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Abstract

Large Language Models (LLMs) are increasingly deployed for structured data
generation, yet output consistency remains critical for production applications. We
introduce a comprehensive framework for evaluating and improving consistency in
LLM-generated structured outputs. Our approach combines: (1) STED (Semantic
Tree Edit Distance), a novel similarity metric balancing semantic flexibility with
structural strictness when comparing JSON outputs, and (2) a consistency scoring
framework aggregating multiple STED measurements across repeated generations
to quantify reliability. Through systematic experiments on synthetic datasets with
controlled schema, expression, and semantic variations, we demonstrate STED
achieves superior performance (0.86 − 0.90 similarity for semantic equivalents,
0.0 for structural breaks) compared to existing metrics including TED, BERTScore,
and DeepDiff. Applying our framework to benchmark six LLMs reveals significant
variations: Claude-3.7-Sonnet demonstrates exceptional consistency, maintaining
near-perfect structural reliability even at high temperatures (T = 0.9), while models
like Claude-3-Haiku and Nova-Pro exhibit substantial degradation requiring careful
tuning. Our framework enables practical applications including targeted model
selection for structured tasks, iterative prompt refinement for reproducible results,
and diagnostic analysis to identify inconsistency root causes. This work provides
theoretical foundations and practical tools for ensuring reliable structured output
generation in LLM-based production systems.

1 Introduction

Large Language Models (LLMs) have become integral to production systems requiring structured
data generation, particularly in JSON format for APIs, data extraction pipelines, and automated
workflows. However, evaluating the consistency and quality of LLM-generated structured outputs
presents unique challenges that existing evaluation methods fail to adequately address.

A fundamental issue in evaluating structured outputs is the mismatch between evaluation methods
and structured semantics. Consider two structured objects with identical content but different key
ordering—while the structured specification treats these as equivalent, popular evaluation methods
like BERTScore [1] assign them significantly different similarity scores due to position-sensitive
embeddings, leading to false negatives in production systems.

The challenge extends beyond simple key reordering. LLMs frequently generate functionally
equivalent structures with various forms of semantic equivalence: naming convention differences
("user_name" versus "userName"), array reorderings where sequence is not semantically signifi-
cant, structural reorganizations preserving information content, and type representation variations
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("true" versus true, "123" versus 123). Each represents valid structured data conveying identical
information, yet existing metrics fail to recognize their equivalence.

Current evaluation approaches exhibit systematic limitations when applied to structured outputs.
BERTScore [1], while effective for natural language evaluation, suffers from order sensitivity that
violates JSON’s order-agnostic semantics for object properties, systematically underestimating
similarity for reordered but identical structures. Tree Edit Distance (TED) methods focus purely on
structural differences without considering semantic equivalence, while exact matching approaches
are overly restrictive for practical applications.

DeepDiff [2] and similar structural comparison tools can ignore ordering through configuration but
lack semantic understanding. They treat "email" and "email_address" as completely different
keys, missing obvious semantic relationships that humans would recognize.

These limitations have significant practical consequences. In production systems processing thousands
of API responses, false negatives from order sensitivity can trigger unnecessary alerts, increase
operational overhead, and mask genuine inconsistencies.

While traditional edit distances like Tree Edit Distance (TED) have been applied to structured data
comparison, they fail to handle the semantic equivalences common in LLM outputs. Recent advances
in learned edit distances [3] improve classification accuracy but focus on discriminative tasks rather
than consistency evaluation. We propose STED (Semantic Tree Edit Distance), which adapts edit
distance specifically for LLM output evaluation, balancing semantic equivalence with structural
validity.

Unlike embedding-based approaches that learn vectorial representations [3], STED directly incorpo-
rates JSON semantics through three key innovations: (1) Semantic-Enhanced Tree Edit Distance
that recognizes semantically equivalent keys and values while preserving structural constraints,
(2) Order-Invariant Matching using Hungarian algorithm for optimal element pairing, and (3)
Multi-Level Similarity integrating structural, key, value, and type similarities with configurable
weights.

Our experiments demonstrate STED’s superior discrimination: while BERTScore and DeepDiff score
> 0.95 across all variations—failing to distinguish schema violations from benign reorderings—
STED correctly identifies critical differences (0.23 for schema violations vs > 0.95 for order
variations), achieving 4× better discrimination.

As LLMs increasingly power production systems, STED provides a theoretically grounded solution
for evaluating structured output consistency, enabling reliable deployment through accurate distinction
between critical errors and acceptable variations.

