
MAPRO: Recasting Multi-Agent Prompt Optimization as Maximum a
Posteriori Inference

Zheyuan Zhang1, Lin Ge3,CR Hongjiang Li3, Weicheng Zhu3, Chuxu Zhang2, Yanfang Ye1†

1University of Notre Dame, 2University of Connecticut, 3Amazon
†Corresponding Author

{zzhang42, yye7}@nd.edu,

Abstract
Large language models (LLMs) have demon-
strated remarkable capabilities across diverse
tasks, and LLM-based agents further extend
these abilities to various practical workflows.
While recent progress shows that multi-agent
systems (MAS) can outperform single agents
by coordinating specialized roles, design-
ing effective MAS remains difficult due to
prompt sensitivity and the compounded in-
stability MAS creates. To cope with the
challenge, recent efforts in automated prompt
design have reduced manual effort. How-
ever, multi-agent prompt optimization remains
largely unexplored. Challenges like exponen-
tially expanding search space and ambiguous
credit assignment together make systematic de-
sign intractable without principled methods.
Therefore, we introduce Multi-Agent PRompt
Optimization (MAPRO), a four-stage frame-
work that first formulates MAS prompt opti-
mization as a Maximum a Posteriori (MAP) in-
ference problem and solves it using a language-
guided variant of max-product belief propaga-
tion algorithm. To address credit assignment
and updates the system iteratively, MAPRO
employs a topology-aware refinement mech-
anism that integrates execution feedback and
downstream blames to selectively update agent
prompts. Through this process, MAPRO pro-
gressively converges to a coordinated set of
agent-specific prompt policies. Across bench-
marks in various tasks, MAPRO achieves state-
of-the-art performance, consistently surpassing
manually engineered baselines and recent auto-
mated alternatives. Beyond performance, our
MAP-based formulation also delivers general
guidelines for building more reliable and prin-
cipled multi-agent systems in the future 1.

1 Introduction

Large language models (LLMs) have emerged as
powerful general-purpose learners, excelling at

1Work done during internship at Amazon.

Figure 1: Prompt quality governs agent reliability:
(top-left) vague, manually revised prompts are error-
prone and costly; (top-right) automated prompt opti-
mization search and produce correct answers; (bottom-
left) the optimizer explores and selects among candidate
rewrites; (bottom-right) performance improves over it-
erations, surpassing hand-tuned prompting.

tasks that require reasoning, comprehension, and
text generation. Their rapid progress has reshaped
both research and practice across domains rang-
ing from scientific discovery to software develop-
ment (Kojima et al., 2022; Ouyang et al., 2022).
Building upon this foundation, LLM-based agents
have gained prominence for their ability to au-
tonomously plan, interact, and solve complex prob-
lems with minimal human supervision. Such agents
extend the reach of LLMs into practical work-
flows, enabling applications such as program syn-
thesis and debugging, retrieval-augmented genera-
tion, data-centric analysis and interactive decision-
making (Jimenez et al., 2024; Singh et al., 2025;
Guo et al., 2024b; Li et al., 2024). While sin-
gle agents are useful, orchestrating multiple LLM
agents in a coordinated system has shown even
greater promise (Hong et al., 2024a; Wang et al.,

2024b). Multi-agent systems (MAS) leverage di-
verse perspectives and roles, such as critics, veri-
fiers, or debaters, to collectively outperform single-
agent counterparts in reasoning, exploration, and
robustness (Yuan et al., 2024; Shinn et al., 2023;
Qian et al., 2025; Wang et al., 2025). Yet, con-
structing effective MAS is far from straightfor-
ward. A recurring difficulty lies in prompt sen-
sitivity, where small variations in instructions can
drastically alter behavior and degrade performance
(Zhou et al., 2024). In multi-agent settings, where
outputs cascade across agents, such fragility may
be compounded, amplifying instability across the
system (Zhou et al., 2025).

To mitigate these challenges, recent work has ex-
plored various forms of automated prompt design
and system adaptation. Broadly, these approaches
aim to reduce reliance on manual engineering by
algorithmically refining prompts, adjusting agent
roles, or restructuring interaction patterns (Khattab
et al., 2024; Hu et al., 2025). However, despite
these advances, the problem of prompt optimiza-
tion in multi-agent settings remains largely under-
explored. This gap arises from two core challenges:
(1) the search space grows combinatorially as each
agent maintains its own set of prompt candidates,
making it extremely difficult to navigate efficiently
and leaving the system vulnerable to suboptimal
local choices rather than coordinated global im-
provement; (2) credit assignment is highly uncer-
tain, since it is rarely clear which agent’s prompt
should be targeted for refinement, how it should be
modified, or whether adjustments at the individual
level will even translate into system-wide gains.

To tackle these challenges, in this paper,
we propose Multi-Agent PRompt Optimization
(MAPRO), a four-stage framework that jointly ex-
plores the multi-agent prompt space, propagates
feedback signals, and iteratively refines prompt
policy of each agent. By grounding optimization in
a principled inference process, MAPRO provides
a structured approach for navigating the otherwise
intractable combinatorial landscape of MAS de-
sign. Specifically, to cope with the exponential
search space, we formalize multi-agent prompt
optimization as a Maximum a Posteriori (MAP)
inference problem over Directed Acyclic Graphs
(DAGs), and develop a language-guided variant
of the max-product belief propagation (MPBP) al-
gorithm. This design leverages agent-level and
interaction-level reward models to efficiently ap-
proximate globally optimal prompt assignments in

polynomial time complexity. Furthermore, to ad-
dress the inherent ambiguity in credit assignment,
MAPRO introduces a topology-aware refinement
procedure that maintains distinct prompt policies
for each agent rather than collapsing the system
into a single global policy. By distributing credit by
incorporating the blames from downstream agents,
MAPRO progressively converging toward a set
of coordinated yet agent-specific prompt policies
that enhance overall system robustness and perfor-
mance. Through iterative optimization, MAPRO
produces multi-agent systems that achieve state-of-
the-art performance, surpassing both manually en-
gineered MAS baselines and automatically gener-
ated alternatives in single- and multi-agent settings.
These improvements are consistently demonstrated
across diverse tasks, including mathematical rea-
soning, question answering, and code generation.
Our contributions can be summarized as follows:

• MAP Inference Formulation. To our best
knowledge, we are the first to cast multi-agent
prompt optimization as a Maximum a Posteri-
ori (MAP) inference problem. This formula-
tion provides a principled objective for navi-
gating the combinatorial search space, enables
efficient approximation of globally optimal
prompt sets, and offers general guidelines for
systematic prompt optimization design.

• Topology-aware Credit Assignment. We
propose a novel refinement mechanism that
integrate execution feedback and downstream
blames, which alleviate the challenge of am-
biguous credit assignment, enabling targeted
improvements to specific agents with distinct
prompt policies.

• State-of-the-Art Performance. On diverse
benchmarks—including mathematical reason-
ing, question answering, and code genera-
tion—MAPRO consistently surpasses man-
ually engineered MAS baselines and recent
automated alternatives, establishing new state-
of-the-art results in multi-agent prompt opti-
mization.

2 Preliminary

2.1 Multi-agent System as Directed Graph

We study a multi-agent system (MAS) composed of
N large-language-model agents that collaborate on
a shared code-generation workflow. Let the index

set of agents be A = {1, . . . , N}. For every agent
i ∈ A, the agent-specific prompt candidate pool is
defined as

Pi =
{
p1i , p

2
i , . . . , p

K
i

}
, (1)

where p
(k)
i is the k-th candidate prompt (k =

1, . . . ,K) and K is the uniform pool size. For
clarity, we denote by p∗i the optimal prompt can-
didate, while p̃i represents a selected prompt can-
didate drawn from the candidate pool. Because
collaboration unfolds through directed hand-offs
of textual outputs, we encode these dependencies
as a directed graph G = (V, E),V = A, in which
each vertex i ∈ V corresponds to agent i, and a
directed edge (i, j) ∈ E signifies that the output
of agent i is consumed as (part of) the input of
agent j. This graph abstraction concisely captures
the information-flow topology that underpins the
subsequent optimization problem.

2.2 MAS Prompt Optimization
A prompt set P̃ = (p̃1, . . . , p̃N) is considered suc-
cessful if the entire workflow executed successfully
and correctly. Unlike single-agent settings, fail-
ures in MAS stem from two sources: 1) Agent In-
competence—producing incorrect code even from
well-formed input, thereby propagating errors; and
2) Defective Interaction — an upstream agent
returning semantically irrelevant text that blocks
downstream progress. Both hazards need to be
properly addressed to achieve good performance.

To make these notions quantitative, we define the
agent score to record the empirical quality of the k-
th prompt of agent i as g(pk

i), and the edge score to
measure the reliability of the corresponding hand-
off between the k-th prompt of agent i and the l-th
prompt of agent j as g(pk

i , p
l
j). Both measures

lie in [0, 1], where the value 1 denotes flawless
behavior. To maximize the system performance
and to reflect that the overall workflow is only as
reliable as its weakest link, we propose the Joint
Quality Score for the multi-agent system as:

T (P̃) =
(N∏
i=1

g(p̃i)
)(∏

(i,j)∈E

g(p̃i, p̃j)
)
. (2)

Note that we put p̃ in the equation here and omit
k and l for simplicity. Intuitively, the performance
T (P̃) of a MAS is good when every agent is com-
petent and every hand-off is clean, because a single
failure at any node or edge derails the execution. In

practice, for agent i, there will be K agent scores,
and the same logic applies for the edge scores as
well, so for (i, j), there will be K2 edge scores.
Therefore, the objective of MAS prompt optimiza-
tion can be defined as:

P ∗ = argmaxP∈P1×···×PN
T (P). (3)

Equation (3) can be viewed as the posterior likeli-
hood that the entire system completes the evalua-
tion batch without error, conditioned on the hidden
prompt set P . Indeed, if we regard each agent
outcome and each edge hand-off as independent
Bernoulli events given P , then under a uniform
prior over prompt sets, maximizing T (P) is thus
equivalent to the classical maximum-a-posteriori
(MAP) problem (Proved in Appendix-C.1)

Why is this problem challenging?
As can be seen, the brute-force search space
P1 × · · · × PN contains KN discrete combina-
tions. Moreover, the factors are highly interde-
pendent: changing a single prompt pi can affect
many downstream agents, making greedy or lo-
cal strategies prone to failure. As the objective is
non-convex, discontinuous, and combinatorial, ef-
fective optimization must exploit additional struc-
ture—here, the acyclic topology of the graph G
(with a prescribed iteration limit)—to prune the
search space and assign credit correctly among in-
teracting prompts. In the next section, we present
an algorithm that leverages these properties to ap-
proximate P ∗ in polynomial time.

