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Abstract

We study streaming data with categorical features where the
vocabulary of categorical feature values is changing and can
even grow unboundedly over time. Feature hashing is com-
monly used as a pre-processing step to map these categorical
values into a feature space of fixed size before learning their
embeddings (Coleman et al. 2024; Desai, Chou, and Shrivas-
tava 2022). While these methods have been developed and
evaluated for offline or batch settings, in this paper we con-
sider online settings. We show that deterministic embeddings
are sensitive to the arrival order of categories and suffer from
forgetting in online learning, leading to performance dete-
rioration. To mitigate this issue, we propose a probabilistic
hash embedding (PHE) model that treats hash embeddings as
stochastic and applies Bayesian online learning to learn incre-
mentally from data. Based on the structure of PHE, we derive
a scalable inference algorithm to learn model parameters and
infer/update the posteriors of hash embeddings and other latent
variables. Our algorithm (i) can handle an evolving vocabulary
of categorical items, (ii) is adaptive to new items without for-
getting old items, (iii) is implementable with a bounded set of
parameters that does not grow with the number of distinct ob-
served values on the stream, and (iv) is invariant to the item ar-
rival order. Experiments in classification, sequence modeling,
and recommendation systems in online learning setups demon-
strate the superior performance of PHE while maintaining
high memory efficiency (consumes as low as 2∼4% memory
of a one-hot embedding table). Supplementary materials are
at https://github.com/aodongli/probabilistic-hash-embeddings

1 Introduction
Categorical features occur in many high-value ML applica-
tions: finance (Clements et al. 2020), fraud detection (Al-
Hashedi and Magalingam 2021), anomaly detection (Han
et al. 2022), cybersecurity (Sarker et al. 2020), medical diag-
nosis (Shehab et al. 2022), recommendation systems (Ko et al.
2022; Lai et al. 2023) etc. A large vocabulary and embedding
table are strong characteristics of these categorical feature-
intensive applications. While assigning each item1 its own
row in a large embedding table typically improves accuracy,
it comes at a cost. A larger embedding table requires more
resources / memory to deploy and slows down execution.
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1We use the phrase item to refer to a categorical value.

A common and well-established solution for learning cate-
gorical features at a large scale, without maintaining a long
vocabulary and a large embedding table, is the use of hashing
techniques (Weinberger et al. 2009; Tito Svenstrup, Hansen,
and Winther 2017; Shi et al. 2020b; Kang et al. 2021; Lai
et al. 2023; Coleman et al. 2024). For any categorical value
(typically in the form of strings), a fixed hash function maps
it to a hashed value in a small, predetermined finite set. This
mapped hashed value serves as the resulting feature value,
indexing a row in a much smaller embedding table. These
indexed embeddings, referred to as hash embeddings, are
used in subsequent model training and inference.

Hash collisions occur when different items share the same
hashed value and embedding, potentially causing model per-
formance drops. However, this issue can be mitigated in two
ways: first by designing sophisticated operations of hashed
values (Weinberger et al. 2009); second by using multiple
hash functions (Tito Svenstrup, Hansen, and Winther 2017;
Coleman et al. 2024). Large technology firms like Yahoo and
Google have successfully incorporated this approach in their
applications (Weinberger et al. 2009; Coleman et al. 2024).

A major limitation of prior work is they focused on offline
settings where data distributions are stationary and the entire
test set is available in a batch fashion. In other words, the
vocabulary of categorical items is fixed with no new or out-
of-vocabulary items occurring during testing.

In many real applications, data arrives in a streaming fash-
ion: (i) the vocabulary of categorical items can change, and/or
(ii) the semantic meaning of an item can evolve. These char-
acteristics present challenges to offline predictive models.
Failure to adapt to the expanding vocabulary leads to a loss
in predictive performance, as shown in Fig. 1 – in streaming
binary classifications, new groups or sets of categorical items
occur sequentially, and incrementally modeling these new
items leads to significant accuracy improvement. This prob-
lem of expanding vocabulary is fairly common in practice:
new products are added to a grocery store (Cheng et al. 2023),
new usernames and application names appear in intrusion
detection systems (Siadati and Memon 2017; Le et al. 2022),
new patients arrive at a hospital, and so on.

More severely, which is shown in our analysis and experi-
ments below (Secs. 3.4 and 4), naively adapting to new items
while using hashing techniques is subject to catastrophic
forgetting (Kirkpatrick et al. 2017). In hash embeddings, rep-



Figure 1: On two tabular datasets, Mushroom and Adult, we
split the data into groups based on a random partition of a
categorical column’s vocabulary, such that each group has
a disjoint vocabulary. We report the results before and after
online learning on each group in the plots. The performance
gaps motivate the need to learn representations of new items.
Brackets are the columns used for splitting. Results are aver-
aged on five runs. The partition detail is in Fig. 9.

resentations of two items may share parameters, updating
one item’s embedding can adversely interfere with another,
causing an effect like the model “forgets.” Furthermore, de-
pending on the order of arrivals, the forgetting can be exac-
erbated. Consequently, hash embeddings are not yet fit for
online learning in its vanilla form.

In this paper, we employ Bayesian online learning to miti-
gate the forgetting issue. This approach is theoretically shown
to be as effective as offline batch learning, regardless of the
order in which items arrive (Opper and Winther 1999). To
implement this, we model hash embeddings as stochastic and
infer their posterior upon the arrival of new data. This ap-
proach mitigates the forgetting issue commonly encountered
in the online updating of hash embeddings.

Main Contributions: Our work proposes probabilistic
hash embeddings (PHE) with Bayesian updates to handle
dynamic vocabularies in an effective and efficient way. The
intuition behind PHE stems from its benefits in (i) efficiency,
as memory/number of model parameters is bounded and only
a small number of parameters need to be updated online (ie.,
less forgetting, see experiments), and (ii) accuracy benefits
since the Bayesian treatment provides an implicit regulariza-
tion to trade-off forgetting and adaptation while maintaining
invariance to item arrival order, without the need for specific
dataset-dependent regularization design.

We highlight PHE as a plug-in module, which can be ap-
plied to other probabilistic models such as Deep Kalman
Filters (Krishnan, Shalit, and Sontag 2015) and Neural Col-
laborative Filtering (He et al. 2017). The usage of PHE allows
those models to handle unbounded items in their application
areas in a principled way. We derive scalable variational in-
ference algorithms to learn PHE and analyze why PHE is
superior for online learning. We also derive results in explain-
ing why PHE is superior for online learning. Empirically,
our method outperforms baselines in three setups: sequential

supervised learning with new items, conditional sequence
modeling with increasing sequences and items, and a recom-
mendation system with evolving user-item interactions.

Organization: We survey related work in Sec. 2, present
PHE, derive its inference algorithm in Sec. 3 and demonstrate
PHE’s efficacy in Sec. 4 and conclude in Sec. 5. More details
and limitation discussions are in supplementary materials.

2 Related Work
Hashing trick. Weinberger et al. (2009) first proposed using
hashing to handle unbounded number of categorical items.
To improve on degradation due to hash collisions, Serrà
and Karatzoglou (2017) used bloom filters. In recent times,
Tito Svenstrup, Hansen, and Winther (2017); Cheng et al.
(2023); Coleman et al. (2024) propose a shared embeddings
across all categorical features for efficiency and using mul-
tiple hashing functions to reduce collisions. However, un-
like our method, these are deterministic and are developed
in offline learning settings. As shown in our experiments,
deterministic hashing embeddings are vulnerable to evolv-
ing vocabularies.

