. However, these pooling strategies treat each
video frame equally, which may result in information dis-
tortion when two dissimilar candidates are combined. Ef-
fectively reducing redundant visual tokens while preserving
key information remains a challenge and further exploration
is needed.
Token Compression: Recent works [23, 37, 38, 46, 53] have
successfully leveraged a compressor to reduce the num-
ber of visual tokens while preserving useful information in
various applications, such as classification, generation, and
general understanding with LLMs. For example, Wiles et
al. [46] leverage the VQ-VAE encoder-decoder model [41]
to apply augmentations directly on the latent codes of com-
pressed video and use them for classification tasks. Yu
et al. propose MAGVIT-v2 [53], which generates concise
and expressive tokens for both videos and images utiliz-
ing a shared VQ-VAE codebook. In the field of long-form
video understanding, MovieChat [38] introduces a recurrent
memory bank to consolidate excessive video tokens, while
LLaMA-VID [23] uses cross attention to represent each
video frame as two tokens. Furthermore, LongVU [37] uti-
lizes DINOv2 [32] features to eliminate redundant frames
that exhibit high similarity. These works either rely on ex-

ternal prior or well-structured video and text pairs, which
may easily introduce bias or prevent the algorithm scaling
up. In this work, we argue that the token reduction mech-
anism should be implemented as a holistic pipeline that
jointly considers video sampling and compression problems
as a whole. To this end, we propose a simple yet effective
adaptive video sampler as well as a video compressor that
delivers a 64-time compression ratio over long-form video
while preserving discriminative information.
Video Backbone Recently, Mamba [10] and its huge fam-
ily [4, 28, 43, 51] received promising results in various
long context modeling tasks. Specifically, it utilizes a state-
space sequence model with a structured convolutional ker-
nel to efficiently capture long-context information, achiev-
ing linear complexity. However, stringent initialization con-
ditions make it difficult for Mamba to be trained in large
scale with MLLMs [28]. As a result, we follow previous
works [18, 26, 26, 29, 37, 38, 49] by using ViT [7] as the
video backbone. The exploration of Mamba with MLLMs
will be left for future work.

3. Methodology
3.1. Preliminaries
MLLM For Long-form Video Understanding
Multimodal Large Language Models (MLLMs) process vi-
sion data using LLMs to interpret visual information ex-
tracted from inputs alongside task-specific text prompts
(e.g., visual questions about visual content), ultimately gen-
erating the corresponding responses [6, 23, 27].

To be specific, given an input video V as an example, a
set of frames, denoted as X , are first uniformly sampled
form it. A pretrained visual encoder E then extracts vi-
sual token embeddings, denoted as f , from these sampled
frames:

f = E(X), f ∈ RT×H×W×C (1)

where T represents the frame number, H , and W are height
and width of the extracted feature tensor, respectively.

The LLM subsequently processes the visual tokens with
the text question (Q) to generate the answer A.

A = LLM(P (f), Q) (2)

where P is a projector, such as the MLP module, that maps
visual token features into the input space of the LLM.

However, in the context of long-form video, the volume
of f increases significantly, which impacts the capacity of
MLLM 1 in terms of both efficiency and effectiveness. Ad-
ditionally, uniform sampling combined with standard aver-
age pooling is suboptimal for long-form video, as redun-
dant and irrelevant frames may consume the limited token

1The complexity of transformer-based LLMs is quadratic in relation to
input length.
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Figure 2. Overview of the proposed method.

budget of LLMs, ultimately reducing their ability to capture
complex long-term dependencies. Motivated by these, we
propose a long-form video understanding framework in this
work, offering solutions and best practices for the research
community.

3.2. Proposed Framework
In this paper, we propose a novel long-form video under-
standing framework, addressing the aforementioned chal-
lenges, from frame loading strategy to video token com-
pression technique. Our framework consists of an Adap-
tive Video Sampler (AVS), a ViT-based video encoder,
an autoencoder-based Spatiotemporal Video Compressor
(SVC) and the recent popular LLM, QWen2 [50]. An il-
lustration is provided in Figure 2.

3.2.1. Adaptive Video Sampling
In long-form videos, the discriminative information is not
evenly distributed. Given the tight token budget of LLMs, it
is important to carefully pick visual tokens from the entire
sequence. To this end, we propose an information-density-
based frame sampler that can adaptively select informative
video frames from a long video sequence. We follow the
decomposition rule of a movie, borrowing the concept of
chapter, scene, and shot in the movie. It is assumed that
each long-video sequence consists of serval continues infor-
mation tubelets, with intra-tubelet information being gen-
erally homogeneous, while inter-tubelet data distributions
vary significantly. As a result, the gradient of information
shifts is crucial for identifying where discriminative infor-
mation lies in the long-form video. In this work, we employ
a shot boundary detection module as a core component of
our adaptive frame sampler to capture dynamic moments
that contain key information.