2 Related Work
2.1 Edit Distance and Structured Data Comparison

The tree edit distance problem, formalized by Tai [4], provides the foundation for comparing
hierarchical structures. Zhang and Shasha [5] proposed the first polynomial-time algorithm, later
improved by RTED [6] and extended with move operations [7]. However, these classical approaches
rely on exact node matching without semantic understanding. Recent learning-based approaches [3, 8]
explore adaptive embeddings, while graph edit distance methods [9, 10] handle complex structures,
inspiring our semantic enhancements. JSON-specific tools like RFC 6902 [11] and DeepDiff [2]
provide structural comparison with optional order-insensitive matching but lack semantic awareness.
JSON Schema validation [12] focuses on conformance rather than similarity, while query languages
like JMESPath [13] and JSONPath [14] target extraction, not comparison.

2.2 Neural Approaches to Similarity

BERTScore [1] revolutionized text evaluation using contextualized embeddings from BERT [15],
but its position sensitivity makes it unsuitable for JSON where key ordering is irrelevant. Advances
like Sentence-BERT [16], SimCSE [17], and Universal Sentence Encoder [18] improve embedding
quality but process JSON as flat strings, losing structural information. Code similarity work including
CodeBERT [19] and GraphCodeBERT [20] demonstrates the importance of combining structural and
semantic features. Graph neural networks offer another perspective through GraphSAGE [21], GAT
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[22], Tree-LSTM [23], and GraphFormers [24]. While powerful, these require training data and are
computationally expensive compared to our approach.

2.3 LLM Structured Output Generation and Consistency

Recent work addresses structured output challenges in LLMs. Bubeck et al. [25] analyze GPT-4’s
structured generation capabilities, while HELM [26] provides holistic evaluation focusing on task
performance. SLOT [27] and StructuredRAG [28] address output structuring, with StructEval [29]
benchmarking generation capabilities. Format control studies [30, 31] examine verification and
schema conformance. LLM consistency research spans multiple dimensions. Elazar et al. [32] and
Raj et al. [33] examine consistency across paraphrases, while recent studies investigate stability [34],
non-determinism [35], and automated analysis [36, 37]. Temperature effects [38, 39] and prompt
stability [40] are also explored, but these focus on input variations rather than output consistency for
identical inputs.

2.4 Semantic Matching and Optimal Assignment

Semantic similarity in structured data draws from ontology matching [41] and schema matching
[42], with approaches like SimFlood [43] and COMA [44] combining multiple strategies. Neural
methods including DeepMatcher [45] and SMAT [46] achieve high accuracy but target one-time
alignment rather than continuous evaluation. Distance functions for structured data [47, 48, 49]
provide theoretical foundations. The Hungarian algorithm [50, 51] enables polynomial-time optimal
assignment, extended recently for large-scale approximations [52]. TreeKernel [53] and subsequent
work [54] apply assignment to tree matching, inspiring our combination with semantic similarity for
arrays and keys in JSON.

Despite extensive related work, existing methods fail to address structured LLM-generated outputs
consistency evaluation challenges: (1) Methods focus on either structure or semantics but not both;
(2) Tools are either order-agnostic or overly sensitive; (3) No method handles LLM-specific variation
patterns. STED bridges these gaps through unified structural-semantic analysis with appropriate
order handling and granular insights.

3 Methodology
We present STED (Semantic Tree Edit Distance), a novel framework for evaluating consistency in
LLM-generated structured outputs. While traditional metrics treat structured formats like JSON,
XML, and HTML as flat text, we recognize their hierarchical nature by transforming them into
tree representations. This allows us to reframe the structured output consistency problem as tree
consistency evaluation. Our approach extends classical tree edit distance algorithms with semantic
similarity capabilities to compute pairwise distances, then aggregates these distances across multiple
LLM generations into a normalized consistency score. This two-stage process addresses the funda-
mental challenge of quantifying output reliability when LLMs produce functionally equivalent but
syntactically different structures.

3.1 Problem Formulation

Let O = {o1, o2, ..., on} denote structured outputs generated by an LLM for identical inputs. While
our framework applies to any hierarchical format (JSON, XML, HTML), we use JSON for clarity.
Each output oi is represented as a tree Ti = (Vi, Ei), where Vi contains nodes (keys, values, structural
elements) and Ei encodes parent-child relationships.