3 Methodology

Now that we have formalized the optimization ob-
jective for multi-agent prompt optimization and
highlighted the challenges, we proceed to detail
our proposed framework, Multi-Agent PRompt
Optimization (MAPRO). MAPRO addresses the
Multi-agent System (MAS) prompt-optimization
problem by formulating it as a discrete maximum-
a-posteriori (MAP) inference over the joint prompt
space and solving it via an iterative, LLM-guided
algorithm. In particular, our method comprises four
stages: (1) Initialization of prompt candidates and
reward models; (2) Language-based MAP selec-
tion, which employs LLM-based reward models to
conduct max-product belief-propagation algorithm
to efficiently find the optimal prompt combination
(Figure-2 c.1); (3) Preference-based prompt policy
update, which updates the prompt pools and reward

a) Existing Methods for MAS Prompt Optimization

b) Our Method: The Overall Framework of MAPRO

a.2) TPE Optimizationa.1) Direct Optimization
Fitness

Select & Update

Isolate Improvement Prompt SetsSub-Optimal

TPE Select

Update

Fitness

Prompt Sets

Select

Update

FitnessInitialization

c.1)

c.2)

initialize

Agent
Node

Prompt

Demo

c) Our Method: Detailed Modules of MAPRO

Max-Product Belief Propagation

Node
Reward

Edge
Reward

Minibatch
Results

Inputs Scoring
c.1) Language-based MPBP Selection

c.2) Preference-based Policy Update

Global Feedback

Topology-aware
Local Feedback

Optimized
Prompt Sets

Updated
Demos

Mutation Strategy

Failure Summary

Downstream Blame
initialize

Update

N1
m

4→2 (N
2)

m2→1 (N1)

g(P1, P2)

g(P1)

…

…

m 3→2 (N 2)

N2

N3

N4

Figure 2: The Overall Framework of MAPRO. Specifically, a) shows the existing methods of prompt optimization
for MAS and their drawbacks; b) shows the overall framework of MAPRO compared with existing methods; and c)
demonstrate the detailed modules used in MAPRO.
models based on multi-level feedback (Figure-2
c.2); and (4) Termination, which defines stopping
criteria and yields the final optimized prompt set
for downstream left-out testing. We next describe
each stage in detail.

3.1 Initialization
Prompt Candidate Pool Setup. MAPRO is de-
signed as a plug-and-play setting atop any given
MAS. We assume an established MAS as G =
(V, E) (as defined in the preliminaries) and an ini-
tial set of base prompts P 0 = {p01, . . . , p0N} for
the N agents. The first step is to construct a di-
verse prompt candidate pool Pi for each agent i
by mutating its original prompt to K candidates
following standard practice (Wang et al., 2024c;
Xiang et al., 2025), yielding semantically similar
variants Pi =

{
p1i , p

2
i , . . . , p

K
i

}
.

Preference Demonstration Pool Setup. Inspired
by the reward model design of TPO (Li et al.,
2025), which demonstrate human preferences can
be aligned during inference without retraining and
achieve comparable results, we instantiate a reward
model R and seed the reward model with a set of
accepted (positive) and rejected (negative) exam-
ple prompt as few-shot preference demonstrations
to guide it to generate scalar scores for each agent
node and edge. Intuitively, it will judge the quality
of an agent’s output in isolation, and the quality of
a hand-off between agents.

To initialize these examples, we first run the
MAS on a mini-batch of training tasks B using a
few random draws from the prompt pool Pi. and

collect their full interaction traces if the entire task
is solved correctly end-to-end on B Each such suc-
cessful trace serves as the initial positive exemplars
- the prompt pi used is considered d+ and the output
produced can be recorded as a desirable response
for that agent; likewise, for every edge, the mes-
sage serves as an initial example of a good hand-off.
To obtain complementary failure example prompts,
we then generate synthetic negatives by perturbing
the successful prompts as d−. Thus we obtain, for
each agent and edge, a pool of preference prompt
responses D = {d+, d−}. The detailed input of
the reward model are provided in the section below.

3.2 Language-based MAP Selection
Given the MAP formulation of prompt optimiza-
tion from above, during the action selection phase,
our goal is to efficiently find the prompt assign-
ment P ∗ =

{
p∗1, p

∗
2, . . . , p

∗
N

}
that maximizes

the joint quality score. As previously discussed,
directly searching the exponentially large space
P1×· · ·×PN is intractable. Therefore, we exploit
the factorized structure of the multi-agent system
(MAS) and introduce LLM-guided Max-Product
Belief Propagation (LMPBP), which consists of
two steps, specifically, reward model scoring and
optimal prompt searching.

Reward Model Scoring. In the first stage, we
prompt the reward model R to assign numerical
scores between 0 to 1. For each agent i, the re-
ward model Ri will rank each prompt pki ∈ Pi

and evaluates how well the prompt would enable
agent i to fulfill its role. This evaluation is condi-

tioned on the preference demonstrationsDi and the
corresponding input xi and desirable response yi:

g(pki) = Ri(xi; yi;Di;Pi), (4)

Similarly, for each directed edge (i → j), the
reward model Rij produces a score g(pki , p

l
j) re-

flecting how well agent i’s output under prompt pi
would set up agent j for success. Concretely, we
have:

g(pki , p
l
j) = Rij(yi,Dj ;Pj), (5)

This way, we have obtained the reward scores for
factors required in the searching step.

Optimal Prompt Searching After the reward
scores are secured, the second stage applies
LMPBP to find the global optimum T (P) exactly
in the DAG by passing local messages that aggre-
gate optimal sub-solutions. For MAS with multiple
parent dependencies, we convert the structure to
equivalent tree-structured via a junction-tree trans-
formation (Implementation details and equivalence
proof in Appendix-C.2). The message-passing pro-
cess works as follows: First, it goes through a leaf-
to-root pass. (Note here the notations have different
meanings) Assume agent i receives messages from
all of its children (downstream agents for which i is
an input), and then sends an aggregated message up
to its own parent j. Specifically, for each possible
prompt choice of its parent, agent i computes

mi→j(pj) = max
[
g(pi)g(pi, pj)

∏
k∈Child(i)

mk→i(pi)
]
.

(6)
Here Child(i) denotes the set of agents that de-

pend on i’s output. Intuitively, mi→j(pj) repre-
sents the best achievable joint score of the entire
subtree rooted at i, given that i’s parent j is fixed
to prompt pj . In other words, i considers all its
own prompt options and those of its descendants,
and encapsulates the optimal outcome (in terms of
product of local scores) in a message indexed by pj .
Once the upward messages reach the designated
root agent r (the entry point of MAS), we calcu-
late the root belief and that agent can evaluate the
total score for each of its prompt candidates using
equation-6.

This combines r’s own goodness score with the
messages from all its children (each of which al-
ready accounts for the best configuration of that
child’s subtree). We then select the highest-belief

Algorithm 1 MAPRO Overall Process
1: Initialization: Set up prompt pools P , and

demonstration preferences D.
2: while termination condition not met, do
3: // Language-based MAP Selection
4: Retrieve reward scores g(pi) and g(pi, pj).
5: Upward pass to retrieve localized optimal

score mi→j(pj) at each node.
6: Downward pass to assign best prompt p∗

given parents’ choices.
7: Run with P ⋆ on task B; update score S(t).
8: // Preference-guided Policy Update
9: Update D ← Critic(D;P ; g(P)).

10: Get P ←
{
Mutate(M(P ∗), fg, fl), P

∗}
11: if improvements ≤ ε over T steps then
12: break
13: end if
14: t← t+ 1
15: end while
16: Inference: Freeze P ⋆; test on held-out tasks.

prompt for the root:

p∗r = argmaxβr(pr). (7)

Finally, we perform a downward pass to fix the
prompts of the remaining agents based on the root
decision. We visit each child i of the root and
choose the prompt that attained the maximum in
mi→r(pr):

p∗i = argmax
[
g(pi) g(pi, p

∗
r)
∏

k∈Child(i)

mk→i(pi)
]
.

(8)
This gives the optimal prompt for agent i assuming
the root was p∗r . We then recursively select their
best prompt given p∗i , and so on, until all agents
in the graph have an assigned prompt. This back-
tracking procedure propagates the optimal choices
down the tree, yielding the globally optimal prompt
set P ∗ (Proved in Appendix-C.3). This selected
prompt set will next be used in the refinement stage
to collect feedback and further improve the prompt
pools and reward models.

3.3 Preference-based Policy Update
The MAP selection phase yields the global optimal
prompt set P ∗, along with an explicit assessment
of each agent prompt and hand-offs via the reward
scores. In the prompt policy refinement phase, we
leverage this information, together with actual ex-
ecution feedback or diffs on tasks, to update and

improve the prompt pools and reward models. The
key idea is to incorporate feedback from multiple
levels: (i) global-wise execution results, (ii) down-
stream agent blames, and (iii) controlled prompt
mutation strategy to force small edits. By inte-
grating the multi-level feedback, we can introduce
targeted prompt variations to explore new parts of
the search space. After refinement, the MAS is
ready to perform another round of MAP-based se-
lection with updated components. We detail the
feedback collection and update steps below.

Reward and Expected Output Update. We
evaluate the performance given P ∗ on a set of rep-
resentative tasks (e.g., the training question batch
B) and we update each agent’s outputs yi as the
new desirable response for next cycle of updates.
We then use the reward scores as standards to up-
date the accepted and rejected prompt responses
for each agent. Specifically, we use a critic LLM
model to judge if for agent i, the prompt pki should
be updated as d+ or d−. Formally,

Di ← Critic(Di;Pi; g(Pi)). (9)

This process make sure the preference demonstra-
tions are continually updated so that the reward
scores are more closely align with actual task suc-
cess.

Prompt Pool Refinement. We improve the
prompt candidate pool by generating new varia-
tions using a mutate LLM model with innovative
feedback design from three aspects: global feed-
back fg indicating the final execution feedback;
local feedback fl which takes the reversed topol-
ogy and ask each agent to generate blames to it
upstream agents based on their generated input and
fg, achieving fine-grained credit assignment; and
a predefined mutation strategy set with small ed-
its M which mimics the idea of trust region in
MAP policy optimization, keep the prompt varia-
tions from drifting afar. Formally, we invoke an
LLM-based prompt mutation function to produce a
refined prompt pools Pnew that modifies P ∗:

Pnew
i =

{
Mutate(M(p∗i), fg, fl), p

∗
i

}
. (10)

Through such prompt augmentation, the MAS ex-
plores new prompts that are informed by past fail-
ures yet remain close to proven good prompts,
thereby continuously improving robustness. Fi-
nally, the updated prompt pools are then used in
the next iteration of MAP-based selection.