Continual learning. Previous continual learning meth-
ods (Kirkpatrick et al. 2017; Nguyen et al. 2018; Lopez-Paz
and Ranzato 2017) were designed for continuous-valued fea-
tures and do not address how to learn evolving categorical
ones. This only existing approach, architecture-expanding
methods (see expandabel embeddings EE in experiments)
that dynamically expand the embedding tables, leads to un-
bounded memory usage (Rusu et al. 2016; Yoon et al. 2017;
Jerfel et al. 2019). In contrast, PHE is the first to maintain
constant memory while preserving accuracy and invariance
to the order of category arrival.

Temporal and recommendation models. Temporal and
recommendation models are important applications of cat-
egorical feature embeddings. One of our application mod-
els extends Deep Kalman Filters (DKF) (Krishnan, Shalit,
and Sontag 2015) to be applicable for evolving multi-task
sequence modeling, while the original DKF assumes the vo-
cabulary of categorical features is fixed. Similarly, previous
recommendation methods (Ko et al. 2022; Shi et al. 2020b;
Kang et al. 2021; Coleman et al. 2024) assume training data
is given at once and the vocabulary of items is stationary.

Tabular data models. Categorical features exist in almost
every tabular dataset. Handling tabular data requires handling
categorical features as well. In online and continual learning
settings, deep learning-based methods have been studied in
recent years (Huang et al. 2020; Du et al. 2021; Liu, Di, and
Chen 2023). However, all of these works assume that the
vocabulary of categorical items are known and fixed up-front.
Ours is the first online learning method, even for regular tab-
ular data, that can handle increasing and unbounded items.
While Kim, Grinsztajn, and Varoquaux use string embeddings
from language models for open-vocabulary categorical/string-
valued features in an offline setting, we focus on online set-
tings. Moreover, ML applications cannot exploit representa-
tions from language models if strings are not semantically
meaningful (like an anonymized ZIP code, IP address, etc.).
We survey and discuss additional related work in Supp. D.



Figure 2: Probabilistic hash embeddings for categorical fea-
ture s. For example, s can be usernames or anonymized
strings. The whole module serves as p(Ehs).

3 Methodology
In this section, we first establish the necessary notations and
introduce our proposed probabilistic hash embedding (PHE)
module. Next, we derive an online inference algorithm for
PHE. Finally, we analyze and explain why PHE is superior
in online learning.

3.1 Notations and Problem Setup
We consider the problem of learning predictive ML models
with categorical features in an online learning environment.
We assume the model input and output dimensions are fixed
but new categorical features may occur over time.2

We denote categorical items by s ∈ S. Typically, some
features are of particular interest, and practitioners aim to
predict these using ML models based on other features. We
represent these features of interest, referred to as targets, by y.
Depending on the task, y can be either numeric or categorical.
We use the subscript i to index the i-th datum.

Hashing techniques use hash functions (e.g., MD5) to map
categorical items to hashed values. These hashed values are
then used to index rows of an embedding table. The range of
hash values is usually much smaller than the vocabulary size
of the original categorical items, thus achieving memory and
execution efficiency. In this procedure, we let h : S → N<B

be a hash function that maps a string item to a hash value.
The hash value has a pre-defined upper bound B, which is
also known as the “bucket size”. For simplicity, we use hs

to denote the hash value h(s) of an item s. The hash value
hs indexes one row in a hash embedding table E ∈ RB×d,
yielding the embedding representation Ehs

of s. We use the
same notation for both random variables and their sampled
values where the meaning should be clear from the context.

3.2 Probabilistic Hash Embeddings (PHE)
To start off, we introduce our proposed encoding module for
categorical items–probabilistic hash embeddings (PHE). A
basic PHE has two components–a fixed hash function h and
a random hash embedding table E with a prior distribution
p(E). In this work, we assume E is Gaussian with indepen-
dent entries. Given an item s, PHE looks up the hsth row of
E as its embedding Ehs

, whose distribution is p(Ehs
).

A single hash function may result in two distinct inputs
having the same hashing value, known as hash collisions,

2We also assume categorical features are single-valued, that is,
each feature is assigned with one category exactly. But our work is
compatible with multi-valued features.

resulting in undistinguished hash embeddings. For size-B
buckets, the collision probability is proportional to O(1/B).
To further reduce the collision rate, we use universal hash-
ing (Carter and Wegman 1977). Namely, instead of utilizing
one hash function, we use K hash functions with different
random seeds but the same range. Then the collision probabil-
ity can be shown to reduce to O(1/BK). Moreover, we keep
the hash embedding table E shared across K hash functions,
which keeps the model size bounded.

We now describe how PHE encodes an item s. This
procedure is illustrated in Fig. 2. With K hash functions,
a categorical feature s results in K hash values hs :=

{h(1)
s , . . . , h

(K)
s }, which in turn result in K embeddings

{E
h
(1)
s
, . . . , E

h
(K)
s

} where the k-th embedding E
h
(k)
s

is the

looked-up embedding based on the k-th hash value h
(k)
s .

The final representation Ehs
:= g(E

h
(1)
s
, . . . , E

h
(K)
s

) of s is
generated using an assemble function g : RK×d → Rd to
combine the K embeddings. Typical choices of g involve
coordinate-wise summation, average, maximum, or mini-
mum; other parametric choices of g include weighted sums
where the weights come from another parametric model. The
output of PHE is a probabilistic embedding Ehs

with distri-
bution p(Ehs

). Thanks to the shared embedding table, the
memory cost of PHE is O(Bd), independent of the number
of hash functions K.

One core ML task is to model correlations between two
variables. A common query is to ask what the probability of
observing a value of variable y is given a categorical item s,
namely p(y|s). With PHE, we can compute it as

p(y|s) = Ep(E)[p(y|E,hs)] = Ep(E)[p(y|Ehs
)] (1)

where we follow the data generating process and treat hs to
be the same as s (which holds in the absence of hash colli-
sions). In computing Eq. (1), we can employ the Monte Carlo
method to estimate the expectation. (Supp. G.1 discusses
practical implementations.) In this way, one can answer prob-
ability queries conditioned on discrete features.

3.3 Online Learning of PHE
In this subsection, we derive scalable inference algorithms
for PHE using a simple yet generic model. These algorithms
can be adapted for other model variants. We first focus on the
static setting before expanding to the online setting.

Given observations D := {(yi, si)}Ni=1 where si represent
a set of categorical features, we want to learn correlations be-
tween y and s using PHE. We assume observations are condi-
tionally independently and identically distributed (i.i.d.) (con-
ditional on E) and have likelihood p(y|Ehs).

3 PHE places
a prior p(E) over the hash embedding table E and infer the
posterior given the observations D. By Bayes rule, the pos-
terior is p(E|D) ∝ p(E)p(D|E) = p(E)

∏N
i=1 p(yi|Ehsi

),
which is often intractable with complex likelihoods, except
for a small subset of models.