Specifically, we first feed the entire video V to a shot
boundary detector S, which outputs a confidence score that
indicates the likelihood of a content change with respect to
each frame:

S = SD(V ), S = {s1, s2, ..., sN} (3)

where si is the confidence score for the i-th frame, and N
is the number of frames.

We then apply the non-maximum suppression (NMS)
scheme to filter out redundant detections:

S′ = NMS(S) (4)

Next, we sample frames with the top-k highest confi-
dence scores and sort them temporally for video under-
standing:

K = Sort(Topk(S
′)) (5)

where K represent the index of sampled frames

3.2.2. Autoencoder-based Video Compressor
With the smart sampling strategy, the perception field of
LLMs is still constrained by the massive number of vi-
sual tokens per frame. In the area of image and short-form
videos, average pooling is widely used as an effective way
to reduce redundant tokens [6, 18, 26, 29, 49]. However, it
is argued that the average pooling is not ideal in long-form
video understanding, as the high diversity among sparsely
sampled frames can lead to information distortion when
forced into aggregation. Unlike previous works that rely on
knowledge priors or well-aligned video-text pairs to com-
press video tokens, we propose an autoencoder-based video
compressor in this work. This compressor condenses raw
video feature representations into a compact latent space,



reducing the number of visual tokens while retaining es-
sential information. The autoencoder architecture ensures
the scalability of the compressor, allowing it to be trained
using video data alone. In [6], it is pointed out that the av-
erage pooling demonstrates superior performance than the
convolution-based compressor. In this work, we show that
the convolution-based compressor with autoencoder pre-
training significantly outperform the average pooling.

To be specific, the compressor model C removes redun-
dant information among tokens by compressing raw video
features f to a compact latent space,

h = C(f), h ∈ Rt×h×w×c (6)

where t, h, w are the temporal length, height, and width of
the feature tensor in the latent space, t ≤ T , h ≤ H , and
w ≤ W .

The decoder D model then reconstructs the raw feature
representation from h:

f̂ = D(h), f̂ ∈ RT×H×W×C (7)

The compressor C and the video decoder D are trained
together to minimize the difference between f̂ and f using
the mean absolute loss:

Lrec = |f − f̂ | = |E(X)−D(C(E(X)))| (8)

Note that when optimizing C and D to minimize Lrec,
the visual encoder E remains fixed. The loss forces the en-
coder to retrain all necessary information in the compressed
representation during the compression process.

The reconstruction loss also enables us to pre-train the
compressor C using only video data, thereby learning valu-
able prior knowledge. In contrast, previous methods train
the compressor alongside LLMs for next-text-token predic-
tion tasks, which require costly visual-text pairs for train-
ing. The limited scale of such data may constrain the com-
pressor’s performance.

After pretraining, we leverage the compressor C with the
visual encoder E to extract compressed video representation
from the video, which is then combined with a text question
Q and fed into the LLM for response inference.

A = LLM(P (C(E(X)), Q) (9)

Residual Latent Space Constraint: We empirically ob-
serve that aligning the compressor pretrained using Equa-
tion 8 with LLMs presents significant challenges. This dif-
ficulty stems from the lack of constraints within the compact
latent space. Consequently, the learned compressor has lim-
ited generalization capabilities and may encode unseen data
into gaps or ”holes” within the latent space, leading to a
loss of meaningful representation. To mitigate this issue,
we propose incorporating the average pooled feature of X

with h as constraints, redefining the latent feature h and re-
construction loss Lrec as follows:

h = C(f) + avgpool3D(X) (10)

Lrec = |E(X)−D(C(E(X)) +Avgpool3D(X))| (11)

With the proposed constraint, the compressor focuses
on learning the residual (lost information) from the av-
erage pooling process, thus reducing the learning com-
plexity of the autoencoder while implicitly ensuring that
the learned feature C(f) aligns with the same space as
avgpool3D(X). Additionally, compared to Variational Au-
toencoders (VAEs), which enforce the latent feature space
to follow a Gaussian distribution, our constraint achieves
superior performance by eliminating nondeterministic be-
havior in the latent space, which can increase the challenges
of learning for the autoencoder (see experiments for more
results).
Compression Ratio: Compared with the setting where the
output features from the visual encoder are used directly as
input to the LLM (see equation 2), the compressor reduces
the token number by factors of T

t , H
h , and W

w for the tempo-
ral, height, and width dimensions, respectively. This results
in a total compression ratio of T