The consistency evaluation problem involves two stages:

Pairwise Similarity: Given trees T1 and T2, compute a similarity score s(T1, T2) ∈ [0, 1] that
captures semantic and structural equivalence, where s = 1 indicates perfect consistency and s = 0
indicates fundamental incompatibility.

Consistency Score: Given n outputs, aggregate pairwise similarities into a global consistency score
C(O) ∈ [0, 1] that quantifies the LLM’s reliability:
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C(O) =
2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

s(Ti, Tj) (1)

The core challenge is distinguishing benign variations from critical differences that affect functionality,
while providing an interpretable consistency metric for production deployment.

3.2 Tree Representation of Structured Data

We transform structured documents into trees T = (V,E) where each node v ∈ V contains: Type:
{object, array, string, number, boolean, null}; Label: Key name for object properties; Value: Raw
value for primitives, child list for arrays; Path: Hierarchical path for unique identification.

The transformation rules are: (1) Objects become internal nodes with labeled edges to child values,
(2) Arrays remain as nodes containing element lists, recursively transformed if complex, and (3)
Primitives map to leaf nodes with actual values. This preserves array structure while enabling
order-invariant matching and maintaining the semantic distinction between arrays and objects.

3.3 Semantic Tree Edit Distance

Our STED algorithm extends classical tree edit distance with semantic awareness through three
operations: Insert (cost γins(v)), Delete (cost γdel(v)), and Update (cost γupd(v1, v2)). The
semantic update cost combines multiple dimensions:

γupd(v1, v2) = ws · γstruct(v1, v2) + wc · γcontent(v1, v2) (2)

where γstruct measures structural similarity using embedding-based comparison, and γcontent evalu-
ates value similarity with type-aware costs. For arrays and objects, we employ Hungarian algorithm
for optimal child matching, ensuring order-invariant comparison.

3.4 Semantic Similarity Computation

Field names are normalized (e.g., "userName"→ "user name") to capture semantic relationships.
We compute similarity using embeddings with cosine similarity for texts < 300 characters; longer
texts are chunked recursively with 50-character overlaps. We used Amazon Titan Text Embeddings
v2 in our implementation, though the choice of embedding model has minimal impact on STED’s
performance since we primarily match short field names and values where most modern embedding
models achieve similar semantic understanding. The framework remains model-agnostic and can use
any embedding model (e.g., all-MiniLM-L6-v2, Sentence-BERT, OpenAI embeddings). Type-aware
comparison ensures appropriate metrics: semantic for strings, exact for numbers, order-invariant for
arrays. This recognizes functional equivalence (e.g., {"user_name": "John"} ≡ {"userName":
"John"}) while detecting type violations that break compatibility.

3.5 Optimal Subtree Matching

Traditional tree edit distance algorithms process nodes sequentially, potentially missing globally
optimal alignments. We address this through Hungarian algorithm-based matching at each tree level.

For trees T1 and T2 with children sets C1 and C2, we formulate optimal matching as an assignment
problem:

OptimalCost(T1, T2) = min
π

 ∑
(i,j)∈π

d(ci1, c
j
2) +

∑
i/∈π

γdel(c
i
1) +

∑
j /∈π

γins(c
j
2)

 (3)

where π represents the matching between children, d(·, ·) is the recursive distance, and unmatched
nodes incur insertion/deletion costs.

The algorithm constructs a cost matrix M ∈ Rmax(|C1|,|C2|)×max(|C1|,|C2|) where Mij represents
the cost of matching child i from T1 with child j from T2. The Hungarian algorithm finds the
minimum-cost assignment in O(n3) time, ensuring globally optimal child alignment rather than
greedy local decisions.
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3.6 Similarity Score Normalization

The STED algorithm normalizes the computed distance at each tree level to produce an interpretable
similarity score in [0,1]:

STED(T1, T2) = 1−min

(
1,

dmatched + λ ·∆unmatched

max(|C1|, |C2|)

)
(4)

where dmatched is the total cost from Hungarian assignment, ∆unmatched = ||C1| − |C2|| penalizes size
differences with weight λ = 0.1. This per-level normalization ensures consistent scoring regardless
of tree depth.

3.7 Consistency Score Calculation

Let {si}ni=1 be the similarity values between responses across different runs, with empirical standard
deviation σ = std(s1, . . . , sn). To normalize for scale, we compute the maximum possible standard
deviation for n values in [0, 1]:

σmax = std
(
0, . . . , 0︸ ︷︷ ︸
⌊n/2⌋

, 1, . . . , 1︸ ︷︷ ︸
⌈n/2⌉

)
.