Therefore, we turn to approximate inference and ap-
ply variational inference (Blei, Kucukelbir, and McAuliffe

3We use Ehs to denote the concatenation of hash embeddings
for each item if s contains more than one categorical items.



2017; Zhang et al. 2018) to learn an approximate poste-
rior by minimizing the Kullback-Leibler (KL) divergence
DKL(qλ(E)|p(E|D)) between a variational distribution and
the true posterior. We assume the variational posterior factor-
izes as qλ(E) =

∏B
b=1

∏d
j=1 qλbj

(Ebj) and qλbj
(Ebj) takes

a Gaussian form with parameters λbj := {µbj ∈ R, σbj ∈
R}. Finding the optimal variational distribution that mini-
mizes the KL divergence is equivalent to finding the corre-
sponding optimal parameters λ∗ := {λ∗

bj}. In this paper, we
also assume the prior has the same factorization as the vari-
ational posterior and each entry in the embedding table is
independent and takes a standard Gaussian with zero mean
and unit variance, ie., p(Ebj) = N (0, 1). Plugging p(E) and
qλ(E) into the KL divergence yields an objective function
L(λ) (also known as the evidence lower bound, ELBO) to be
maximized (see derivations in Supp. A):

L(λ) := Eqλ(E)

[∑N
i=1 log p(yi|Ehsi

)
]

−
∑B

b=1

∑d
j=1 DKL(qλbj

(Ebj)|p(Ebj)), (2)

where the KL divergence between two Gaussians can be
computed analytically. Minimizing the KL divergence also
serves as a regularization such that the variational posterior
should not be too far from the prior. Eq. (2) can be opti-
mized efficiently with reparametrization tricks (Rezende, Mo-
hamed, and Wierstra 2014; Kingma and Welling 2013) and
gradient-based learning algorithms. Let λ∗

0 := argmaxL(λ),
which configures the approximate posterior qλ∗

0
(E) that is

close to the true posterior in terms of DKL(qλ∗
0
(E)|P (E|D)).

The prediction on an unseen data point (ŷ, ŝ) conditional
on D is given by the predictive distribution p(ŷ|ŝ,D) =
Ep(E|D)[p(ŷ|Ehŝ

)] ≈ Eqλ∗
0
(E)[p(ŷ|Ehŝ

)].

Suppose we observe a second dataset D1 := {(yi, si)}N1
i=1

to which we would like our model to adapt and still be ef-
fective to D. Bayes rule suggests a principal online learning
iteration p(E|D1,D) ∝ p(E|D)p(D1|E) to accommodate
both datasets without storing both. We iteratively replace
the prior distribution with the previous posterior and repeat
the inference procedure for the new posterior. This iteration
assumes datasets D and D1 are conditionally i.i.d.

Variational inference produces an approximation of the
true posterior. We thus use qλ∗

0
(E) in place of p(E|D) and

infer p̃(E|D1,D) ∝ qλ∗
0
(E)p(D1|E). The inference may

again face the same intractability issue as previous iterations,
for which we resort to variational inference once more. We
set a new variational distribution qλ(E) and a KL divergence
DKL(qλ(E)|p̃(E|D1,D)) to be minimized. Rewrite the KL
divergence gives us a new ELBO (the objective function)

L(1)(λ;λ∗
0) := Eqλ(E)

[∑N1

i=1 log p(yi|Ehsi
)
]

−
∑B

b=1

∑d
j=1 DKL(qλbj

(Ebj)|qλ∗
0,bj

(Ebj)). (3)

Comparing to Eq. (2), the original prior p(E) of E is re-
placed with qλ∗

0
(E). Upon optimization convergence, the

new optimal variational distribution is an approximate pos-
terior given both datasets (D and D1). When new datasets

arrive in the future, we repeat the above online learning itera-
tion to accommodate new datasets. Although this procedure
bears resemblance to traditional continual learning (Wang
et al. 2023; Nguyen et al. 2018; Li et al. 2021), is different
since we focus on changing discrete items. When an ML task
is specified, we can readily plug in the specified likelihood
model into Eqs. (2) and (3) and optimize.

Variational EM. Most expressive models contain learn-
able parameters θ in their likelihood pθ(y|Ehs

). One needs to
learn θ in addition to inferring the posterior of E. Fortunately,
a minor modification in our previous derived objective func-
tions (Eqs. (2) and (3)) can achieve this. We replace p(y|Ehs

)
with the parametric one pθ(y|Ehs

) and maximize L(λ, θ)
with respect to {λ, θ}. These new objective functions are vi-
able and correspond to variational EM algorithms (Rezende,
Mohamed, and Wierstra 2014; Kingma and Welling 2013),
for which we provide proofs in Supp. A.3. Let {λ∗

0, θ
∗} max-

imize the modified Eq. (2) L(λ, θ). During online learning,
we fix both θ∗, λ∗

0 in the modified objective function Eq. (3)
L(1)(λ;λ∗

0, θ
∗) for efficiently online updating the belief of

hash embeddings (assuming changing categorical features).
Benefits of PHE in online learning. In data streaming or

continual learning setup, PHE has natural benefits in reduc-
ing catastrophic forgetting: 1) only a few embeddings need
to be updated online. This sparse updating scheme seldom
affects other item representations, thus having less forgetting
and more computing efficiency. 2) The online updates ap-
ply Bayesian online learning, in which the prior distribution
serves as a regularization of previous knowledge that also
reduces forgetting. Although continually expanding the em-
bedding table with rows for new items typically improves
accuracy, it comes at a cost. A larger embedding table re-
quires more resources to deploy, reduces memory efficiency,
and slows down execution. In contrast, PHE’s memory/stor-
age cost is bounded and does not increase with the number
of distinct categorical values.

3.4 Why is PHE superior for online learning?
We showcase the benefits of PHE with Bayesian online learn-
ing: 1) It is equivalent to batch learning where all data are
available at once. 2) This equivalence is independent of the
data arrival order.

Given a dataset D = {(yi, si)}Ni=1 and a prior over E. As-
sume data points are conditionally i.i.d. and have likelihood∏N

i=1 p(yi|E, si). The posterior obtained from Bayesian
batch learning (where we assume the whole dataset is avail-
able at once) is pbatch(E|D) ∝ p(E)

∏N
i=1 p(yi|E, si).

Now, suppose π=(π1, . . . , πN ) is any permutation of the
sequence (1, . . . , N), and let data in D arrive sequentially
per the order π in an online learning setup. Let Dπ denote the
dataset that has the arrival order of π. Suppose the posterior
obtained by Bayesian online learning is p(E|Dπ).

Proposition 3.1. For every permutation π, the posterior
pbatch(E|D) = p(E|Dπ) almost-everywhere.

We provide the proof in Supp. B. Prop. 3.1 shows Bayesian
online learning has the same power as Bayesian batch learn-
ing irrespective of the data arrival order.



However, for point estimation, such as maximum likeli-
hood estimation, in order to achieve the same optimality as
offline batch learning, an online learning algorithm has to be
carefully designed and has to have a sophisticated learning
rate schedule (Opper and Winther 1999; Orabona 2019).