t × H
h × W

w times.
Light-weight 3D convolutional kernel: We implement C
using cascaded convolutional residual blocks. We chose
a convolution-based compressor for its simplicity and su-
perior computational efficiency compared to transformer-
based models such as Perceiver. Additionally, convolution
operations effectively utilize the inductive bias that assumes
that local visual tokens have high redundancy. To reduce
the parameter size, we decompose the 3D convolution oper-
ation into a 2D spatial convolution and a 1D temporal con-
volution. Additionally, we apply a channel-wise bottleneck
mechanism when the 2D spatial convolution maps the fea-
ture to a lower dimension than the original, while the tem-
poral convolution restores the feature to its original dimen-
sion. The downsampling is achieved through the convolu-
tional strides (sh, sw) for the 2D convolution and st for the
1D convolution.

3.3. Implementation Details
We adopt a four-stage training recipe. (1) In the first stage,
we train a VAE-based video compressor with supervision of
construction loss. (2) Next, a projector between the video
features and LLM is trained with our filtered ShutterStock
data (∼3M) to align the visual features from visual space
to language space. (3) In the third step, we unfreeze the
LLM weights and further jointly train the LLM and projec-
tor with ∼8M data which is collected from subset of Shut-
terStock, Ego4D [9], Breakfast [16], AVA [17], Vatex [44],



Something-somethingv2 [8], Kinetics [3] datasets. (4) In
the last step, we finetune the model with our supervised
finetuning (SFT) dataset which is collected from NextQA
[48], CLEVRER [52], PerceptionTest [33], and Egoschema
[30]. The SFT data adds up to 1M scale.

4. Experimental Results

4.1. Benchmark and Metric
We conduct experiments on general general video un-
derstanding benchmarks covering a wide range of video
lengths and video types, including: PerceptionTest [33] a
multimodal benchmark designed to show perceptually inter-
esting situations and defines multiple tasks. Following [33]
we report the accuracy of multichoice questions (MCQ).
ActivityNet-QA [54] contains 58,000 human-annotated
QA pairs of 5,800 videos derived from the popular Activ-
ityNet dataset. The dataset provides a benchmark for test-
ing the performance of VideoQA models on spatio-temporal
reasoning. Following [45], we report both accuracy and
LLM based answer matching scores for above datasets. The
MVBench [20] is a comprehensive Multi-modal Video un-
derstanding benchmark with videos ranging from 5s to 35s.
MVBench covers 20 challenging video tasks that require a
broad spectrum of temporal skills, ranging from perception
to cognition. We return the average score on the down-
stream tracks as suggested by [20]. The NExTQA [48]
is a VideoQA benchmark that focuses on the reasoning
of causal and temporal actions reasoning and object inter-
actions understanding in daily activities. It contains 48K
multi-choice questions with average duration of 44s. For
these datasets, we report the multi-choice accuracy follow-
ing previous practice [45]. For long video understanding,
we choose EgoSchema [30] which is derived from Ego4D
[9], consists of over 5000 human-curated multiple choice
question answer pairs, with videos of three-minute dura-
tion. And MLVU [59] which is designed for very Long
Video Understanding (LVU) tasks. It is constructed from
a wide variety of long videos, with lengths ranging from 3
minutes to 2 hours. We report the mean accuracy of multi-
choice accuracy on all downstream tasks as suggested by
benchmark.

4.2. SoTA Comparions
Comparison with SoTA long-form video understanding
methods. First, we benchmark our method against previous
long-form video understanding works on the EgoSchema,
NextQA, and ActivityNetQA datasets, with results pre-
sented in the upper part of the Table 1. Our method demon-
strates significant performance improvements on all three
benchmarks. Notably, our method outperforms VideoA-
gent [45], LLoVi [55], and VideoINSTA [25] by 8.6%
and 4.9% on the EgoSchema validation set and testing