We then define the normalized deviation

σ̂ =

{ σ

σmax
, σmax > 0,

0, otherwise.

Finally, the consistency score is given by

ConsistencyScore(s1, . . . , sn) =
(

1

1 + 2σ̂

)α

,

where α = 20 is a steepness factor that amplifies the typically small deviations observed in model
outputs, providing better discrimination in the common low-deviation range while saturating for rare
large deviations. If n ≤ 1, we set ConsistencyScore = 1.

3.8 Computational Complexity

STED requires O(N ×B3) time where N is total node count and B is maximum branching factor,
with the Hungarian algorithm contributing the cubic factor. Space complexity is O(B2 +D) for cost
matrices and recursion depth D. Large arrays/objects with high branching factor B dominate cost,
while tree depth affects only space linearly, making STED tractable for typical structured outputs but
potentially expensive for highly-branched structures.

4 Experiments and Results
Our experimental evaluation comprises two complementary studies. First, we validate our method’s
effectiveness using synthetic datasets with controlled variations to verify its ability to accurately
quantify similarity degradation. Second, we deploy our framework to benchmark the structured
output consistency of six LLMs available through Amazon Bedrock: Claude 3.7 Sonnet, Claude
3.5 Sonnet V2, Claude 3.5 Haiku, Claude 3 Haiku, Llama-3.3-70B, and Nova Pro. This model
selection represents diverse architectures and optimization strategies—from efficiency-focused (Haiku
variants) to performance-focused (Sonnet variants). Our goal is validating the evaluation framework’s
effectiveness rather than exhaustive model coverage. The chosen models sufficiently demonstrate
our method’s ability to reveal consistency patterns (temperature sensitivity, structural-semantic gaps,
degradation profiles) that represent fundamental behaviors in autoregressive language models. The
framework itself is model-agnostic and can evaluate any LLM with structured output capabilities.
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4.1 Method Effectiveness Verification

4.1.1 Variation Taxonomy

LLM-generated structured data exhibits three distinct variation types: Schema Variation: Structural
modifications including field name changes, structure flattening, and hierarchy alterations that affect
parseability; Expression Variation: Lexical modifications preserving semantic meaning through
synonym substitution, paraphrasing, and abbreviation usage; Semantic Variation: Fundamental
content changes that alter data meaning, potentially causing incorrect interpretations.

4.1.2 Dataset Construction

Our evaluation leverages 2,400 synthetic test cases systematically generated from a diverse set of
80 base samples. We begin with 80 ShareGPT-formatted JSON samples from Quiz Generation and
Structured Output datasets (75 valid after parsing errors), which serve as seeds for controlled variation
generation. These base samples ensure structural diversity: depths range from 2–7 levels (mean
4.0±1.0, mode 4), field counts span 4–228 (mean 42.3±37.8), and include realistic type distributions
(68.2% strings, 18.4% integers, 13.4% complex types). A comprehensive distribution analysis is
provided in Appendix A.

Gradual Variations (2,250 samples): We create variants with controlled modification ratios from
0.1 to 1.0 (10 levels) for: (1) Field Name Variants - semantically equivalent keys (e.g., "user_name"
→ "userName"), (2) Expression Variants - paraphrased values preserving meaning, and (3) Semantic
Variants - content changes affecting functionality. Each category yields 750 samples (75 × 10 levels).

Structural Variations (150 samples): We generate single variants for: (1) Flattened Structure -
nested-to-flat transformations potentially causing field collisions, and (2) Nested Changes - modified
hierarchies breaking API compatibility. These binary changes yield 75 samples each.

4.1.3 Baseline Methods

We compare STED against three established approaches: TED: Tree Edit Distance using Zhang-
Shasha algorithm with default cost functions; BERTScore: Adapted for JSON by serializing struc-
tures with sorted keys, computing F1 scores from BERT embedding alignments; DeepDiff: Rule-
based structural comparison using Deep Distance metric, converted to similarity as 1−DeepDistance.

4.2 LLM Consistency Benchmarking

We design a comprehensive framework to evaluate LLM consistency in structured output generation.
For each dataset sample, we augment prompts with extracted ground truth schemas. Our protocol ex-
ecutes each of 75 samples 10 times per temperature (0.1-0.9), yielding 750 outputs per temperature
setting and 6,750 total outputs per model for robust consistency analysis.