Demo. To demonstrate Prop. 3.1, we design a simple on-
line learning experiment involving two categorical items that
arrive alternately. Each item is repeated ten times before
the other one arrives. Each item is associated with a target
value, and we use both traditional deterministic hash em-
beddings and PHE to learn these two values in an online
fashion. We plot the results in Fig. 5 in Supp. F. The results
show that while deterministic hash embeddings with a popu-
lar online learning algorithm incur large prediction errors on
recurrent items, PHE makes much more accurate predictions,
corroborating Prop. 3.1. Detailed settings and error analysis
in Supp. F show that the forgetting phenomenon seen in tradi-
tional hash embeddings is caused by parameter interference,
and that PHE alleviates the forgetting issue through adaptive
regularization of the updated beliefs of hash embeddings.

Practical implementation Prop. 3.1 holds true for exact
Bayesian inference, while our real-world data experiments
utilize variational inference (VI) for approximate inference.
There are approximation gaps (e.g., mean-field approxima-
tion), optimization gaps, and amortization gaps between VI
and exact inference. In fact, we use Bayesian inference as
a guide, and our experiments conform to the expectations.
Secondly, unlike Bayesian neural networks that take long
time to converge, PHE has sparse gradient updates and con-
verges much faster. This is because PHE can be set to update
only the embedding module while freezing other network
parameters. Since each item activates at most K embeddings,
by assuming independent embedding slots, the gradient up-
dates on the embedding table are essentially sparse and data
efficient. The elapsed time can be found in Sec. F.2.

4 Experiments
In this section, we conduct experiments to demonstrate the
efficacy and memory efficiency of PHE in online learning
settings where categorical features change. As follows, we
introduce experimental protocols in Sec. 4.1. We then show-
case the broad applicability of PHE as a plug-in module for
a spectrum of models - both deterministic and probabilistic
- and benchmark it against baselines in classification, multi-
task sequence modeling, and recommendation systems in
Secs. 4.2 to 4.4. Additional experiments and experimental
settings are put in Sec. 4.5 and Supp. G. All results show that
PHE outperforms its deterministic counterpart and performs
similarly to the upper-bound collision-free embeddings in
various domains and applications.

4.1 Experimental Protocols and Baselines
Experimental settings. We conducted our experiments using
public datasets that contain categorical features and simulated
them in data streaming environments where data points arrive
sequentially. Our goal is to mimic practical settings where 1)
new feature items can emerge and need to be learned, and 2)
seen items can recur and need to be remembered.

Upon each data arrival, we conducted three operations in
order: predict, evaluate, and update (embeddings). We report
sequential results in plots and overall averaged results in
tables. We repeated all experiments five times with different
parameter initialization while keeping other settings fixed.

Baselines. Our work is the first work to handle open vocab-
ulary in online dynamic environments. Appropriate baselines
require handling both unbounded feature items and online
updates simultaneously. To construct baselines for our setup,
we need to combine existing embedding methods designed
for offline inference with online updating techniques.

For embedding baselines, we use both hash embeddings
(Ada) and collision-free expandable embeddings (EE). While
EE is not desirable in practice due to its unbounded memory
requirements and slow-down execution, we include it as a
baseline to understand the performance gap (if any) resulting
from our method’s memory efficiency. We also implement
a probabilistic version of EE, which we refer to as P-EE, to
mitigate potential overfitting through Bayesian treatment.

For Ada, we choose fine-tuning as the online learning strat-
egy, but vary the hyperparameter-training epoch-to give many
candidates. We select different training epochs to account for
various distribution shifts: FastAda assumes shifts are rapid
while SlowAda assumes shifts happen slowly, and MedAda
is in between. At each time step, FastAda trains 15 epochs
as EE, while Med/SlowAda reduce training epochs to five
and one, respectively. For all Ada baselines, we use the same
learning rate as EE. We maintain this protocol across all
applications to highlight the robustness of our method.

Training protocols. For all methods, we search hyperpa-
rameters on a validation set for each application. We test three
training epochs (Fast/Medium/Slow) for Ada baselines and
report the best results, giving them a competitive advantage.
In all experiments, we employ a single shared hash embed-
ding table (Coleman et al. 2024) for all categorical features.
During online learning, we update only the hash embedding
table while freezing all other model parameters, which were
learned on an initial dataset. To determine the hash embed-
ding table size, We selected K = 3 and a prime number B
to support 10 times the expected size of the total vocabulary
(where all tabular datasets use B = 7, the Retail dataset uses
B = 109, and the MovieLens dataset uses B = 10009).

4.2 Application 1: Classification
We apply PHE to online learning classification tasks on four
public datasets from scientific domains.

Methods. We now specify the likelihood model for clas-
sification tasks. Throughout the four datasets in use, we
assume classification target variables follow categorical
distributions and have a likelihood function pθ(y|s,x) =
Cat(K, softmax(θ⊤[x, Ehs ])) where x are numeric features.
This likelihood is then plugged into Eqs. (2) and (3).

Datasets. We apply four public static tabular datasets that
are available in UCI Machine Learning Repository: Adult,
Bank, Mushroom, and Covertype. These datasets contain a
mixture of discrete and continuous columns and are collected
for classification problems in various domains. For training
stability, we normalized all continuous columns.



Table 1: Online learning results on all datasets. Adult, Bank, Mushroom, and Covertype are classification tasks evaluated by
average accuracy, the larger the better. Retail and MovieLens-32M use mean absolute error, lower the better. All results are
multiplied by 100 except Retail for visual clarity. PHE achieves the best performance among all hash embedding-based methods.
We also include the compression ratios of PHE with respect to P-EE, which are computed by dividing the number of embedding
parameters of PHE by the one of P-EE. (See details in Tab. 4 and Supp. G.6.) Notably, PHE takes as low as 2% memory of P-EE.

Hash Embedding Collision-Free Embedding

SlowAda MediumAda FastAda PHE (ours) Compression Ratio of PHE EE P-EE

Adult (↑) 82.2 ± 0.7 74.8 ± 4.5 71.1 ± 4.0 84.1 ± 0.2 0.09 84.2 ± 0.0 84.8 ± 0.0
Bank (↑) 89.7 ± 0.1 89.0 ± 0.9 86.9 ± 1.6 89.6 ± 0.0 0.2 90.0 ± 0.0 90.1 ± 0.0
Mushroom (↑) 97.7 ± 0.7 97.9 ± 0.5 98.3 ± 0.3 98.8 ± 0.0 0.62 98.8 ± 0.0 98.8 ± 0.0
CoverType (↑) 63.5 ± 0.5 59.1 ± 1.2 55.3 ± 1.2 64.3 ± 0.2 0.2 64.3 ± 0.1 64.0 ± 0.4
Retail (↓) 49.1±82.9 22.7±20.3 - 3.0±0.2 0.02 3.7±0.1 3.2±0.4
MovieLens (↓) 15.3±0.1 15.1±0.1 15.1±0.1 14.7±0.0 0.04 15.1±0.0 14.7±0.0

Figure 3: (left) Online classification results on Adult tabular data streams. In the parentheses is the column whose items
embeddings get updated. The Ada results show a downward trend although there are no new items to learn, suggesting the
deterministic hash embeddings suffer from forgetting during the learning. In contrast, the proposed PHE mitigates the forgetting
issue and keeps performing as good as the upper-bound method P-EE. Other datasets in Fig. 6 in Supp. G.3 show similar
conclusions. (right) Results of sequence modeling on Retail data-streams. It shows that PHE outperforms all Ada baselines
that are sensitive to their optimization hyperparameters. Moreover, it is remarkable to note that PHE performs slightly better than
the collision-free P-EE baseline, especially considering PHE consumes only 2% of the memory of P-EE.