set. These multi-stage methods, which segment videos
into short clips, extract clip captions, and aggregate ob-
jects through LLM, suffer from error propagation and in-
formation loss during multi-stage aggregation. In con-
trast, our approach learns to extract information end-to-
end from videos. The Adaptive Video Sampler (AVS) ef-
ficiently filters out redundant temporal information, while
our Spatiotemporal Video Compressor with AE maximally
preserves of long-term spatiotemporal information, result-
ing in superior performance. Our method also outper-
forms LLaMA-VID and Movie-Chat on the ActivityNet-
QA dataset by 4.8%. The two methods rely on conven-
tional, complex pooling-based token compression strate-
gies, such as LLaMA-VID’s Q-former-based compression
and Movie-Chat’s memory-buffer approach for long-term
information aggregation. In contrast, our method excels by
providing a more lightweight yet effective solution, with
less information loss.
Comparison with SoTA MLLMs. Furthermore, we evalu-
ate our method against state-of-the-art MLLMs across both
general and long-form video understanding benchmarks in
the lower part of the Table 1. For fair comparison, we focus
on models using 7B LLM backbones. Although we had ac-
cess to only a subset of the Supervised Fine-Tuning (SFT)
data used in previous works [18], our model still achieves
impressive results across all benchmarks. Specifically, our
approach achieves state-of-the-art performance on three out
of six benchmarks and comparable results on the remain-
ing ones, demonstrating the effectiveness of our method.
Notably, our model processes EgoSchema and Perception-
Test using an average of just 1,440 visual tokens, substan-
tially fewer than the approximately 6,000 tokens required
by LLava-OV [18]. This significant reduction in token us-
age demonstrates how our elegant design, incorporating the
proposed sampler and compression module, achieves both
computational efficiency and strong performance.

4.3. Ablation Study

To validate our design choices and demonstrate the effec-
tiveness of the proposed modules, we conducted ablation
studies across four established long-form video benchmarks
[20, 30, 48, 59].
Video frame samplers. We evaluated our adaptive sampler
against uniform sampling using an equal number of sam-
pled frames, with results shown in Table 2. For videos with-
out shot changes [20, 48], both sampling methods perform
similarly; for example, on NExT-QA, where only 1% of the
data contains shot changes, our adaptive sampling showed
a modest improvement of 0.1%. This comparable perfor-
mance is expected, as frames within the same scene tend to
be visually similar. However, the adaptive sampler demon-
strates notable advantages on longer videos containing shot
changes, achieving a 1% improvement on MLVU [59]. Fur-



Model EgoSchema NextQA ActivityNetQA MLVU MVbench PerceptionTest
fullset subset mc acc avg test val

VideoChat [19] - - - 26.5 - - -
LLaMA Adapter [19] - - - 34.2 - - -
Video-ChatGPT [19] (ACL’24) - - - 35.2 - - -
LLaMA-VID [22] (ECCV’24) - - - 47.5 - - -
Movie Chat [38] (CVPR’24) - - - 45.7 - - -
VideoAgent [45] (ECCV’24) 54.1 60.2 71.3 - - - -
LLoVi [55] (EMNLP’24) 52.2 58.8 73.8 - - - -
VideoINSTA [25] (EMNLP’24) - 65.0 72.3 - - - -

ShareGPT4V [5] - - - - 46.4 51.2 -
LLaVA-NeXT-Video-7B [58] 43.9 - - - - 33.7 -
LongVA-7B [57] - - 68.3 50.0 56.3 - -
LLava-OneVision-7B [18] 60.1 - 79.4 56.6 64.7 56.7 57.1
Ours 62.7 69.6 78.7 52.7 59.6 58.8 60.4

Table 1. Comparison with state-of-the-art MLLM-based methods on both long-form video understanding and general video understanding
tasks. The bold and underline texts represent the best and the second best performances, respectively.

Sampler NextQA MVbench MLVU (m-avg)
MC test Avg. Anomaly Det. Counting Ego. Needle Ordering PlotQA

Uniform 77.0 50.0 51.9 0.53 0.35 0.50 0.51 0.47 0.52
Ours (AVS) 77.1 50.2 52.6 0.54 0.37 0.51 0.52 0.49 0.53

Table 2. Experimental results of our method on NextQA, MLVU and MVbench with different video frame sampling strategies.

Compressor Ratio EgoS. MLVU MVbench

Percevier 64× 63.0 53.7 49.8
Avgpool-3D 2×4×4 63.5 51.5 48.7
Avgpool-3D 4×4×4 61.4 51.3 46.8

Ours (SVC) 4×4×4 63.6 51.9 50.0

Table 3. Comparison between our proposed AE based VAC and
different video compressors.

Ratio (T× W × H) EgoS. MLVU MVbench NextQA

2×2×2 65.1 55.0 51.3 77.1
4×4×4 63.6 51.9 50.0 77.0
1×8×8 60.0 50.1 44.2 73.5
4×8×8 62.0 48.7 46.6 75.5
8×4×4 62.3 48.0 43.3 73.3

Table 4. Experimental results of our method with different video
compression ratio.