We employ three evaluation modes: (1) structural consistency measuring format adherence, (2)
semantic consistency evaluating content preservation, and (3) hybrid approach with equal weighting
(α = 0.5). This multi-faceted evaluation reveals how temperature variations affect different aspects
of structured output generation.

4.3 Method Effectiveness Verification

4.3.1 Schema Variation Analysis

Figure 1 reveals how methods handle structural variations in LLM outputs. For field name variations
using semantic equivalents, STED maintains stable similarity across all variation ratios, correctly
recognizing functional equivalence. TED degrades significantly due to lack of semantic understand-
ing, while BERTScore’s excessive permissiveness may mask important structural differences. For
structural modifications (flattening and nesting changes), STED correctly assigns zero similarity,
recognizing these as breaking changes for downstream systems. Other methods problematically
tolerate these changes with non-zero scores that could allow incompatible outputs to pass consistency
checks.
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Figure 1: Similarity scores across schema variation types for four consistency evaluation methods.
Field name changes (0.1-1.0 ratios) show gradual similarity degradation, with BERTScore maintaining
highest scores. For structural variations, STED achieves zero similarity on nested changes but
moderate scores on flat structures. All methods use similarity scores ranging from 0 to 1.

Figure 2: Similarity score progression under semantic variations (left) and expression variations
(right). Ideal behavior: sensitivity to semantic changes, robustness to expression changes. STED
achieves optimal balance with controlled degradation for semantic variations while maintaining high
scores for expression variations, aligning with human consistency perception. (TED remains constant
at 1.0 as it measures only structural similarity, not content.)

4.3.2 Content Variation Analysis

Figure 2 evaluates content variation handling, critical for applications like content moderation
where semantic accuracy impacts outcomes. For semantic variations, STED (0.954±0.039) and
BERTScore (0.958±0.025) show statistically equivalent calibrated sensitivity (p=0.600), while Deep-
Diff over-reacts (0.799±0.165) and TED remains insensitive (1.0, structure-only). For expression
variations, STED achieves superior robustness (0.981±0.017, p<0.001), correctly preserving high sim-
ilarity for paraphrases, unlike DeepDiff which incorrectly penalizes valid rewording (0.805±0.164).1
STED’s differential response—5.2% degradation for semantic changes versus 1.9% for expres-
sion changes—enables threshold-based detection of genuine semantic drift while accepting natural
language variation, providing human-aligned consistency assessment for practical applications.

4.4 Model Consistency Analysis
Figure 3 reveals critical insights into consistency patterns across six language models, providing
guidance for model selection and parameter tuning.

1Detailed statistical analysis in Supplementary Section B.
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Figure 3: Model consistency across temperature settings. Higher scores indicate better consistency
between outputs for the same prompts. Error bars show standard deviation across 75 test cases per
temperature. Detailed numerical results in Supplementary Tables 12–15.

4.4.1 Temperature Response Patterns

All models exhibit inverse temperature-consistency relationships, validating our evaluation framework.
Claude-3.7-Sonnet demonstrates superior stability with only 19% degradation from T=0.1 to T=0.9,
maintaining 0.658±0.240 mean consistency. Claude-3.5-Haiku shows highest sensitivity (46%
decline), while Claude-3-5-Sonnet-V2 plateaus between T=0.2-0.6, requiring higher temperatures for
diversity.

4.4.2 Structural Preservation Under Diversity

Claude-3.7-Sonnet achieves near-perfect structural consistency (0.999±0.037) across all temperatures,
demonstrating exceptional format preservation even at T=0.9. This 0.5-point structural-semantic gap
indicates sophisticated behavior: varying content while preserving format—ideal for template-based
generation. Claude-3-5-Sonnet-V2 similarly maintains 0.946±0.227 structural consistency while
semantic scores vary more widely (0.459±0.318), confirming models can reliably produce diverse
content within consistent formats.

4.4.3 Deployment Considerations

The evaluation reveals key selection criteria. Structural consistency ranges from near-perfect (Claude-
3.7-Sonnet) to moderate (Nova-Pro: 0.728±0.430). Temperature responses vary from smooth degrada-
tion to erratic patterns (Nova-Pro peaks at T=0.5). For production: T=0.1-0.3 maximizes consistency,
T=0.4-0.6 balances diversity with acceptable degradation, T ≥ 0.7 causes significant losses (>30%
semantic drop). The structural-semantic gap guides task selection: larger gaps suit template-based
generation, smaller gaps indicate uniform variation for free-form tasks.