Experimental setups. To simulate the data-streaming
setup, at each step we present a randomly sampled data mini-
batch to the model and evaluate the online learning perfor-
mance. We require only one column’s item embeddings be
updated, mimicking that column has a changing vocabulary.
Besides, we initialize the model (both embeddings and neural
network weights) with a separate random portion of the data.

Results. We reported the data-streaming online classifica-
tion accuracy in Fig. 3 (left) and Fig. 6 in supplement. The
facts that 1) any items seen during online learning have been
learned at the initialization and that 2) the accuracy curves
of Ada methods have a downward trend suggest hash embed-
dings suffers from forgetting. In fact, the forgetting is caused
by parameter interference in shared hash embeddings: sup-
pose items A and B share parameters in the hash embedding
table, then updating A’s embedding affect B’s embedding.

We further reported an overall averaged accuracy in Tab. 1.
The results show that our proposed PHE performs similarly
with the upper-bound collision-free embeddings (EE), and
the gap between PHE and all other deterministic counterparts
proves the effectiveness of PHE in online learning. Besides,
PHE is more stable and has a smaller variance. Notably, PHE
applies the same set of hyperparameters and outperforms all
Ada baselines across all datasets. The varying performances
of the Ada baselines highlight the importance and sensitivity
of hyperparameter tuning for deterministic hash embeddings.
In contrast, the only demand of our method is to train the
model until convergence–a simpler optimization criterion.

Lastly, as summarized in Tabs. 1 and 4, PHE consumes no-
ticeably lower memory than P-EE.

4.3 Application 2: Multi-Task Sequence Modeling

Sequence models can exploit temporal correlations among
observations to make predictions based on histories. We now
switch to a more sophisticated multi-task sequence modeling
problem where each task has its own sequential characteris-
tics, and we aim to personalize the sequence model for each
task. Sequential Tasks are identified by categorical features.

Methods. We model sequences using deep Kalman fil-
ters (DKF) (Krishnan, Shalit, and Sontag 2015), which are
latent variable models and can handle uncertainties and non-
stationary processes. In sequence data, we have an additional
timestamp feature t. We model the dependency between
neighboring data points by a latent time variable z. Specifi-
cally, we assume z is Gaussian distributed and follows the dis-
tribution p(zi|zi−1,∆i; θz) = N (zi|fθz (zi−1,∆i)) where
fθz := {µθz ,Σθz} is a multi-layer perceptron that outputs
mean and covariance of zi. ∆i is the difference in timestamp
between the i-th and i − 1-th observations. We assume the
conditional likelihood model is p(yi|xi, Ehsi

, zi), which is a
parametric Poisson distribution.

In the above model, we need to infer the posteriors
of E and z. We assume the variational posterior distri-
bution factorizes as qλ,ϕ(E, z≤N |x≤N ,y≤N ,hs≤N

) =

qλ(E)
∏N

i=1 qϕ(zi|x≤i,y≤i, Ehs≤i
) where qλ(E) is



the same as before and qϕ(zi|x≤i,y≤i, Ehs≤i
) is a

Gaussian with diagonal covariance implemented as a
recurrent neural network with parameters ϕ. Concretely,
we use gated recurrent unit (GRU) (Chung et al. 2014).
We repeat the KL divergence minimization derivation
procedure to obtain the following ELBO objective
function L(θ, λ, ϕ) := Eqλ(E)

[∑N
i=1 Li(θ, ϕ|E)

]
−

DKL(qλ(E)|p(E)) where Li(θ, ϕ|E) is the con-
ditional ELBO of the i-th data’s log-likelihood
Li(θ, ϕ|E) := Eqϕ(zi)[log p(yi|zi,xi, Ehsi

; θy)] −
Eqϕ(zi−1)[DKL(qϕ(zi)|p(zi|zi−1; θz))]. We provide the full
derivation of these ELBOs in Supp. A. After learning the
initial dataset, we will fix all model parameters except the
hash embedding table E in learning future datasets.

Datasets. We apply a public large-scale time-stamped tab-
ular dataset, Retail. A snippet of this dataset can be found in
Tab. 3. This dataset records all online transactions between
01/12/2010 and 09/12/2011 in a retail store. There are over
4,000 products and over 540K time-stamped invoice records
in total. The task is to predict the sales for each product
shown in each invoice given the product’s historical sales.

Experimental setups. We use the first three month data
to initialize the model. Then we make predictions on a daily
basis following the invoice timestamp. And at each step, we
predict the sales quantity for each product on invoices based
on their sale history. After that, we will receive the prediction
error and use it to update the product embeddings. We use
mean absolute errors for evaluation (see Supp. G.4).

Results. Fig. 3 (right) shows the running performance
(smoothed by a 1-D Gaussian filter): the Ada-family base-
lines favor shorter optimization time for Retail, as long op-
timization time like FastAda explodes after 50 days. (The
error bar is omitted as it is too large to be meaningful.) On
the other hand, PHE has lower error and is stable across
all learning steps. Remarkably, on the average performance
in Tab. 1, PHE significantly outperforms all baselines, in-
cluding collision-free P-EE with only 2% memory usage.
One possible reason is that P-EE initializes new embeddings
from scratch and thus gets slow in warm-up, while PHE uses
shared parameters from initial training. Similar observations
also occur in the continual learning setup (see Fig. 11 and
Tab. 5 in Supp. G.4). and the recommendation task below.

4.4 Application 3: Large-Scale Recommendation
Large-scale recommendation systems have seen quite a bit
of change in categorical features. For example, new users
or movies (categorical items) reach a streaming service, the
recommender needs to incorporate them and make recom-
mendations. We now demonstrate how PHE can assist rec-
ommendation systems in online learning.

Methods. We treat the recommendation problem as a rat-
ing prediction problem, where the task is predicting the rating
a user gives to a movie. We combine PHE and Neural Col-
laborative Filtering (He et al. 2017) as the backbone model.
We assume all ratings are iid Gaussian distributed condi-
tioned on user, movie, and movie-genre embeddings. And
we model user and movie embeddings through PHE, de-
noted by Ehu

and Ehm
, while movie-genres are encoded

as multi-hot embeddings denoted by x. Then the likeli-
hood is pθ(y|Ehu , Ehm ,x) with learnable parameters θ. θ
are the weights of a two-layer neural network. We model
the mean of y as the network output conditioned on input
[Ehu

, Ehm
, Ehu

⊙ Ehm
,x].

Datasets. We apply the largest MovieLens-32m (Harper
and Konstan 2015) which contains 32 million ratings across
over 87k movies and 200k users. These data were recorded
between 1/9/1995 and 10/12/2023 for about 28 years.
Each piece of data is a tuple of (userId, movieId,
rating, timestamp), recording when and which rat-
ing a user gave a movie. Ratings range from 0 to 5 stars with
half-star increments.