3.4 Termination

We iterate the select–update loop until the improve-
ments in the joint reward have saturated, indicat-
ing convergence to an optimal prompt policy. To
formalize the stopping criterion, let S(t) denote
the joint validation score (e.g., pass rate) obtained
by the best prompt set at iteration t. We define
∆St = S(t)−S(t−1) as the improvement in reward
compared to the previous iteration. We choose a
fixed patience window size T (e.g., T = 3) and a
small tolerance ε≥ 0. After each iteration t≥ T ,
collect the recent gains {∆St−T+1, . . . ,∆St}. and
we terminate the optimization loop when

max
i=1,...,T

∆St−i+1 ≤ ε, (11)

which means no improvement exceeding ε has
been observed in the last T iterations. This
rule halts exactly when the system has shown
no progress over the specified window, ensuring
that computation stops once the prompt policy has
plateaued. After termination, we obtain the final
optimized prompt set P ∗ for test-time inference
on unseen tasks. By locking in P ∗, we ensure the
efficiency of the system that no additional time is
required during inference. The time complexity of
training phase is analyzed in Appendix-C.4

4 Experiments

4.1 Experimental Setup

Benchmarks. We conduct experiments on an ex-
tensive collection of tasks: HumanEval-ET, MBPP-
Plus and CodeContest for code generation task,
NewsQA and WebQuesion for question answering
task, and MATH and GSK8K for math reasoning
task. Since we are focusing on the prompt opti-
mization and have a training scheme, we discuss
the split of sets with other details including cita-
tions of these benchmarks in Appendix-B.1.
Baselines. We consider the following types of base-
lines: 1) Single agents without prompt optimiza-
tion, including the raw model, and the most classi-
cal baselines CoT and ReAct; 2) Single agents with
prompt optimization, including two most recent
SOTA baselines EvoPrompt, and PromptBreeder.
3) Classical Multi-agent baselines without prompt
optimization. While there are many MAS, we hope
to choose the ones that are designed for general
tasks, recent SOTA and covering as many types
of common topologies as possible, therefore we
choose Chain Design, DMAD, and the "swarm"

Backbone: Claude Haiku 3.5 Code Generation Question Answering Math Reasoning

Model MAS Optimized HumanEval-ET MBPP-Plus CodeContest NewsQA WebQuestion MATH GSM8K

Raw ✗ ✗ 69.38 ± 3.24 70.93 ± 0.34 20.36 ± 2.29 49.12 ± 0.11 33.50 ± 0.41 59.54 ± 1.10 88.57 ± 0.53
CoT ✗ ✗ 70.31 ± 1.91 71.98 ± 0.39 22.91 ± 1.46 54.44 ± 0.30 33.22 ± 0.32 60.25 ± 0.56 90.71 ± 0.34

ReAct ✗ ✗ 72.19 ± 1.71 71.02 ± 0.31 21.21 ± 0.61 58.72 ± 0.30 33.60 ± 0.34 61.29 ± 1.03 91.50 ± 0.39

EvoPrompt ✗ ✓ 75.63 ± 2.10 73.97 ± 0.48 22.18 ± 1.26 60.44 ± 0.74 34.99 ± 0.39 60.81 ± 1.66 92.37 ± 0.31
PromptBreeder ✗ ✓ 75.31 ± 0.70 74.13 ± 0.22 21.45 ± 1.47 60.76 ± 0.17 35.12 ± 0.51 60.43 ± 0.52 92.24 ± 0.18

Chain ✓ ✗ 71.88 ± 1.10 74.34 ± 1.14 28.85 ± 2.29 60.88 ± 0.72 34.85 ± 0.40 62.82 ± 0.89 92.06 ± 0.27
w/t Direct ✓ ✓ 73.96 ± 2.30 74.87 ± 0.53 29.70 ± 0.61 62.20 ± 1.31 34.25 ± 0.21 63.80 ± 0.21 92.76 ± 0.14
w/t TPE ✓ ✓ 75.00 ± 1.56 75.22 ± 0.40 29.90 ± 0.93 63.80 ± 0.20 34.01 ± 0.13 62.81 ± 0.37 92.72 ± 0.21

w/t MAPRO ✓ ✓ 80.21 ± 0.90 76.54 ± 0.67 31.52 ± 0.61 64.00 ± 0.35 34.65 ± 0.30 64.30 ± 0.59 93.48 ± 0.42

DMAD ✓ ✗ 72.19 ± 1.31 73.02 ± 0.37 36.77 ± 0.93 60.40 ± 0.37 34.43 ± 0.44 61.08 ± 0.39 90.39 ± 0.46
w/t Direct ✓ ✓ 73.44 ± 1.56 74.07 ± 0.27 38.79 ± 0.61 62.20 ± 0.20 34.91 ± 0.07 62.85 ± 0.11 91.19 ± 0.36
w/t TPE ✓ ✓ 72.92 ± 2.39 73.54 ± 0.53 37.58 ± 0.61 61.80 ± 0.35 35.22 ± 0.13 62.81 ± 0.37 91.87 ± 0.29

w/t MAPRO ✓ ✓ 77.08 ± 1.81 74.60 ± 0.27 38.99 ± 1.95 62.93 ± 0.12 35.50 ± 0.33 63.33 ± 0.46 91.96 ± 0.58

ChatEval (Swarm) ✓ ✗ 73.44 ± 1.10 72.60 ± 0.34 38.79 ± 1.05 60.36 ± 0.26 33.33 ± 0.34 62.62 ± 0.97 91.59 ± 0.89
w/t Direct ✓ ✓ 74.48 ± 2.38 73.19 ± 0.46 38.18 ± 0.61 61.80 ± 0.20 34.17 ± 0.29 63.83 ± 0.84 91.42 ± 0.47
w/t TPE ✓ ✓ 76.04 ± 0.90 73.28 ± 0.26 40.61 ± 0.61 62.53 ± 0.31 34.35 ± 0.18 62.68 ± 0.58 91.31 ± 0.62

w/t MAPRO ✓ ✓ 78.13 ± 1.56 73.98 ± 0.15 41.41 ± 0.93 62.67 ± 0.31 34.52 ± 0.20 63.13 ± 0.84 91.73 ± 0.41

Table 1: Performance results with baseline methods on Claude Haiku 3.5. We report the mean and standard deviation
for all results. The best performance is bolded and runner-ups are underlined.

Prompt Optimization Example

Base instruction:
You are a Python programmer. Write pure, runnable Python
code that solves the task.

Adding:
You are a Python programmer. Write pure, runnable Python
code that solves the task. Ensure the solution is a single
function named solution with robust input validation,
direct implementation, and no type hints. Handle edge
cases explicitly and provide clear, executable code.

Replacement:
You are a Python programmer. Write pure, runnable Python
code that solves the task. Ensure the solution is a single
function named solution with robust input validation us-
ing isinstance() checks, type conversion fallbacks, and
comprehensive error handling. Use try-except blocks with
specific exception types, provide default values for edge
cases, . . .

Table 2: "Adding" appends guidance to the prompt
while "Replacement" rewrites previous parts with better
instructions. Colors highlight the modified texts.

version of ChatEval, which is Simultaneous-Talk-
with-Summarizer. 4) Prompt optimization for MAS
baselines. Since we only consider prompt opti-
mization2, we adopt the direct optimization method
from GPTSwarm and Tree-structured Parzen Esti-
mator (TPE) methods used in MASS and MIPRO
to each of the MAS we described above to make a
comprehensive comparison. More details including
the citations of the baselines are in Appendix-B.2.

2In this paper, we consider the plug-and-play settings an
unique advantage and don’t update the topology because this
is more friendly to industry scenarios where teams already
have their developed MAS implemented and in production.

Figure 3: Optimization trajectories on the MBPP+
benchmark. We report the first ten optimization iter-
ations using the chain MAS framework. MAPRO ex-
hibits a more consistent and steady improvement com-
pared to alternative methods.

4.2 Main Results

We present the main results of MAPRO against
baselines in Table 1 and Table 3. Across all
benchmarks, MAPRO consistently achieves su-
perior performance, often setting the best results
within the same MAS, underscoring the strength
of our approach. Several additional insights
emerge. In terms of MAS structure, while topol-
ogy exerts a stronger influence on overall accu-
racy than prompts, our plug-and-play design of-
fers unmatched flexibility and extensibility, avoid-
ing the heavy cost of topology optimization and
enabling efficient deployment. As for task char-
acteristics, MAPRO delivers the largest gains
on reasoning-intensive tasks (e.g., WebQuestions,
MBPP-Plus) compared to knowledge-heavy ones
(e.g., NewsQA, CodeContest), highlighting the
unique advantage of prompt optimization in com-

Backbone: Llama 3.3-70b Code Generation Question Answering Math Reasoning

Model MAS Optimized HumanEval-ET MBPP-Plus CodeContest NewsQA WebQuestion MATH GSM8K

Raw ✗ ✗ 67.81 ± 0.86 68.04 ± 0.68 19.76 ± 2.08 58.65 ± 0.96 33.15 ± 0.50 67.56 ± 1.44 91.71 ± 0.37
CoT ✗ ✗ 68.44 ± 1.31 68.04 ± 0.22 21.09 ± 1.31 60.56 ± 0.35 34.35 ± 0.47 69.01 ± 0.66 92.06 ± 0.29

ReAct ✗ ✗ 69.06 ± 0.70 68.15 ± 0.44 20.36 ± 0.69 62.06 ± 0.28 35.84 ± 0.54 69.26 ± 0.84 92.34 ± 0.27

EvoPrompt ✗ ✓ 72.19 ± 1.71 69.74 ± 0.64 20.85 ± 1.33 64.37 ± 0.34 35.47 ± 0.41 71.62 ± 0.38 93.12 ± 0.19
PromptBreeder ✗ ✓ 71.88 ± 1.10 69.10 ± 0.29 20.85 ± 1.40 64.53 ± 0.43 35.77 ± 0.16 71.01 ± 0.44 93.05 ± 0.23

Chain ✓ ✗ 70.00 ± 1.31 68.68 ± 0.14 27.52 ± 2.08 63.20 ± 0.45 35.24 ± 0.28 71.45 ± 1.04 93.71 ± 0.25
w/t Direct ✓ ✓ 71.35 ± 1.80 69.58 ± 0.46 28.08 ± 0.70 63.62 ± 0.27 36.16 ± 0.18 70.37 ± 0.57 93.89 ± 0.31
w/t TPE ✓ ✓ 71.88 ± 1.56 70.28 ± 0.40 28.69 ± 0.93 63.80 ± 0.21 36.04 ± 0.03 71.64 ± 0.62 93.42 ± 0.22

w/t MAPRO ✓ ✓ 75.00 ± 1.56 72.31 ± 0.55 30.10 ± 0.70 63.82 ± 0.54 36.22 ± 0.30 71.87 ± 0.35 93.56 ± 0.34