5 Conclusion

We present STED and consistency score, a novel metric for evaluating consistency in LLM-generated
structured outputs that balances semantic flexibility with structural strictness. Through controlled
experiments on synthetic datasets, we demonstrate STED’s superiority: it correctly assigns zero
similarity to structure-breaking modifications while maintaining robustness to semantically equivalent
variations (0.86-0.90), outperforming TED, BERTScore, and DeepDiff. Our benchmarking of six
state-of-the-art LLMs reveals critical insights for production deployment. The proposed consistency
score enables three key applications: (1) model selection for structured output tasks, providing
targeted evaluation beyond general-purpose benchmarks; (2) prompt refinement through iterative
optimization, enabling developers to craft prompts yielding reproducible outputs; and (3) diagnostic
analysis to identify factors contributing to inconsistency. These capabilities make our framework a
practical tool for improving the reliability of LLM-based systems in production environments where
structured output consistency is paramount. Our work has several limitations. We focus exclusively
on JSON format and evaluate only six models with 75 samples, potentially missing patterns in other
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structured formats or newer models. The semantic similarity metrics may not capture domain-specific
equivalences, and the computational cost of multiple generations for consistency evaluation may
limit adoption. Future work should extend to other formats, expand model coverage, and optimize
evaluation efficiency.
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A Dataset Characteristics and Distribution Analysis

We provide a comprehensive analysis of the 75 base samples used to generate our 2,400 synthetic test
cases. This analysis demonstrates the representativeness and diversity of our dataset across multiple
dimensions of JSON structural complexity.
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A.1 Structural Complexity Distribution

Table 1 shows the distribution of JSON depths across our base samples, with the majority (58.7%) at
depth 4, aligning with typical enterprise API structures.

Table 1: JSON Depth Distribution Across Base Samples

Depth Level Count Percentage Interpretation
Depth 2 8 10.7% Simple, flat structures
Depth 3 7 9.3% Moderately nested
Depth 4 44 58.7% Most common depth
Depth 5 13 17.3% Complex nested structures
Depth 6 2 2.7% Highly complex
Depth 7 1 1.3% Maximum complexity

Table 2 presents the field count distribution, demonstrating coverage from simple configurations to
complex documents.

Table 2: Field Count Distribution

Field Range Count Percentage Real-world Analogy
1–10 fields 6 8.0% Simple config files
11–25 fields 22 29.3% API responses
26–50 fields 27 36.0% Most common
51–100 fields 16 21.3% Complex documents
100+ fields 4 5.3% Large schemas

A.2 Field Type and Complexity Analysis

Tables 3 and 4 provide detailed breakdowns of field types and complexity metrics across the dataset.

Table 3: Distribution of Field Types Across All Samples

Field Type Count Percentage Coverage
String 7,276 68.2% Text data, IDs, descriptions
Integer 1,968 18.4% Counts, IDs, numeric values
Array 907 8.5% Lists, collections
Object 524 4.9% Nested structures

Table 4: Statistical Summary of Complexity Metrics

Metric Min Max Mean Std Dev Interpretation
Max Depth 2 7 4.0 1.0 Good variety
Total Fields 4 228 42.3 37.8 Wide range
Total Nodes 10 320 64.2 44.9 Diverse complexity
Arrays 0 11 4.7 2.7 Adequate coverage
Nested Objects 0 98 12.1 13.6 Strong variety

B Statistical Analysis Details

B.1 Methodology

We performed comprehensive statistical validation using:
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• Paired t-tests: Each of the 75 base samples was evaluated by all metrics on the same
variations, enabling paired comparisons

• Bonferroni correction: Applied for multiple comparisons (α = 0.05/30 = 0.0017)
• Effect size calculation: Cohen’s d to quantify practical significance
• Confidence intervals: 95% CIs computed using bootstrap with 1000 iterations

B.2 Semantic Variations - Detailed Results

Table 5: Summary Statistics for Semantic Variations (N=750)

Metric Mean Std Dev 95% CI Min Max Median
STED 0.9539 0.0393 [0.9511, 0.9567] 0.832 1.000 0.961
BERTScore 0.9582 0.0249 [0.9564, 0.9600] 0.871 1.000 0.963
TED 1.0000 0.0000 [1.0000, 1.0000] 1.000 1.000 1.000
DeepDiff 0.7991 0.1647 [0.7873, 0.8109] 0.412 1.000 0.825

Table 6: Pairwise Statistical Comparisons - Semantic Variations

STED vs p-values by Variation Ratio Mean p

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

TED <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001***
BERTScore .391 .197 .724 .721 .857 .973 .655 .575 .454 .454 .600 (ns)
DeepDiff <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001***

*** Significant after Bonferroni correction (p < 0.0017), ns = not significant

Interpretation: STED and BERTScore show statistically equivalent performance on semantic
variations (mean p = 0.600), both correctly maintaining high similarity for semantic equivalents.
TED’s complete insensitivity (constant 1.0) and DeepDiff’s over-sensitivity (mean 0.799) are both
significantly different from STED (p < 0.001).