Experimental setups. In implementation, ratings are nor-
malized to [0, 1] and are taken to be continuous albeit their
increments are discrete. We simulate the experiment as in pro-
duction – online prediction along the timestamp. The model
is pre-trained on the first five years of data and then perform
predict-update online learning on a daily basis. In this setup,
both forgetting and adaptation in the hash embeddings are
measured: the model should avoid forgetting for recurring
users/movies and adapt for new users/movies. Prediction
error is evaluated by mean absolute error.

Results. The results of all compared methods are shown
in Fig. 6 in supplement and the memory efficiency of PHE
is reported in Tabs. 1 and 4. It shows that PHE outperforms
all deterministic hash embedding baselines (Fast/Medium/S-
lowAda) that have various forgetting-adaptation trade-offs.
PHE also significantly outperforms the collision-free P-EE
baseline. This is remarkable considering PHE consumes only
4% of the memory of P-EE. EE, the deterministic version of
P-EE, has worse performance, possibly due to overfitting.

4.5 Additional Results
We conducted additional experiments and presented the re-
sults in Supp. G.6. We showcased additional motivating exam-
ples beside Fig. 1; demonstrated the memory and hardware
efficiency of PHE in Tab. 4; analyzed adaptation and for-
getting separately in Fig. 10; investigated classification and
sequence modeling in classical continual learning setup
in Fig. 11; performed ablation studies on the hash size B,
the number of hash functions K, compared multiple update
schemes, and the performance of double-size Ada baselines.

5 Conclusions
In this work we unveiled the ineffectiveness of hash em-
beddings in online learning of categorical features. We pro-
posed probabilistic hash embeddings (PHE) and addressed
the problem of online learning. We showcased PHE is a plug-
in module for multiple ML models in various domains and
applications, allowing these models to learn categorical fea-
tures in a streaming fashion. We derive scalable inference
algorithms to simultaneously learn the model parameters and
infer the latent embeddings. Through Bayesian online learn-
ing, the model is able to adapt to new vocabularies without
additional hyperparameters in a changing environment. We
benchmark PHE and baselines on large-scale public datasets
to demonstrate the efficacy of our method.
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Figure 4: A graphical model of a temporal sequence with PHE. The changing categorical values are contained in hs.

A Evidence Lower Bounds
A.1 Variational inference as KL divergence minimization

min
q

DKL(qλ(E)|p(E|D)) (4)

=min
q

Eqλ(E)[log qλ(E)− log p(E|D)] (5)

=min
q

Eqλ(E)[log qλ(E)− log p(E)− log p(D|E) + log p(D)] (6)

=max
q

Eqλ(E)[log p(D|E)]−DKL(qλ(E)|p(E)) (7)

=max
λ

L(λ) (8)

A.2 Derivation of L(θ, λ, ϕ) in Sec. 4.3
The data generating process is summarized in Fig. 4. We denote the model parameters relevant to the generating process by
θ := {θz, θy}. To learn the model parameters, we maximize the marginal likelihood p(y≤N |x≤N ,hs≤N

; θ). Directly optimizing
this marginal likelihood with the Expectation-Maximization (EM) algorithm is intractable. Therefore, we jointly learn the model
parameters θ and infer the variational posteriors of latent variables {E, z≤N} using the variational EM algorithm. That is, we
maximize the evidence lower bound (ELBO) L(θ, λ, ϕ) with respect to model parameters θ and variational parameters {λ, ϕ}.

Denote all the history {x≤i,y≤i, Ehs≤i
} until row i by Oi. We find the optimal parameters by maximizing the marginal

evidence p(y≤N |x≤N ,hs≤N
; θ). We take the logarithm of marginal evidence

log p(y≤N |x≤N ,hs≤N
; θ) (9)

= log

∫
p(y≤N , E|x≤N ,hs≤N

; θ)

qλ(E)
qλ(E)dE (10)

≥ Eqλ(E)[log p(y≤N , E|x≤N ,hs≤N
; θ)− log qλ(E)] (11)

= Eqλ(E)[log p(y≤N |x≤N , Ehs≤N
; θ)]−DKL(qλ(E)|p(E)) (12)

where the inequality follows from Jensen’s inequality. Next, we apply the same trick for another time to find a lower bound of
Eq. (12). Specifically, we will find a tractable lower bound to the conditional likelihood log p(y≤N |x≤N , Ehs≤N

; θ).

In the filtering setup, we note that log p(y≤N |x≤N , Ehs≤N
; θ) =

∑N
i=1 log p(yi|y<i,x≤i, Ehs≤i

; θ). If we can find a
lower bound for each log p(yi|y<i,x≤i, Ehs≤i

; θ), then the summation of the lower bounds is also a valid lower bound for
log p(y≤N |x≤N , Ehs≤N

; θ).

log p(yi|y<i,x≤i, Ehs≤i
; θ) (13)

= log

∫ p(yi, zi|y<i,x≤i, Ehs≤i
; θ)

qϕ(zi|Oi)
qϕ(zi|Oi)dzi (14)

≥ Eqϕ(zi|Oi)[log p(yi|y<i,x≤i, Ehs≤i
, zi; θ)]−DKL(qϕ(zi|Oi)|p(zi|Oi−1)) (15)

≥ Eqϕ(zi|Oi)[log p(yi|y<i,x≤i, Ehs≤i
, zi; θ)]− Eq(zi−1|Oi−1)DKL(qϕ(zi|Oi)|p(zi|zi−1; θz)) (16)

Eq. (15) to Eq. (16) follows from the following inequality:

DKL(qϕ(zi|Oi)|p(zi|Oi−1)) ≤ Eq(zi−1|Oi−1)DKL(qϕ(zi|Oi)|p(zi|zi−1; θz)) (17)



because

DKL(qϕ(zi|Oi)|p(zi|Oi−1)) (18)
= Eqϕ(zi|Oi)[log qϕ(zi|Oi)− log p(zi|Oi−1)] (19)

= Eqϕ(zi|Oi)

[
log qϕ(zi|Oi)− logEq(zi−1|Oi−1)[p(zi|zi−1; θz)]

]
(20)

≤ Eqϕ(zi|Oi)

[
log qϕ(zi|Oi)− Eq(zi−1|Oi−1)[log p(zi|zi−1; θz)]

]
(21)

= Eq(zi−1|Oi−1)qϕ(zi|Oi)[log qϕ(zi|Oi)− log p(zi|zi−1; θz)] (22)

= Eq(zi−1|Oi−1)DKL(qϕ(zi|Oi)|p(zi|zi−1; θz)). (23)

Then Eq. (16) is the conditional ELBO Li(θ, ϕ|E) in Sec. 4.3. Plug Eq. (16) in Eq. (12), we have

Eqλ(E)[log p(y≤N |x≤N , Ehs≤N
; θ)]−DKL(qλ(E)|p(E)) (24)

≥ Eqλ(E)

[
N∑
i=1

Li(θ, ϕ|E)

]
−DKL(qλ(E)|p(E)) (25)

which is our objective function L(θ, ϕ, λ) in Sec. 4.3.

A.3 L(θ, ϕ, λ) as a Variational EM Algorithm
Why is maximizing L(θ, ϕ, λ) a meaningful objective as a variational expectation-maximization algorithm? We start with a
general latent variable model pθ(x, z) = p(z)pθ(x|z) and infer the posterior pθ(z|x).