DMAD ✓ ✗ 70.94 ± 0.86 70.37 ± 0.46 34.06 ± 0.90 63.82 ± 0.54 35.56 ± 0.11 69.85 ± 0.42 94.12 ± 0.19
w/t Direct ✓ ✓ 71.88 ± 1.56 70.90 ± 0.26 35.35 ± 0.70 64.12 ± 0.35 36.02 ± 0.20 70.99 ± 0.33 94.93 ± 0.33
w/t TPE ✓ ✓ 71.35 ± 1.80 70.55 ± 0.40 34.55 ± 0.61 64.30 ± 0.29 36.14 ± 0.22 71.32 ± 0.26 94.67 ± 0.28

w/t MAPRO ✓ ✓ 73.96 ± 0.90 71.60 ± 0.31 35.96 ± 1.53 65.10 ± 0.24 36.22 ± 0.28 72.99 ± 0.33 95.91 ± 0.30

ChatEval (Swarm) ✓ ✗ 71.25 ± 0.86 71.43 ± 0.19 34.91 ± 1.01 63.73 ± 0.43 36.44 ± 0.32 71.32 ± 0.26 93.14 ± 0.31
w/t Direct ✓ ✓ 72.92 ± 0.90 70.99 ± 0.31 35.15 ± 0.61 64.02 ± 0.26 36.36 ± 0.27 71.73 ± 0.57 92.58 ± 0.37
w/t TPE ✓ ✓ 72.40 ± 2.39 71.78 ± 0.31 36.36 ± 0.61 64.18 ± 0.31 36.41 ± 0.27 71.48 ± 0.80 92.45 ± 0.34

w/t MAPRO ✓ ✓ 75.00 ± 1.56 72.22 ± 0.26 37.17 ± 0.93 65.45 ± 0.09 36.55 ± 0.29 72.26 ± 0.71 92.38 ± 0.40

Table 3: Performance results with baseline methods on Llama 3.3-70b. We report the mean and standard deviation
for all results. The best performance is bolded and runner-ups are underlined.

Method HumanEval-ET MBPP-Plus CodeContest NewsQA WebQuestion MATH GSM8K

MAPRO 80.21 ± 0.90 76.54 ± 0.67 31.52 ± 0.61 64.00 ± 0.35 34.65 ± 0.30 64.30 ± 0.59 93.48 ± 0.42
w/o demos 76.04 ± 0.90 75.22 ± 0.31 29.70 ± 0.61 62.33 ± 0.31 34.20 ± 0.35 63.87 ± 0.23 92.86 ± 0.15

Drop (%) 5.20% 1.72% 5.78% 2.61% 1.30% 0.67% 0.66%

Table 4: Ablation study results showing the performance drop when removing demonstration-guided reward.
Numbers are reported with mean ± standard deviation, and relative drops are given in percentage.

plex reasoning. For LLM backbones, the results
reaffirm general trends—Haiku excels in code,
whereas Llama is stronger in reasoning—but also
show that MAPRO adapts well across both. No-
tably, the optimal MAS under Llama shifted to-
ward more sophisticated designs, suggesting that
stronger reasoning models further amplify the ben-
efits of our framework. Overall, these results val-
idate MAPRO as both more effective and more
versatile than existing methods, with significant
potential for even greater gains on future LLMs.

4.3 Optimization Trajectory

We visualize the optimization trajectory of
MAPRO as shown in Figure-3. MAPRO’s tra-
jectory demonstrates a more steady trend of opti-
mization that gradually improves the validation per-
formance towards better prompt sets, whereas we
observe more fluctuations when it comes to other
optimization methods, as they have a hard time cap-
turing complicate interplays between agents. We
further inspect an example of optimized prompt
trajectory of an agent node in Table-2. As can
be seen, the prompt evolves overtime with more
precise instructions that provides task-specific in-
sights. These insights, especially the repeatedly
occurring refinements, in practice, can be ingested
into knowledge base which facilitates human-in-

the-loop process and bring in more reliability and
robustness to the system.

4.4 Reward Model Analysis

To assess the incremental gains of the reward mod-
els, we conducted an ablation study across all tasks.
As shown in Table 4, the results underscore the
critical role of demonstration-guided reward, con-
sistent with TPO (Li et al., 2025). A key insight
is that the contribution of demonstrations varies
across tasks, likely due to the relative simplicity
of certain benchmarks such as those in the math
domain. We also examined the consistency of the
scoring process: under a low temperature setting,
the selection procedure produced nearly identical
outcomes across tasks and MAS configurations, so
we omit ablation on that front. This robustness,
together with the ablation results, demonstrate the
efficacy of our reward model design.

4.5 Efficiency and Cost Analysis

Because absolute runtime and monetary cost vary
substantially across API providers and organiza-
tional infrastructure, we adopt the number of agent-
level LLM calls as the most fair and comparable
efficiency metric. A detailed cost analysis will be
included in the revised version. Below we provide
a concise comparison.

• Direct optimization. Each iteration updates
all agents once, resulting in N LLM calls.

• TPE-style methods. The agent update stage
requires N calls. In addition, the search stage
evaluates S sampled joint prompt configura-
tions, each requiring a full multi-agent sys-
tem (MAS) execution, incurring an additional
S ×N calls.

• MAPRO (ours). The update stage similarly
requires N calls. The search stage relies on
factored scoring, consisting of N node-level
scores and E ×K edge-factor scores, which
can be efficiently batched. Only a single
MAS execution is required per iteration, as
the global configuration is obtained via MAP
inference rather than repeated rollout evalua-
tions.

Overall, an objective efficiency comparison is
non-trivial. When S is small, TPE-style methods
tend to converge slowly and inefficiently; when S
is large, they may require more LLM calls than
MAPRO. In our experiments, following standard
practice, we set S = 20, under which TPE-style
methods are only marginally faster than MAPRO.
Nevertheless, as shown in Figure 3, MAPRO con-
sistently achieves superior performance under a
comparable call budget, primarily because MAP in-
ference avoids poor local optima and enables more
comprehensive exploration of the search space.

5 Conclusion

We introduced MAPRO, a principled framework
that first recasts multi-agent prompt optimization as
a MAP inference problem and resolves it through
language-guided belief propagation and topology-
aware refinement. Across diverse downstream
tasks, MAPRO consistently surpasses all types of
baselines, demonstrating its effectiveness and gen-
erality. Beyond strong empirical gains, MAPRO
delivers a plug-and-play setting that balances accu-
racy with flexibility. This flexibility, together with
the interpretability provided by the optimization
trajectories, making MAPRO especially practical
for real-world MAS deployment and improvement.

Acknowledgements

The work of Z. Zhang, C. Zhang, and Y. Ye
was partially supported by the NSF under grants

IIS-2533550, IIS-2321504, IIS-2217239, CNS-
2426514, and CMMI-2146076, Notre Dame Strate-
gic Framework Research Grant (2025), and Notre
Dame Poverty Research Package (2025). Any ex-
pressed opinions, findings, and conclusions or rec-
ommendations are those of the authors and do not
necessarily reflect the views of the sponsors.

Limitations

In this section, we discuss the limitations of our
work and outline promising directions for future re-
search. First, our study focuses exclusively on opti-
mizing prompts for MASs while keeping the agent
topology fixed. The results suggest that additional
gains could be achieved through more deliberate
choices of MAS topology. However, updating the
topology requires reconfiguring the entire system,
which is substantially more complex and resource-
intensive. In many industrial applications where
MAS designs are already deployed or constrained
by fixed requirements, such re-establishment is im-
practical. This reflects a fundamental trade-off
between flexibility, extensibility, efficiency, and
performance. Nevertheless, extending MAPRO
to jointly optimize both prompts and topologies
would be an exciting avenue for future exploration.
Second, while we employed LLM-based agents as
reward models and demonstrated their efficacy and
consistency, it would be valuable to investigate fine-
tuned alternatives. In particular, approaches such
as Max a Posteriori Policy Optimization (Abdol-
maleki et al., 2018) offer a principled framework
that could replace our current reward mechanism
and integrate more seamlessly into the overall opti-
mization process. Exploring such directions could
further enhance the robustness and generality of
our approach.

References

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval
Tassa, Remi Munos, Nicolas Heess, and Martin Ried-
miller. 2018. Maximum a posteriori policy optimisa-
tion. In ICLR.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In EMNLP.

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu,
Wei Xue, Shanghang Zhang, Jie Fu, and Zhiyuan Liu.
2024. Chateval: Towards better llm-based evaluators
through multi-agent debate. In ICLR.

Jingchang Chen, Hongxuan Tang, Zheng Chu, Qiang-
long Chen, Zekun Wang, Ming Liu, and Bing Qin.
2024a. Divide-and-conquer meets consensus: Un-
leashing the power of functions in code generation.
In NeurIPS.

Yongchao Chen, Jacob Arkin, Yilun Hao, Yang Zhang,
Nicholas Roy, and Chuchu Fan. 2024b. Prompt op-
timization in multi-step tasks (promst): Integrating
human feedback and heuristic-based sampling. In
EMNLP.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Wendi Cui, Jiaxin Zhang, Zhuohang Li, Hao Sun,
Damien Lopez, Kamalika Das, Bradley A Malin, and
Sricharan Kumar. 2025. Automatic prompt optimiza-
tion via heuristic search: A survey. arXiv.

Nicola Dainese, Matteo Merler, Minttu Alakuijala, and
Pekka Marttinen. 2024. Generating code world mod-
els with large language models guided by monte carlo
tree search. In NeurIPS.

Yihong Dong, Jiazheng Ding, Xue Jiang, Ge Li, Zhuo
Li, and Zhi Jin. 2025. Codescore: Evaluating code
generation by learning code execution. ACM Trans-
actions on Software Engineering and Methodology.

Xidong Feng, Bo Liu, Yan Song, Haotian Fu, Ziyu
Wan, Girish A Koushik, Zhiyuan Hu, Mengyue
Yang, Ying Wen, and Jun Wang. 2024. Natural
language reinforcement learning. arXiv preprint
arXiv:2411.14251.

Chrisantha Fernando, Dylan Banarse, Henryk
Michalewski, Simon Osindero, and Tim Rock-
täschel. 2024. Promptbreeder: self-referential
self-improvement via prompt evolution. In ICML.

Lin Ge, Hengrui Cai, Runzhe Wan, Yang Xu, and Rui
Song. 2025. A review of causal decision making.
arXiv preprint arXiv:2502.16156.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao
Song, Xu Tan, Guoqing Liu, Jiang Bian, and Yujiu
Yang. 2024a. Connecting large language models
with evolutionary algorithms yields powerful prompt
optimizers. In ICLR.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao
Song, Xu Tan, Guoqing Liu, Jiang Bian, and Yu-
jiu Yang. 2025. Evoprompt: Connecting llms with
evolutionary algorithms yields powerful prompt opti-
mizers. arXiv.