B.3 Expression Variations - Detailed Results

Table 7: Summary Statistics for Expression Variations (N=750)

Metric Mean Std Dev 95% CI Min Max Median
STED 0.9812 0.0174 [0.9799, 0.9824] 0.918 1.000 0.985
BERTScore 0.9595 0.0267 [0.9576, 0.9614] 0.882 1.000 0.964
TED 1.0000 0.0000 [1.0000, 1.0000] 1.000 1.000 1.000
DeepDiff 0.8051 0.1644 [0.7934, 0.8169] 0.423 1.000 0.831

Table 8: Pairwise Statistical Comparisons - Expression Variations

STED vs p-values by Variation Ratio Mean p

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

TED <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001***
BERTScore <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001***
DeepDiff <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001***

*** Significant after Bonferroni correction (p < 0.0017)

Interpretation: STED significantly outperforms all baselines on expression variations (p < 0.001),
demonstrating superior format-agnostic understanding. The lower standard deviation (0.0174)
compared to semantic variations (0.0393) indicates more consistent performance.
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B.4 Effect Size Analysis

Table 9: Cohen’s d Effect Sizes for STED Comparisons

Comparison Semantic Variations Expression Variations
Cohen’s d Interpretation Cohen’s d Interpretation

STED vs TED -1.23 Large -1.45 Large
STED vs BERTScore -0.12 Negligible 0.82 Large
STED vs DeepDiff 1.26 Large 1.38 Large

Cohen’s d

interpretation: 0.2 = small, 0.5 = medium, 0.8 = large

B.5 Statistical Power Analysis

With 75 samples per variation ratio and 10 ratios per variation type:

• Statistical power: 0.99 for detecting medium effect sizes (d = 0.5) at α = 0.05

• Minimum detectable effect: d = 0.33 with 80% power

• Sample size adequacy: Our 750 samples per variation type exceed requirements for robust
conclusions

B.6 Schema Variation Robustness

We evaluate metric robustness under common schema evolution scenarios that preserve semantic
equivalence but alter structural representation.

B.6.1 Field Name Evolution

Real-world schemas evolve through refactoring, where field names change while preserving meaning
(e.g., API versioning). We simulate this by progressively renaming fields to semantically equivalent
alternatives.

Table 10: Metric robustness to schema field renaming (N=75)

Fields TED STED BERTScore DeepDiff
Renamed
10% 0.942 0.903 0.996 0.947
20% 0.915 0.893 0.995 0.942
30% 0.900 0.886 0.994 0.938
40% 0.879 0.882 0.993 0.933
50% 0.848 0.877 0.992 0.928
60% 0.831 0.874 0.991 0.923
70% 0.811 0.870 0.990 0.919
80% 0.790 0.866 0.989 0.916
90% 0.775 0.862 0.989 0.915
100% 0.759 0.856 0.988 0.913

Degradationa -19.4% -5.2% -0.8% -3.6%
a Relative decrease from 0% renamed (baseline=1.0) to 100% renamed

B.6.2 Schema Restructuring Patterns

We test two common schema refactoring patterns that preserve information content:
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Table 11: Metric sensitivity to schema restructuring patterns

Metric Schema Flatteninga Schema Nestingb

TED 0.000 0.506
STED 0.051 0.000
BERTScore 0.897 0.989
DeepDiff 0.809 0.781

a Flattening: Denormalizing nested objects into flat structure
Example: {"user": {"name": "John", "age": 30}} → {"user_name": "John", "user_age":
30}
b Nesting: Organizing flat fields into logical groups
Example: {"street": "Main", "city": "NYC"} → {"address": {"street": "Main",
"city": "NYC"}}

The results demonstrate that:

• TED shows steep degradation (-19.4%) as field names change, treating renamed fields as
completely different

• STED maintains better robustness (-5.2% degradation) through structural pattern recognition

• BERTScore demonstrates exceptional robustness (-0.8%) via semantic understanding of
field names

• DeepDiff shows moderate robustness (-3.6%) with consistent degradation pattern

For structural transformations, TED and STED show complementary sensitivities: TED detects
flattening as complete change (0.000) while STED identifies nesting as significant (0.000). This
reflects their different approaches to structural similarity.