DKL(qλ(z)|pθ(z|x))
:= Eqλ(z)[log qλ(z)− log pθ(z|x)]
= Eqλ(z)[log qλ(z)− log pθ(x, z) + log pθ(x)]

= − L(λ, θ) + log pθ(x)

Re-ordering the equation yields

L(λ, θ) = log pθ(x)−DKL(qλ(z)|pθ(z|x)),

which shows that maximizing the ELBO L(λ, θ) is equivalent to both maximizing the marginal likelihood pθ(x) and minimizing
the inference gap DKL(qλ(z)|pθ(z|x)).

Then, with the same procedure as above, two facts follow: 1) maximizing Li(θ, ϕ|E) is equivalent to maximizing the
conditional likelihood log p(yi|y<i,x≤i, Ehs≤i

; θ) and minimizing the inference gap DKL(qϕ(zi|Oi)|p(zi|Oi; θ)) simulta-
neously; 2) maximizing Eq. (12) is equivalent to maximizing log p(y≤N |x≤N ,hs≤N

; θ) and minimizing the inference gap
DKL(qλ(E)|p(E|y≤N ,x≤N ,hs≤N

; θ)) simultaneously. Since maximizing L(θ, ϕ, λ) optimizes both Li(θ, ϕ|E) and Eq. (12),
we conclude our objective function will optimize all the mentioned aspects above.

A.4 Derivation of L(1)(λ; θ∗, λ∗
0, ϕ

∗) in Sec. 4.3
We only adapt the probabilistic hash embedding E. Similar to Bayesian online learning where the previous posterior is used as
the new prior, we use the previous approximate posterior qλ∗

0
(E) as the new prior for dataset D1 and fix all the other model

parameters θ∗, ϕ∗. The derivation is the same as the one for Eq. (12) except we replace p(E) with qλ∗
0
(E). We only update λ to

acquire the new posterior in the optimization.

B Proof of Theorem 3.1
Proof. The proof is simple and based on repetitive applications of Bayes rule. Let Dπi

denote the subset of data arrived before
(and includes) πi. We assume the data arrive one by one and we cannot store previous data.

p(E|DπN
) ∝ p(E|DπN−1

)p(yπN
|E, sπN

)

∝ p(E|DπN−2
)p(yπN

|E, sπN
)p(yπN−1

|E, sπN−1
)

...

∝ p(E)

N∏
i=1

p(yπi
|E, sπi

)

Because
∏N

i=1 p(yπi
|E, sπi

) =
∏N

i=1 p(yi|E, si), we conclude p(E|DπN
) is the same as pbatch(E|D).



C Limitation
We discuss two limitations in this study. 1) The need to pre-specify embedding parameters K and B can limit model adaptability
if actual category counts exceed expectations (though this can be mitigated through retraining or adding a forgetting mechanism
to KL term in Eq. (3); 2) Restricting updates to embeddings E while fixing network parameters θ may speed up the consumption
of E under strong distribution shifts, blocking new learnings and forgetting old. Meanwhile, Our ablation in Tab. 6 suggests that
updating θ requires more sophisticated strategies to prevent forgetting.

D Related work

D0 D1 D2 D3 D4

Changing vocabulary " " "

Timestamped " " "

Multi-task "

Table 2: Tabular datasets can be categorized into five categories (D0 − D4) based on combinations of three characteristics,
i.e., whether their categorical feature vocabulary dynamically expands over time, whether they contain a specific timestamp
column, and whether their nature is multi-task. For example, datasets without all these characteristics are considered static (D0).
While existing works mainly consider D0 and D1, PHE fits all dataset types (D0−D4) and specifically highlights the unique
applicability for dynamic and temporal tabular data types (D1−D4).

We extend the discussion in Sec. 2 and survey more related works. In a nutshell, our PHE applies to all tabular data types in
Tab. 2 (i.e., D0−D4) while existing works are targeted to D0 or D1.

Our work deals with multi-task dynamic temporal tabular data. Our method has two major components: the probabilistic hash
embeddings that learn categorical feature representations and the latent variable model for multi-task temporal tabular data. Next,
we discuss the main related works.

Hash features. PHE is motivated by hashing tricks. Weinberger et al. (2009) proposed to use one hash function to map
categorical features to a one-hot hash embedding of length B, which is the bucket size. The drawback is the embedding size
is too large because there is only one hash function and that requires a large bucket size B to get rid of collision. Bloom
Embeddings (Serrà and Karatzoglou 2017) is based on Bloom filters and achieves efficient computation while maintaining
a compact model size. Other previous work on using hashing tricks to generate features focuses on using a smaller number
of embedding-related parameters to achieve the same performance as using one-hot encoding. Hash embeddings or unified
embeddings (Tito Svenstrup, Hansen, and Winther 2017; Cheng et al. 2023) use a shared embedding table for all categorical
features and multiple hashing functions as indices of the embedding table, reducing the possibility of collision. Hash embeddings
are designed for stationary vocabularies, emphasizing small parameter sizes. We generalize hash embeddings to a probabilistic
version that enables us to learn changing vocabularies via Bayesian online learning. Composition Embeddings (Shi et al. 2020a)
use multiple hash embedding tables; in contrast, PHE uses one shared embedding table, further reducing the memory cost.
Wolpertinger (Dulac-Arnold et al. 2015) and Deep Hash embedding (Kang et al. 2021) use a deep neural network to encode
features into real-valued embeddings. In a changing vocabulary setup, the drawback is the need to modify the whole neural
network to incorporate new string features, even though there is only one new feature. Different from previous works, our method
emphasizes the usage of hash embeddings in dynamic tabular data with changing vocabularies. In the meantime, the model
architecture remains stable, and only partial parameter updates are required.

Generative models for tabular data. Recent research on generative models of non-temporal tabular data focuses on modeling
multi-modality or heterogeneity but overlooks the sustainable representations for dynamically expanded vocabularies. These
works rely on one-hot encoding for categorical features. Xu et al. (2019) learns VAE and GAN-based tabular data generator
while conditioning on discrete categorical features. Later works rely on GAN to design tabular data generators (Liu et al. 2023;
Zhao et al. 2021). Kotelnikov et al. (2023) extend diffusion models to tabular data.

Temporal tabular data models. To our knowledge, there isn’t a sequence model designed for multi-task temporal tabular
data, although some previous works have the potential to extend to tabular data. PHE extends Deep Kalman Filters (Krishnan,
Shalit, and Sontag 2015) to be applicable for multi-task, temporal, and dynamic tabular data, while the original Deep Kalman
Filters do not explicitly consider the multi-task and dynamic vocabulary property of the tabular data. Girin et al. (2021) survey a
list of latent variable sequence models that are possible to be extended to tabular data, although most of them are designed for
speech or video data.