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen,
Yi Chang, and Jun Wang. 2024b. Ds-agent: auto-
mated data science by empowering large language
models with case-based reasoning. In ICML.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. In NeuralIPS.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al.
2024a. Metagpt: Meta programming for a multi-
agent collaborative framework. In ICLR.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al.
2024b. Metagpt: Meta programming for a multi-
agent collaborative framework. In ICLR.

Shengran Hu, Cong Lu, and Jeff Clune. 2025. Auto-
mated design of agentic systems. In ICLR.

Haitao Jiang, Lin Ge, Yuhe Gao, Jianian Wang, and Rui
Song. 2024. Llm4causal: Democratized causal tools
for everyone via large language model. In CoLM.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. 2024. Swe-bench: Can language mod-
els resolve real-world github issues? In ICLR.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari,
Zhiyuan Zhang, Keshav Santhanam, Saiful Haq,
Ashutosh Sharma, Thomas T Joshi, Hanna Moazam,
Heather Miller, et al. 2024. Dspy: Compiling
declarative language model calls into state-of-the-art
pipelines. In ICLR.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. NeurIPS.

Chao Lei, Yanchuan Chang, Nir Lipovetzky, and
Krista A Ehinger. 2025. Planning-driven program-
ming: A large language model programming work-
flow. ACL.

Manling Li, Shiyu Zhao, Qineng Wang, Kangrui Wang,
Yu Zhou, Sanjana Srivastava, Cem Gokmen, Tony
Lee, Li Erran Li, Ruohan Zhang, et al. 2024. Embod-
ied agent interface: benchmarking llms for embodied
decision making. In NeuralIPS.

Yafu Li, Xuyang Hu, Xiaoye Qu, Linjie Li, and
Yu Cheng. 2025. Test-time preference optimization:
On-the-fly alignment via iterative textual feedback.
In ICML.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022. Competition-level code generation with
alphacode. Science.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023. Is your code generated by chatgpt
really correct? rigorous evaluation of large language
models for code generation. NeuralIPS.

Xiangyan Liu, Bo Lan, Zhiyuan Hu, Yang Liu,
Zhicheng Zhang, Fei Wang, Michael Shieh, and Wen-
meng Zhou. 2025a. Codexgraph: Bridging large lan-
guage models and code repositories via code graph
databases. NAACL.

Yexiang Liu, Jie Cao, Zekun Li, Ran He, and Tieniu Tan.
2025b. Breaking mental set to improve reasoning
through diverse multi-agent debate. In ICLR.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with
self-feedback. NeurIPS.

Krista Opsahl-Ong, Michael Ryan, Josh Purtell, David
Broman, Christopher Potts, Matei Zaharia, and Omar
Khattab. 2024. Optimizing instructions and demon-
strations for multi-stage language model programs.
In EMNLP.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. NeuralIPS.

Siru Ouyang, Wenhao Yu, Kaixin Ma, Zilin Xiao, Zhi-
han Zhang, Mengzhao Jia, Jiawei Han, Hongming
Zhang, and Dong Yu. 2025. Repograph: Enhancing
ai software engineering with repository-level code
graph. ICLR.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan
Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng
Su, Xin Cong, et al. 2024. Chatdev: Communicative
agents for software development. In ACL.

Chen Qian, Zihao Xie, YiFei Wang, Wei Liu, Kunlun
Zhu, Hanchen Xia, Yufan Dang, Zhuoyun Du, Weize
Chen, Cheng Yang, et al. 2025. Scaling large lan-
guage model-based multi-agent collaboration. In
ICLR.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: Language agents with verbal reinforcement
learning. NeurIPS.

Aditi Singh, Abul Ehtesham, Saket Kumar, and Tala Ta-
laei Khoei. 2025. Agentic retrieval-augmented gen-
eration: A survey on agentic rag. arXiv.

Feifan Song, Yuxuan Fan, Xin Zhang, Peiyi Wang, and
Houfeng Wang. 2025. Instantly learning preference
alignment via in-context dpo. In NAACL.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris,
Alessandro Sordoni, Philip Bachman, and Kaheer
Suleman. 2016. Newsqa: A machine comprehension
dataset. arXiv.

Junlin Wang, WANG Jue, Ben Athiwaratkun, Ce Zhang,
and James Zou. 2025. Mixture-of-agents enhances
large language model capabilities. In ICLR.

Ruochen Wang, Sohyun An, Minhao Cheng, Tianyi
Zhou, Sung Ju Hwang, and Cho-Jui Hsieh. 2024a.
One prompt is not enough: automated construction
of a mixture-of-expert prompts. In ICML.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang,
Yunzhu Li, Hao Peng, and Heng Ji. 2024b. Exe-
cutable code actions elicit better llm agents. In ICML.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Hao-
tian Luo, Jiayou Zhang, Nebojsa Jojic, Eric Xing, and
Zhiting Hu. 2024c. Promptagent: Strategic planning
with language models enables expert-level prompt
optimization. In ICLR.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. NeuralIPS.

Zhaoxuan Wu, Xiaoqiang Lin, Zhongxiang Dai,
Wenyang Hu, Yao Shu, See-Kiong Ng, Patrick Jaillet,
and Bryan Kian Hsiang Low. 2024. Prompt optimiza-
tion with ease? efficient ordering-aware automated
selection of exemplars. In NeurIPS.

Jinyu Xiang, Jiayi Zhang, Zhaoyang Yu, Fengwei Teng,
Jinhao Tu, Xinbing Liang, Sirui Hong, Chenglin Wu,
and Yuyu Luo. 2025. Self-supervised prompt opti-
mization. arXiv.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In ICLR.

Yanfang Ye, Zheyuan Zhang, Tianyi Ma, Zehong Wang,
Yiyang Li, Shifu Hou, Weixiang Sun, Kaiwen Shi,
Yijun Ma, Wei Song, et al. 2025. Llms4all: A review
of large language models across academic disciplines.
arXiv preprint arXiv:2509.19580.

Zhengqing Yuan, Yixin Liu, Yihan Cao, Weixiang
Sun, Haolong Jia, Ruoxi Chen, Zhaoxu Li, Bin Lin,
Li Yuan, Lifang He, et al. 2024. Mora: Enabling gen-
eralist video generation via a multi-agent framework.
arXiv preprint arXiv:2403.13248.

Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng
Wan, Miao Yu, Junfeng Fang, Kun Wang, Tianlong
Chen, and Dawei Cheng. 2025a. G-designer: Ar-
chitecting multi-agent communication topologies via
graph neural networks. ICML.

Zheyuan Zhang, Kaiwen Shi, Zhengqing Yuan, Ze-
hong Wang, Tianyi Ma, Keerthiram Murugesan, Vin-
cent Galassi, Chuxu Zhang, and Yanfang Ye. 2025b.
Agentrouter: A knowledge-graph-guided llm router
for collaborative multi-agent question answering.
arXiv preprint arXiv:2510.05445.

Kunhao Zheng, Juliette Decugis, Jonas Gehring, Taco
Cohen, Gabriel Synnaeve, et al. 2025. What makes
large language models reason in (multi-turn) code
generation? In The Thirteenth International Confer-
ence on Learning Representations.

Han Zhou, Xingchen Wan, Lev Proleev, Diana Mincu,
Jilin Chen, Katherine A Heller, and Subhrajit Roy.
2024. Batch calibration: Rethinking calibration for
in-context learning and prompt engineering. In ICLR.

Han Zhou, Xingchen Wan, Ruoxi Sun, Hamid Palangi,
Shariq Iqbal, Ivan Vulić, Anna Korhonen, and Ser-
can Ö Arık. 2025. Multi-agent design: Optimizing
agents with better prompts and topologies. arXiv.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch,
Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. 2024. Gptswarm: language agents as
optimizable graphs. In ICML.

A Related Work

A.1 Prompt Optimization for MAS

Recent progress in large language models (LLMs)
has enabled multi-agent systems (MAS), in which
cooperating agents consistently outperform sin-
gle agents on demanding reasoning and software-
engineering tasks (Zhang et al., 2025b; Ye et al.,
2025; Wang et al., 2024b). This performance, how-
ever, depends on labor-intensive prompt engineer-
ing: each agent needs carefully crafted role instruc-
tions, and this effort grows rapidly as the number
of agents increases, because aligning coordination
between them becomes increasingly complex. To
ease this burden, many studies now frame prompt
design as an optimization problem and use heuris-
tic search algorithms to explore and refine prompts
with minimal human effort and oversight.

Prompt optimization in LLMs generally falls
into two main categories: soft-prompt tuning in
continuous space and discrete prompt optimization
in text space. Soft tuning supports gradient-based
updates but sacrifices transparency and portability,
as its learned vectors are opaque, model-specific,
and require gradient access that most black-box
APIs do not provide (Cui et al., 2025). To work
around this, researchers approximate gradients with
LLM feedback and develop gradient-like strategies
suited for non-differentiable settings. For example,
some works apply beam search for step-wise re-
finement (Chen et al., 2024b; Wang et al., 2024c),
while others explore alternative optimization strate-
gies, such as evolutionary algorithms (Guo et al.,
2025; Fernando et al., 2024) and other heuristic al-
gorithms (Opsahl-Ong et al., 2024; Li et al., 2025),
to adapt prompts iteratively. Another related line of
work focuses on prompt selection, searching a pool
of variants to pick the best one (Wu et al., 2024;
Wang et al., 2024a; Song et al., 2025).

However, most existing methods target a sin-
gle agent, while prompt optimization for MAS
as a whole remains under-explored. Among the
few efforts in this area, Mass (Zhou et al., 2025)
warms each agent’s role prompt, prunes the interac-
tion graph, and then jointly fine-tunes all prompts,
showing that layered optimization boosts group per-
formance. GPTSwarm (Zhuge et al., 2024) treats
agents as a graph and updates node-level prompts
and edge connections together, letting prompts co-
evolve with coordination patterns. We argue that
the importance of proper prompt design has been
significantly under-studied in these prior works.

Specifically, current approaches still overlook two
key issues: even minor lexical edits upstream can
shift the distributions seen by downstream agents,
and, to the best of our knowledge, none of the meth-
ods searches for a globally optimal set of prompts
for the full system.

A.2 LLM Agents for Code Generation Tasks
Code generation has emerged as a core appli-
cation for large language model (LLM) agents
because it links natural-language reasoning with
concrete, testable outputs and promises to auto-
mate sizable portions of software engineering and
data-science workflows. Early studies tackled
this task with single-agent or minimally interac-
tive pipelines—such as Self-Refine (Madaan et al.,
2023), Reflexion (Shinn et al., 2023), and CoT-
Zero (Kojima et al., 2022)—that plan, execute, and
iteratively repair their own code until unit tests
pass. These works showed that even simple agent
interactions can improve reliability when the agent
can inspect failures and revise its output, a process
that loosely aligns with causal reasoning (Ge et al.,
2025; Jiang et al., 2024): the model infers poten-
tial sources of error and adjusts its generation in
response.