C Detailed Consistency Results

C.1 Temperature Sensitivity Analysis

We analyze how temperature settings affect model consistency across 9 temperature values from 0.1
to 0.9. Each cell represents mean consistency score across 80 test cases (720 total per model).

Table 12: Overall consistency scores across temperature settings

Model Temperature
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Claude-3.5-Sonnet-V2 0.595 0.666 0.628 0.607 0.603 0.604 0.577 0.578 0.570
Claude-3-Haiku 0.527 0.479 0.490 0.433 0.432 0.344 0.371 0.374 0.361
Claude-3.5-Haiku 0.674 0.650 0.537 0.530 0.513 0.497 0.448 0.442 0.428
Claude-3.7-Sonnet 0.717 0.698 0.690 0.672 0.661 0.648 0.623 0.628 0.581
Llama-3.3-70B 0.519 0.522 0.457 0.411 0.346 0.386 0.368 0.374 0.334
Nova-Pro 0.438 0.507 0.454 0.457 0.494 0.448 0.380 0.420 0.401
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Table 13: Semantic consistency scores across temperature settings

Model Temperature
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Claude-3.5-Sonnet-V2 0.464 0.535 0.481 0.464 0.463 0.450 0.423 0.432 0.416
Claude-3-Haiku 0.456 0.406 0.402 0.337 0.336 0.263 0.283 0.279 0.264
Claude-3.5-Haiku 0.583 0.537 0.443 0.424 0.427 0.380 0.354 0.339 0.319
Claude-3.7-Sonnet 0.565 0.547 0.535 0.508 0.498 0.476 0.454 0.462 0.414
Llama-3.3-70B 0.387 0.390 0.326 0.292 0.222 0.263 0.246 0.257 0.215
Nova-Pro 0.342 0.404 0.354 0.348 0.377 0.338 0.283 0.314 0.300

Table 14: Structural consistency scores across temperature settings

Model Temperature
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Claude-3.5-Sonnet-V2 0.875 0.975 0.963 0.950 0.950 0.963 0.950 0.938 0.950
Claude-3-Haiku 0.755 0.750 0.781 0.767 0.758 0.679 0.682 0.708 0.722
Claude-3.5-Haiku 0.860 0.869 0.776 0.768 0.757 0.771 0.703 0.722 0.704
Claude-3.7-Sonnet 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.988
Llama-3.3-70B 0.825 0.863 0.825 0.800 0.800 0.850 0.825 0.838 0.838
Nova-Pro 0.722 0.775 0.700 0.739 0.787 0.749 0.658 0.748 0.673

C.2 Summary Statistics

Table 15: Aggregated consistency metrics (Mean ± SD across all temperatures, N=720 per model)

Model Overall Semantic Structural
Claude-3.5-Sonnet-V2 0.603±0.303 0.459±0.318 0.946±0.227
Claude-3-Haiku 0.424±0.386 0.336±0.399 0.734±0.432
Claude-3.5-Haiku 0.524±0.368 0.423±0.378 0.770±0.411
Claude-3.7-Sonnet 0.658±0.240 0.495±0.288 0.999±0.037
Llama-3.3-70B 0.413±0.337 0.289±0.340 0.829±0.377
Nova-Pro 0.444±0.378 0.340±0.388 0.728±0.430

C.3 Key Findings

Temperature Effects

• Most models show declining consistency as temperature increases, with steepest drops
between T=0.5 and T=0.7

• Claude-3.5-Haiku exhibits strongest temperature sensitivity (46% decline from T=0.1 to
T=0.9)

• Claude-3.7-Sonnet maintains most stable performance across temperatures (19% decline)

• Structural consistency remains more robust to temperature changes than semantic consis-
tency

Optimal Temperature Ranges

• T=0.1-0.3: Best for consistency, all models achieve peak performance

• T=0.4-0.6: Moderate degradation, acceptable for most applications

• T=0.7-0.9: Significant consistency loss, especially for semantic preservation
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Model-Specific Observations

• Claude-3.7-Sonnet: Near-perfect structural consistency (≥0.988) across all temperatures
• Nova-Pro: Shows irregular pattern with local maximum at T=0.5
• Llama-3.3-70B: Exhibits sharp semantic consistency drop at T=0.5
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