ther analysis of MLVU task-specific performance reveals
significant improvements in tasks that heavily rely on key
frames, such as anomaly detection, plot understanding, and
needle-in-the-haystack scenarios. These results validate
both the effectiveness of our proposed AVS and its robust-
ness, maintaining strong performance even in videos with-
out shot changes. In Figure 3, we demonstrate an exam-
ple showing the different sampling results between uniform
sampling and our AVS. As can be seen from the Fig 3, uni-
form sampling picks many similar video frames and waste

the token budget while our AVS can pick the key frames that
are not overlapped with each other and successfully localize
the frame showing a women holding a phone.
Video on Compressor. We first conduct the ablation study
on our SVC design. We sample 32 frames as input and uti-
lize the proposed SVC with a default compression ratio of
64× (4×4×4 for temporal, width, and height dimensions)
across all ablations unless otherwise specified.
Compressor Architecture. We evaluated our proposed
SVC method against two baseline approaches: average
pooling and Perceiver-based down sampling [13], with re-
sults presented in Table 3. Our AE-based method demon-
strates superior performance compared to both baselines
at the same compression ratio (64×), validating the effec-
tiveness of our SVC approach for video information com-
pression. Notably, our method outperforms average pool-
ing even with half number of tokens which suggests that
simply increasing the number of tokens doesn’t necessar-
ily improve video representation. Rather, the key to effec-
tive video representation lies in eliminating redundant infor-
mation while preserving essential spatial-temporal features.
While the Perceiver approach achieves comparable perfor-
mance to our method, it requires substantially more mem-
ory due to its cross-attention operations between queries
and the numerous video tokens generated by the visual en-
coder.
Compression ratio. In Table 4, we analyze how differ-
ent compression ratios affect benchmark performance. As
expected, less aggressive compression yields better perfor-



Question: Who is the female chatting with in the video call from her home living room?

Figure 3. Examples of sampled frames using uniform sampling (top) compared to our AVS (bottom). AVS successfully locate the key
frame to answer the question.

Method EgoS. MLVU MVbench NextQA

Random Init 59.2 49.9 47.2 72.8
Pre-train 63.6 51.9 50.0 77.0

Table 5. Experimental results of our method with pre-trained SVC
and random initialized counterpart.

Constrain EgoS. MLVU MVBench NExT-QA

AE Does not converge
VAE 63.7 48.4 44.6 74.7
APool+Res 63.6 51.9 50.0 77.1

Table 6. The effectiveness of different constraints in the autoen-
coder pretraining of SVC.

mance overall. However, when examining more aggres-
sive compression scenarios, we discovered that spatial com-
pression has a smaller negative impact on model perfor-
mance compared to temporal compression. This difference
might be attributed to the auto-encoder loss function’s effec-
tiveness in preserving spatial semantics during information
compression. Furthermore, our experiments reveal that bal-
anced spatial-temporal compression ratios perform better
than the spatially or temporally heavy pooling approaches
under the same total compression ratio. For instance, a
balanced 4×4×4 compression strategy significantly outper-
forms the more asymmetric 1×4×4 configuration.
AE pre-training. We show that the autoencoder-based pre-
training is necessary and critical for the compressor. As
shown in Table 5, AE pre-training consistently leads to 2%-
4% performance boosts on all benchmarks. it is worth men-
tioning that training the AE with long-form videos that has
shot changes is critical.
Latent space constraint. We investigate the impact of dif-
ferent constraints on the latent space of autoencoders (AE)
during pre-training, and results are shown in Table 6. Ini-
tially, we observed that when the compressor is pre-trained
without any constraints, there are significant spikes in train-
ing loss, leading to feature alignment failure with LLMs.
This result arises because the absence of constraints limits

the generalization of the learnable compressor, potentially
causing it to encode unseen data into gaps or ”holes” in
the encoder’s feature space, resulting in a loss of meaning-
ful representation. Introducing Gaussian distribution con-
straints on the latent space, as in VAE [14], partially re-
solves the issue but still yields suboptimal results. One
possible reason for this is the increased difficulty in learn-
ing feature representations due to the inherent nondetermin-
ism of the features. In contrast, our proposed residual con-
straints demonstrate superior performance.

5. Conclusion
In this work, we present a novel advancement in video rep-
resentation learning through our novel dual-component ap-
proach. The proposed adaptive video sampler effectively
reduces spatial and temporal redundancies by leveraging
contextual information, while our VAE-based spatiotem-
poral video compressor further optimizes video features
without significant information loss. The experimental re-
sults across multiple video benchmarks demonstrate that
our method not only achieves state-of-the-art performance,
but also provides a more efficient solution for long-form
video understanding. This work opens up new possibil-
ities for processing and analyzing long video content in
resource-constrained environments, marking an important
step forward in the field of video understanding with large
multimodal models. Future work could explore the adapta-
tion of our method to real-time applications and investigate
its potential in other multimedia domains.
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