As multi-agent systems advance, the trend has
shifted toward complex MAS with carefully de-
signed role-play interactions. Frameworks like
CodeAct (Wang et al., 2024b), MetaGPT (Hong
et al., 2024b), and ChatDev (Qian et al., 2024)
assign specialized roles—planner, coder, tester,
reviewer—and let agents converse in plain lan-
guage, mimicking real software teams. These or-
chestrated exchanges boost division of labor and
help solve coding problems that demand sophisti-
cated reasoning, though they impose substantial
overhead in prompt design. Building on these
frameworks, recent work explores several direc-
tions. Some studies enhance individual modules
through richer planning (Lei et al., 2025; Chen
et al., 2024a), stronger verification (Dainese et al.,
2024; Zheng et al., 2025), or improved knowledge
bases (Ouyang et al., 2025; Liu et al., 2025a). Oth-
ers introduce supervised signals into the framework,
such as reinforcement learning (Feng et al., 2024),
to guide agent behavior.

However, across all phases, prompt design re-
mains a bottleneck: each role prompt must be
carefully crafted, and even minor edits can rip-
ple through the workflow. Consequently, a grow-
ing body of research now investigates automatic

prompt optimization (Zhang et al., 2025a; Zhou
et al., 2025) to unlock more reliable and general-
izable agent-collaboration schemes for real-world
coding tasks.

B Implementation Details

B.1 Benchmarks

HumanEval-ET (Dong et al., 2025) is an extended
benchmark for evaluating code generation. It builds
upon the original HumanEval dataset by introduc-
ing more challenging variations and refined eval-
uation protocols, particularly emphasizing error
tolerance and execution-based correctness. The
dataset is specifically designed to better capture
the robustness of large language models (LLMs)
under real-world coding scenarios, where multi-
ple correct implementations may exist and minor
deviations from reference solutions should not nec-
essarily be penalized. By incorporating these re-
finements, HumanEval-ET provides a more reliable
and nuanced measure of code generation quality.
Since this dataset doesn’t provide a train-test split,
we used the first 100 records for optimization and
the rest 64 for zero-shot left-out testing.

MBPP-Plus (Liu et al., 2023) extends the
"Mostly Basic Python Problems" (MBPP) dataset
into a larger and more diverse collection. While
MBPP was originally created to evaluate basic pro-
gramming competency using short Python func-
tions, MBPP-Plus expands both the scale and vari-
ety of tasks to cover more intricate programming
constructs, edge cases, and multi-step logic. This
augmentation addresses the limitations of the orig-
inal dataset by providing a broader set of prob-
lems that better reflect practical coding challenges,
thereby serving as a more comprehensive bench-
mark for evaluating code generation models.

CodeContest (Li et al., 2022) is a benchmark de-
rived from real competitive programming problems,
representing a significant increase in difficulty com-
pared to synthetic or basic coding datasets. It con-
tains tasks sampled from programming competi-
tions, where problems are designed to require al-
gorithmic reasoning, data structure manipulation,
and efficiency considerations. The inclusion of
strict input–output constraints and hidden test cases
makes CodeContest a rigorous benchmark that
challenges LLMs to go beyond template-based so-
lutions and demonstrate genuine problem-solving
ability. Given the large volume of this dataset’s
training set, we sample the same records as the test

set from training for optimization.
NewsQA (Trischler et al., 2016) is a large-scale

question answering dataset constructed from CNN
news articles. It consists of over 100,000 human-
generated questions paired with answers derived
from corresponding news passages. Unlike earlier
QA datasets that focus on simple fact extraction,
NewsQA emphasizes reasoning, inference, and
synthesis across multiple sentences within an arti-
cle. Its design introduces ambiguity, unanswerable
questions, and multi-sentence reasoning, making
it a challenging benchmark for evaluating reading
comprehension and open-domain question answer-
ing systems. Given the large volume of this dataset,
we sample the first 500 records to use as optimiza-
tion and left-out testing.

WebQuestions (Berant et al., 2013) is a bench-
mark dataset for semantic parsing and knowledge-
base question answering. It contains around 6,000
natural language questions paired with answers
sourced from Freebase, covering a diverse range of
topics. The dataset is notable for requiring models
to bridge the gap between natural language queries
and structured knowledge graph representations,
thereby testing a system’s ability to perform en-
tity linking, relation extraction, and logical reason-
ing. As one of the earliest large-scale QA datasets
grounded in knowledge bases, WebQuestions has
been widely adopted as a standard benchmark for
semantic parsing and open-domain QA research.
Given the large volume of this dataset, we sam-
ple the first 500 records to use as optimization and
left-out testing.

MATH (Hendrycks et al., 2021) is a dataset
specifically designed to evaluate advanced math-
ematical reasoning in LLMs. It contains approxi-
mately 12,000 competition-style problems, ranging
from high school mathematics to Olympiad-level
challenges, with step-by-step solutions provided.
Unlike arithmetic-focused datasets, MATH covers
a broad spectrum of topics including algebra, geom-
etry, number theory, and calculus, requiring multi-
step reasoning and symbolic manipulation. Its com-
plexity makes it one of the most rigorous bench-
marks for assessing the capacity of LLMs to han-
dle formal reasoning and mathematical problem-
solving. Given the large volume of this dataset’s
training set, we sample the same records as the test
set from training for optimization.

GSM8K (Cobbe et al., 2021) (Grade School
Math 8K) is a benchmark comprising 8.5k carefully
crafted grade-school-level math word problems.

Each problem is designed to require multi-step rea-
soning with arithmetic operations, testing a model’s
ability to parse natural language descriptions, trans-
late them into formal reasoning steps, and compute
the correct answer. The dataset emphasizes chain-
of-thought reasoning and has become a standard
testbed for evaluating LLMs’ ability to perform
reliable symbolic reasoning in relatively simple but
compositional tasks. Its structured design and mod-
erate difficulty level make GSM8K complementary
to more advanced datasets like MATH. Given the
large volume of this dataset’s training set, we sam-
ple the same records as the test set from training
for optimization.

B.2 Baselines
Chain-of-Thought (CoT) (Wei et al., 2022) is
a prompting paradigm that encourages large lan-
guage models (LLMs) to generate intermediate
reasoning steps before arriving at final answers.
Unlike direct-answer prompting, CoT exposes the
model’s latent reasoning process, which has been
shown to substantially improve performance on
tasks requiring multi-step deduction such as arith-
metic, commonsense inference, and symbolic rea-
soning. The introduction of CoT has established a
new standard for eliciting reasoning from LLMs,
making it a fundamental baseline in subsequent
research. Its effectiveness also highlights a broader
principle: structured prompting can significantly
extend the reasoning capability of LLMs without
the need for additional training.

ReAct (Yao et al., 2023) builds upon CoT by
integrating reasoning with acting. Specifically, Re-
Act enables agents to interleave chain-of-thought
reasoning with concrete actions, such as query-
ing external knowledge sources, interacting with
environments, or calling tools. This synergy al-
lows models to dynamically refine their reason-
ing based on external feedback, thereby reduc-
ing hallucinations and improving factual ground-
ing. ReAct has been validated across diverse
tasks including knowledge-intensive QA, fact ver-
ification, and embodied agent settings, where its
reasoning-and-acting paradigm consistently outper-
forms reasoning-only or acting-only strategies. As
a baseline, ReAct represents an important step to-
ward interactive and tool-augmented LLM systems.

EvoPrompt (Guo et al., 2024a) frames prompt
optimization as an evolutionary search process,
where a population of prompts is iteratively mu-
tated and recombined to generate stronger candi-

dates. The method relies on large language mod-
els themselves as operators for variation, while
selection mechanisms ensure gradual improvement.
This makes EvoPrompt effective for black-box
single-agent prompt optimization. However, its de-
sign remains confined to evolving isolated prompts,
and it does not extend naturally to multi-agent set-
tings where inter-agent coordination and topology
play central roles.

PromptBreeder (Fernando et al., 2024) extends
evolutionary prompt optimization by introducing
self-referential mutation. In this framework, not
only task-prompts but also the mutation-prompts
that generate them are evolved, enabling the system
to adapt its own optimization strategy over time.
This self-referential design yields a flexible and
automated process for refining prompts in single-
agent contexts. Nevertheless, PromptBreeder is in-
herently tailored to optimizing individual prompts
and does not address the complexities of scaling to
multi-agent systems.

Chain (Shinn et al., 2023) represents the sim-
plest combination topology of MAS. In our study,
it combines the reasoning-and-acting paradigm of
ReAct with a self-reflection module. After complet-
ing a task, the agent revisits its reasoning trajectory,
identifies mistakes, and integrates corrective feed-
back into subsequent attempts. By incorporating
the simple reflection module into the loop, Chain
improves both robustness and sample efficiency. In
our experiments, we adopt this variant as a base-
line to capture the benefits of the effectiveness of
simple MAS, compared with other MAS choices.

DMAD (Liu et al., 2025b) (Diverse Multi-
Agent Debate) is a recent state-of-the-art frame-
work designed to overcome the inherent limita-
tions of multi-agent debate (MAD). Traditional
MAD setups often fall prey to a mental set, where
agents—even if assigned different personas—rely
on similar reasoning strategies, limiting their abil-
ity to explore alternative solutions. DMAD ex-
plicitly addresses this by requiring each agent to
employ a distinct reasoning method (e.g., Chain-
of-Thought, Step-Back Prompting, Program-of-
Thought), thereby fostering genuine diversity in
problem-solving. This represents an intermediate-
complexity MAS topology that balances complex-
ity and expressiveness. Given its robustness and
state-of-the-art results, we consider DMAD an es-
sential MAS base structure for evaluating MAS-
level optimization.

ChatEval (Chan et al., 2024) is a multi-agent

evaluation framework that leverages structured di-
alogue among diverse LLM agents to produce
more reliable judgments. In our study, we adopt
the Simultaneous-Talk-with-Summarizer variant,
which we call SWARM, where agents contribute in
parallel and a summarizer condenses their discus-
sion into a concise shared history. In this setting,
each agent interacts with each other in a dense
format, making this baseline a typical and repre-
sentative topology type, as it emphasizes on the
richness of multi-agent discussion with strong rea-
soning and expressiveness.

GPTSwarm (Zhuge et al., 2024) frames lan-
guage agents as computational graphs, where each
node corresponds to an operation such as an LLM
query, and edges capture the flow of information
across agents. This framework is intended for op-
timizing both topology and prompts. To enable
a fair comparison, we focus solely on the prompt
optimization parts of this work. Within this frame-
work, Direct Optimization is employed to refine
the prompts associated with each node individu-
ally, using input–output histories and iterative up-
dates to improve local performance. This strat-
egy allows each operation to self-improve in iso-
lation, but it treats prompts largely as independent
units and does not account for the interdependen-
cies across the wider agent graph. In contrast, our
MAPRO framework explicitly models prompt op-
timization as a joint inference problem over the
entire MAS topology, propagating credit and de-
pendencies across nodes and edges. Thus, while
GPTSwarm provides a strong formulation of node-
level direct optimization, our approach generalizes
this idea to coordinated optimization across multi-
agent systems, addressing the limitations of local-
only updates

TPE Optimization (Zhou et al., 2025; Opsahl-
Ong et al., 2024) applies a Tree-structured Parzen
Estimator (TPE)–based Bayesian search strategy to
optimize prompts in multi-agent systems. In these
frameworks, prompts (instructions and demonstra-
tions) are treated as discrete parameters, and TPE
is used to model the joint contribution of differ-
ent parameter settings to downstream performance.
This surrogate-based approach efficiently explores
the search space by prioritizing promising configu-
rations from past evaluations. Unlike Direct Op-
timization, which treats node prompts indepen-
dently, TPE can partially capture dependencies
between variables through its probabilistic mod-
eling. However, TPE optimization still operates

over a fixed pool of candidate proposals, limit-
ing its ability to propagate credit across agents
or adapt proposals dynamically. In contrast, our
MAPRO framework formulates prompt optimiza-
tion as a joint inference problem across the entire
MAS topology, explicitly propagating dependen-
cies and credit signals across nodes and edges. This
enables coordinated optimization beyond the local
or surrogate-based updates employed by TPE meth-
ods, addressing their limitations in capturing the
full structure of multi-agent interactions.

B.3 Training Protocol
We limit the number of preference demonstrations
to 3 and candidates to 5. We limit the agent num-
ber smaller than 10. We set model temperature at
0.2, maximum output tokens at 2048. We imple-
ment the same LLM backbone as both evaluator
and executors in all phases. The optimized MAS
is reported on the held-out test set over three runs,
while other baselines over five runs. Given our mis-
sion to optimize the prompts, we didn’t spend too
much effort on prompt engineering, which mimics
the real-life scenarios where a general prompt is
adopted to a specific downstream tasks. The spe-
cific prompt designs can be seen in Appendix-D.

C Proof

C.1 Proof of MAP Equivalence
By Bayes’ rule, the classic MAP estimate chooses
the hypothesis P that maximizes the posterior:

P̂MAP ∈ argmax
P

Pr(P | S)

= argmax
P

Pr(S | P)π(P),
(12)

where S is the observed event and π(P) is the
prior on P . This way MAP finds the most prob-
able explanation (the most likely hidden variable
assignment) given what one observed.

In our case, P = (p1, . . . , pN) ∈ P1×· · ·×PN

is a joint prompt assignment and S denote the event
that the system succeeds on the batch. By construc-
tion of the node/edge success scores g(·), g(·, ·),

Pr(S | P) =
N∏
i=1

Pr(Xi=1 | P)
∏

(i,j)∈E

Pr(Yij=1 | P)

=

N∏
i=1

g(pi)
∏

(i,j)∈E

g(pi, pj)

=: T (P).
(13)

Since we do not assume one prompt set is in-
herently better than another (we have no prior
knowledge). The most neutral choice is to use
a uniform prior, and under a uniform prior, every
P ∈ P1 × · · · × PN is assigned the same positive
probability. Thus π(P) = c for some constant
c > 0 independent of P . Since multiplying by a
constant does not affect an argmax, we have

argmax
P

f(P) c = argmax
P

f(P).

Therefore, given T (P) = Pr(S | P),

argmax
P

Pr(P | S) = argmax
P

Pr(S | P)π(P)

= argmax
P

Pr(S | P) c

= argmax
P

Pr(S | P)

= argmax
P
T (P).

(14)
Thus, maximizing the Joint Quality Score is exactly
a MAP estimate of P .

C.2 Proof of Junction Tree MAP
Max-product belief propagation (MPBP) is guar-
anteed to compute the exact MAP assignment
only on tree-structured factor graphs. For a DAG
G = (V, E), the factorization (T (P)) generally in-
duces cycles, since a node j with multiple parents
couples the variables {pi : (i, j) ∈ E} together.
Formally, one first moralizes and triangulates the
DAG to ensure a chordal structure admitting a junc-
tion tree.

The junction-tree construction converts this
DAG factorization into an equivalent tree-
structured form. The procedure groups variables
into clusters C ⊆ V , each associated with a poten-
tial ψC defined as

ψC(PC) :=
∏
i∈C

g(pi)
∏

(i,j)∈E
{i,j}⊆C

g(pi, pj), (15)

where PC = {pi : i ∈ C}. In words, every fac-
tor is assigned to exactly one cluster that contains
its variables. Clusters are arranged in a tree TJT
satisfying the running intersection property: if a
variable pi appears in two clusters C1, C2, then it
appears in every cluster on the unique path between
C1 and C2 in TJT.

The resulting representation is an exact refactor-
ization:

T (P) =
∏
C∈C

ψC(PC) /
∏
s∈S

ψs(Ps), (16)

where S denotes the separator sets (intersections
of adjacent clusters). Here each separator potential
ψs is defined as the product of factors assigned to s,
ensuring no double counting. The division by sepa-
rators ensures that no factor is double-counted and
that the product reproduces exactly T (P). Since
this is equivalent to the original joint score T (P)
but expressed on a tree-structured factor graph, ap-
plying MPBP to {ψC} on the junction tree yields

argmax
P
T (P) = argmax

P

∏
C∈C ψC(PC)∏
s∈S ψS(Ps)

.

(17)
which recovers the exact MAP assignment of P .
Hence, the junction-tree transformation converts a
general DAG into a tree-structured model where
MPBP can be applied directly and exactly. This
ratio form follows from the junction-tree theorem,
which guarantees that clique potentials multiplied
and corrected by separator terms reproduce the
exact joint distribution.

C.3 Proof of MAP Global Optimality

Lemma (optimal-subtree property). Assume the
reward factorization is finite and has no negative
factors, for any edge i→ j and any pj , mi→j(pj)
equals the maximum of the product of factors con-
tained in the subtree rooted at i, conditioned on
pj .

Proof. Assume i is a leaf agent node, (6) reduces
to maxpi g(pi)g(pi, pj), the best score of the leaf
edge given pj . Assume the claim holds for all chil-
dren k ∈ Child(i). Then the product inside (6)
equals, for each fixed pi, the optimal contributions
of all child sub-trees consistent with pi; maximiz-
ing over pi yields the optimal value of the entire
subtree at i given pj .

Theorem (global MAP optimality). Let p∗r ∈
argmaxpr βr(pr). Then there exists an assignment
P ⋆ obtained by the standard downward backtrack-
ing that satisfies P ∗ ∈ argmaxP T (P),

since the root collects optimal contributions from
all disjoint subtrees. Thus

max
pr

βr(pr) = max
P
T (P).

During the upward pass, for every edge i → j
and parent value pj , the maximizer(s) achieving
(6) define a witness choice p⋆i (pj). Starting from

p∗r ∈ argmaxβr(pr) and recursing p⋆i
(
p∗j

)
along

edges away from r yields a full assignment P ∗ that

realizes the global maximum (ties broken arbitrar-
ily).

Remark (junction tree). In the clique/sepset form,
replace nodes i by cliques C, parent j by neighbor
D, pi by PC , and g by ψ; messages are

mCD(PSCD
)= max

PC\SCD

[
ψC(PC)

∏
B∈nb(C)\{D}

mBC(PSBC
)
]
,

and the same induction establishes exact MAP for
the original DAG via the established equivalence.

C.4 Time Complexity Analysis
MPBP on a tree. Let N = |V| be the number of
agents, E = |E| the number of edges, and K =
maxi |Pi| the maximum size of any agent’s prompt
pool. On a tree-structured factor graph, each edge
passes one message in each direction. Updating a
single message requires comparing all prompt pairs
(pi, pj), which costs O(K2). Since there are O(E)
such messages in total, the overall complexity is

O(EK2).

Junction-Tree MAP (general DAG). For a DAG,
we convert the graph into a junction tree whose
clique set is denoted C. Let w be the induced
treewidth, i.e. the size of the largest clique mi-
nus one. Each message update involves marginal-
izing/maximizing over a clique table of size
O(Kw+1), and there are O(|C|) such cliques (at
most linear in N). Thus the complexity is

O(|C|Kw+1),

with storage requirements of the same order.
The treewidth w reflects how many agents must

be grouped into a single clique to remove cycles.
For instance, if two agents both depend on the same
parent, they may be merged into a summary clique
of size three, so w = 2. If a node has three parents,
then a clique containing all four variables may be
needed, giving w = 3. In general, sparse MAS
graphs usually have small w (often 2 or 3), so the
exponential factor Kw+1 remains modest. This
means that in practical multi-agent settings, where
each agent only interacts with a few neighbors,
junction-tree MAP is efficient and scales nearly
linearly with N once w is bounded.

In summary, we control both selection and up-
date phase in polynomial time complexity and it
scales well the increase of the density of interac-
tions as well as the size of candidate pools, which
emphasize the scalability and efficiency of our
MAPRO framework.

D Prompt Designs

In this section, we provide the prompts for all base
agents, and all helper-agent prompts (judge, varia-
tion generator, critic, etc.). These components are
essential for interpretability and reproducibility.

It’s worth noting, to evaluate baselines prompt
optimization in multi-agent systems, which is in-
trinsically a plug-and-play setting, we adopt ex-
isting MAS designs from prior work (Swarm,
DMAD). Their agent counts, roles, and base
prompts originate directly from the correspond-
ing papers, and therefore were not listed here as
methodological contributions.

Node-Level Reward Model (Header + Prefix)

node_header:
You are a *reward model* for evaluating the competence, clarity of candidate **role prompts**.
Based on the input, output and prefernece examples,
you should first rank the candidate prompts with the good and bad examples,
Then you will give each a distinct two-decimal quality score between (0.00, 1.00) based on the
standard and alignment with the good examples.
You should be severely harsh and the score difference should be ranged from 0.4 - 0.8 and each
differs more than 0.05 with each other.
Finally, return exactly a score each line corresponding to the **prompt’s original position**. (Not
the sorted score)
Note that your output should contain only the numeric scores (e.g., 0.62). Nothing else.

agent_reward_prefix:
You are an evaluation LLM. Given {input} and the agent’s response {output}, rate how well
the response accomplishes the agent’s role on a scale 0–1 (higher is better).Use the preference
demonstrations below as reference.Return ONLY the floating-point score.

=== Preference Demonstrations ===
{demo}
=== End Demonstrations ===

Edge-Level Reward Model (Header + Prefix)

edge_header:
You are a *reward model* for assessing **communication quality** from
an upstream agent to a downstream agent. Consider information completeness, format,
clarity, and alignment with demonstrations.
Based on the input, output and prefernece examples,
you should first rank the candidate prompts with the good and bad examples,
Then you will give each a distinct two-decimal quality score between (0.00, 1.00) based on the
standard and alignment with the good examples.
You should be severely harsh and the score difference should be ranged from 0.4 - 0.8 and each
differs more than 0.05 with each other.
Finally, return exactly a score each line corresponding to the **prompt’s original position**. (Not
the sorted score)
Note that your output should contain only the numeric scores (e.g., 0.62). Nothing else.

edge_reward_prefix:
You are an evaluation LLM. Judge whether a message produced by agent {i} helps agent {j}
perform its next step. Rate on a 0–1 scale. Use the demonstrations for guidance. Return ONLY the
floating-point score.

=== Preference Demonstrations ===
{demo}
=== End Demonstrations ===

Figure 4: Unified Reward Modeling Prompts for MAPRO: node-level (left) and edge-level (right), merging each
module’s header and reward prefix verbatim.

Feedback and Mutation Strategy Prompts

global_feedback_sys:
You are an experienced prompt engineer and failure-analysis specialist.
Given multiple examples of runtime *error messages* produced by the given LLM-generated
code,
identify the three most recurring but easy to solve root-cause patterns or missing constraints **in
the prompts** that lead to the errors. Produce a short **specific and actionable** list of fix
suggestions an author can apply.
Note 1: Output each fix as a bullet starting with numbers. Do NOT quote full stack traces; mention
key function names only if essential.
Note 2: You should focus on the pragmatism and cleaniness of code rather than if it’s easy to read,
for example, if the a module doesn’t have package ‘List‘, instead of asking to properly import the
package, you should emphasize it should write code without any type hints or annotations.

local_feedback_sys:
You are a experienced prompt engineer and failure-analysis specialist. You are given:
1) The global overall feedback list that the system is currently facing.
2) Blame statements from downstream agents suggesting how the current module can be improved
(may be empty).
3) The prompt this module is currently using.
Based on the roles of the current module, your task is to generate a *local feedback* list, focusing
on give specific, actionable fix suggestions specifically for this current module to take to avoid
downstream errors and satisfy the overall fix suggestions. Each line starts with ‘•’.

mutation_strategy_sys:
You are a experienced prompt engineer and failure-analysis specialist.
You are given the original <prompt> of a module plus two feedback blocks:
One overall fix feedback suggesting the errors the system currently experience and one optional
local feedback suggesting what this current modules can focus on to improve to benefit the system.
Your task is to modify, improve, and explode the original prompt by outputing exactly {n} JSON
strings as prompt variations with specific and detailed improvement.
Note:
1) You should focus on the pragmatism and cleaniness of the prompts (You shouldn’t acutally
write any code), so **always emphasize** the code should be executable, wrapped in one function,
without any type hints or annotations, and named as solution if no other names are provided.
2) You are only allowed to make relatively small edits. You must choose exactly one action item
in the following: a) adding one sentence from the feedback. b) replacing one senetence from the
feedback to existing edits. c) Re-organize, rewrite or clean the current prompt to make it logically
consistent. d) delete one redundant sentence in the current prompt.
3) You should ALWAYS respond with ONLY the VALID JSON array – You should return No
headings, no prose such as </prompt>, no markdown fences such as “‘, no trailing commas, no
escape codes, or unclosed parenthesis. Each string must be valid UTF-8. Escape all newlines as \n.
No raw newlines inside JSON strings. Example (node, n = 2): ["Prompt variant 1","Prompt variant
2"].

Figure 5: Feedback system prompts in MAPRO (for coding tasks): global feedback, local feedback, and mutation
strategy.

Variation Prompt

variation:
You are a prompt-engineering assistant.
The user will give you an original prompt TEMPLATE inside <prompt></prompt>.
Produce {n} diverse textual prompt variants (NOT solution, but the prompts) that keep the same
intent but differ in wording, ordering, or tone. Note that you should generate the prompt for the
agent not generate solution.
Don’t write code here and Return **only** a JSON array of strings.
Respond on a single line only. Do not emit any raw line breaks.

Negative Variation Prompt

neg_variation:
You are a prompt-mutation helper.
The user will give you a JSON object with:
good_examples : list[str] # 3 GOOD prompt templates (node) *or* 3 GOOD upstream-downstream
pairs
mode : "node"|"edge" # mutation type
n : int # number of BAD variants requested
Produce exactly {n} sligthly BAD variants:
• For "node": each string could omit some key instructions, introduce contradictions, or add
irrelevant text that reduces agent quality.
• For "edge": each string code be a JSON array ["bad_upstream", "good_downstream"] where
bad_upstream makes the pair incompatible.
• Note that your generation should be obviously worse than good examples, but not too absurd or
entirely off the topic.
Remember, Return nothing except one valid JSON array.
- For mode = "node" → ["str", "str", . . .]
- For mode = "edge" → [["str","str"], ["str","str"], . . .]
You should ALWAYS respond with ONLY the VALID JSON array – You should return No
headings, no prose such as </prompt>, no markdown fences such as “‘, no trailing commas, no
escape codes, or unclosed parenthesis.
Each string must be valid UTF-8. Escape all newlines as \n. No raw newlines inside JSON strings.

Figure 6: Initialization prompts in MAPRO: variation (left) for diverse positive variants and neg_variation (right)
for intentionally degraded variants.

Coding Prompts and Notes

raw:
You are a reasoning agent and coding expert. Solve the task by outputting only executable
Python code as a single function. Do not print any prose, comments, or markdown fences. If
preprocessing or postprocessing is needed to conform to the specified input/output format, perform
it inside the function. Follow all constraints in note exactly.

cot:
You are a reasoning agent and coding expert. First reason step by step silently (do not print thoughts
or a plan). Then output only executable Python code as a single function that solves the task
with the correct input/output format. Do not include comments, explanations, tags, or markdown
fences. Follow note exactly.

react:
You are a reasoning agent. First analyze the problem and form a plan silently (do not print it).
Then use that plan to produce the final answer as code only — a single Python function with
no comments, prose, or markdown fences. If FEEDBACK is provided, revise the code only when
the feedback is correct and improves conformance to the task or note; otherwise keep the best
previous solution. Follow note exactly.

reflect:
You are a coding critic. Be conservative — revise only if there are concrete mistakes. Evaluate the
submitted answer against:
1) It is only executable Python code with no markdown, tags, or comments, and has no obvious
syntax errors.
2) It implements any required preprocessing/postprocessing so the input and output formats are
correct.
3) It satisfies all constraints in note.
If everything is correct, reply exactly: ACCEPT
Otherwise, reply exactly: REVISE: <concise, actionable fixes required>
Do not include code blocks, bullets, or extra text beyond the required format.

note:
1) No type annotations or return-type hints.
2) Output only executable Python code, with no tags (e.g., </...>), no markdown fences (“‘), and
no explanations or comments.
3) Wrap the solution in exactly one function. If the function name is specified in the problem or
PUBLIC TEST, use it and keep the exact parameter list. Otherwise, name the function solution.
4) Match the task’s input format. If examples indicate inputs arrive as strings, accept a string
parameter and parse internally. Likewise, format outputs exactly as required (e.g., print vs return).
5) Use only Python’s standard library; do not rely on network access, external files, or third-party
packages.
6) Ensure deterministic behavior and avoid unnecessary randomness or system calls.
7) Prefer clear, robust algorithms; handle edge cases implied by the task (empty inputs, boundary
values) when reasonable.

Figure 7: Unified coding prompt suite for coding solutions. The five roles (RAW, CoT, ReAct, Reflect, Note) ensure
silent planning, strict code-only output, conservative review, and precise conformance to I/O constraints.

Math Prompts and Notes

raw:
You are a competition mathematician. Solve the problem with clear step-by-step reasoning, using
exact symbolic forms (prefer fractions to decimals when appropriate). End with a single final line:
⟨answer⟩ . Follow note exactly.

cot:
First think step by step silently (do not print your thoughts); then present a concise, logically
ordered solution. Use exact forms; avoid decimals unless requested. End with the single final line:
⟨answer⟩ . Follow note.

react:
Analyze the problem and form a plan silently (do not print it); then present a full worked solution
with clear steps and exact forms. If FEEDBACK is provided, revise the solution only when it is
correct and improves adherence to note; otherwise keep the best prior solution. Finish with the
final line: ⟨answer⟩ .

reflect:
You are a competition-math critic. Assess the submitted solution on:
1) Mathematical correctness of the result and reasoning.
2) Output formatting (final line exactly boxed).
3) Adherence to all constraints in note.
If everything is correct, reply exactly: ACCEPT
Otherwise, reply exactly: REVISE: <concise, actionable fixes required>
Do not include any extra text beyond the required format.

note:
MATH Canonicalization (Top Priority)
1) Final line only: ⟨answer⟩ .
2) Exact forms: reduce a/b; simplify radicals; use π; avoid decimals unless asked.
3) Numbers: no commas anywhere (9901 not 9,901; 448/15625 not 2,240/78,125).
4) Expressions: canonical, no spaces, use ^ for exponents (x3 + 3x− 6). Do not prepend variables
or ’=’ (prefer 5 over x = 5).
5) MCQ: box the single capital letter only.
6) Tuples/Sets: (a, b, . . .) and {a, b, . . . } with simplified components.
7) Units: match the problem; use k◦ for degrees; default radians.
8) Sanity: respect domains; drop extraneous roots; include a quick plug-back check.

Figure 8: Unified math prompt suite for exact, well-formatted solutions. The five roles (RAW, CoT, ReAct, Reflect,
Note) enforce silent planning, precise symbolic work, and a canonical boxed final answer. Different from coding
prompts, prompts for question answering are rather similar to math prompts as they both relate to reasoning, thus
we skip the demonstration here.

	Introduction
	Preliminary
	Multi-agent System as Directed Graph
	MAS Prompt Optimization

	Methodology
	Initialization
	Language-based MAP Selection
	Preference-based Policy Update
	Termination

	Experiments
	Experimental Setup
	Main Results
	Optimization Trajectory
	Reward Model Analysis
	Efficiency and Cost Analysis

	Conclusion
	Related Work
	Prompt Optimization for MAS
	LLM Agents for Code Generation Tasks

	Implementation Details
	Benchmarks
	Baselines
	Training Protocol

	Proof
	Proof of MAP Equivalence
	Proof of Junction Tree MAP
	Proof of MAP Global Optimality
	Time Complexity Analysis

	Prompt Designs