Others. The setup of learning dynamic tabular data with changing vocabularies shares the similarity to continual learning and
Bayesian online learning (Kirkpatrick et al. 2017; Wang et al. 2023; Zenke, Poole, and Ganguli 2017; Nguyen et al. 2018; Li
et al. 2021), but the difference is our formulation is a novel dictionary- or vocabulary-incremental setup for tabular data. Besides,
Kireev et al. (2023) learn transferable robust embeddings for categorical features. Yin et al. (2020); Iida et al. (2021) design



Table 3: A tabular data snippet from the Retail dataset. The columns are either categorical, numeric, or timestamp. The rows
corresponds to sale records. StockCode stores product ID. Quantity stores the sales. “?” denotes missing values. The task
is to predict the sales for each product.

StockCode Date UnitPrice CustomerID Country Quantity

85123A 2010-12-01 08:26:00 2.55 17850 United Kingdom 6
84406B 2010-12-01 08:26:00 2.75 17850 United Kingdom 6
21724 2010-12-01 08:45:00 0.85 12583 France 12
21791 2010-12-01 10:03:00 1.25 12431 Australia 12
22139 2010-12-01 11:52:00 0.55 ? United Kingdom 56

objective functions for representation learning on tabular data using large-language models. Arik and Pfister (2021) and Huang
et al. (2020) use the one-hot encoder to learn categorical feature embeddings before input to a transformer module.

Discussions on alternative designs and shortcomings. We acknowledge that alternative solutions may exist, e.g., encoding
string features with a character-level recurrent neural network or using a popularity-based token-level one-hot encoder. In our
considered aspects, for example, long-tailed data distributions are commonly seen in applications, probabilistic hash embedding
stands out with simplility and continual learning capability. Hash features (Weinberger et al. 2009; Cheng et al. 2023) is memory
inefficient. Incremental one-hot embeddings are also inefficient for dynamic tabular data, because the model parameters expand
unbounded, resulting in storage inefficient and slow computation. Deep hash embedding (Kang et al. 2021) and other methods
in the same fashion are computationally inefficient. One needs to adapt the whole neural network even when adding one new
category. In contrast, one only needs to adapt the corresponding embeddings in probabilistic hash embedding.

Handling hashing value collisions. Collision of hash values could happen among popular, important categories. To address
this issue, we can select the desired hash functions that avoid important collisions before applying the hash functions. In addition,
users come and go fast, and collisions may become unimportant over time.

E An example tabular data of changing categorical features
We will explain the concepts related to this work through an example tabular data snippet (Tab. 3). Tabular data contains two
dimensions–rows and columns. Any stored information can be located by specifying the row and column indices. We can
classify columns into three types: categorical, numeric, and timestamp. A categorical column represents a discrete nominal
feature, usually recorded in text strings and therefore hashable; A numeric column corresponds to a numeric feature, usually
represented by float or integer values; and a timestamp column records the timestamp when a row is created. For instance, in
Tab. 3, there are six columns, among which StockCode, CustomerID, and Country are categorical columns, UnitPrice
and Quantity are numeric columns, and Date is a timestamp column. Some columns are of particular interest and one
may want to predict those based on others. We refer to those columns as predicted columns. Predicted columns can be either
categorical or numeric, depending on task requirements. Rows with similar timestamps usually exhibit correlations. But these
correlations may change over time.

Some tabular data is multi-task-oriented. For example, in Tab. 3, one may be interested in predicting future selling quantity
based on historical transactions for each product. In this case, different product IDs in StockCode suggest different tasks. We
refer to the categorical columns consisting of task identifiers as global columns and other categorical columns as local columns.
We express this type of tabular data multi-task. Each task may have specific column relationships.

All unique items in a categorical column constitute its vocabulary. When new items join into the column, we say it has a
changing or dynamic vocabulary. 4

F A simple example to understand why PHE is superior to DHE
In this section, we consider a simple linear Gaussian model that we can analyze in closed form to illustrate why having
deterministic hash embeddings that are updated in an online fashion is prone to forgetting. The crux of our calculations is the fact
that distinct categorical items share representations due to partial hash collisions. Thus, when trained online, the shared features
shows a bias to work well for the categorical item that was most recently seen, rather than be optimized for the overall data
distribution seen so far, leading to the forgetting behaviour. However, we will show that Bayesian hash embedding does not
suffer this, because it is well known that if exact online posterior can be computed (which in our linear Gaussian setup is easy to
do), the online posterior is identical to the offline one.5

A simple linear-Gaussian model

4We assume the tabular structure is fixed, i.e., the number of columns, column names, and types are fixed. We also assume categorical
features are single-valued. But our work is compatible with multi-valued features.

5Note that this section has a slightly different notation from the main text, but the content is self-contained. Readers can also match the
notation by noting X := m and the input variable value has 0 := m0 and 1 := m1.



Figure 5: Forgetting in online learning using deterministic hash embedding on synthetic data. (The complete setting is described
in Sec. 3.4.) The task is predicting a scalar (regression problem) with the covariate being a categorical variable that takes one of
two values of m0 or m1. a) shows the embedding matrix E of size 3× 1. Here the number of buckets B = 3 and d = 1. The
two hash function maps m0 to 0 and 1 respectively and maps m1 to 1 and 2 respectively. b) shows the online samples where the
covariate alternates between m0 and m1 and the corresponding target y(mi) takes values in 1 and −1. c) shows the prediction
of a probabilistic hash embedding table (blue) trained using Bayesian online learning and a deterministic hash embedding (DHE)
table (yellow) trained using online gradient descent. d) plots the prediction error. From these figures we observe that PHE’s
prediction error converges to 0 much quicker than DHE. After every 20 samples when the covariate changes, there is a big jump
in DHE error, exhibiting forgetting while the PHE has no error spikes after it has encountered both the categorical values.

Consider a simple situation of regression with input variable X ∈ {0, 1} taking one of two categorical values and the target
Y ∈ R is real-valued. The conditional distribution of Y is a gaussian distribution with the mean being 1 when X = 0 and mean
being −1 when X = 1. We further assume that the variance of Y is σ2 ≈ 0 is tiny, In notation terms, the true distribution of
Y |X = 0 ∼ N (1, σ2), while the distribution of Y |X = 1 ∼ N (−1, σ2), where σ is a fixed and small. We do not specify the
distribution of the covariate X just yet and defer that to the sequel.

The predictive model based on hash embedding
Given labeled data (X,Y ), we aim to learn a predictor f(X) that predicts Y given X . To build the predictor we use a

simple hash embedding model. Specifically, we assume that the predictor f(·) is parameterized by a 3× 1 embedding matrix E.
Although technically this is a vector, we still denote it as an ‘embedding matrix’ to be consistent with the rest of the exposition.
Denote by e(0), e(1) and e(2) as the three rows of this matrix which are the ‘embedding vectors’ of the three hash values. Thus, in
the notation of our model, this embedding matrix is made of B = 3 buckets with the dimension d = 1. The model f(·) uses two
hash functions hi(·) : {0, 1} → {0, 1, 2, } to map the categorical variable X into a hash value. Without loss of generality, we
assume that h1(0) = 0, h2(0) = 1, h1(1) = 1, h2(1) = 2. Given this, the predictive model f(X) := e(h1(X)) + e(h2(X)) is a
simple linear sum of the two hash embedding of the input based on the two hash functions h1(·) and h2(·). This is a simple
example of the general class of models where the predictor Y is a linear function of the embedding vectors of the categorical
input X computed using the different hash functions. Although simple, this example illustrates the phenomenon that emerges of
learning categorical variables in an online fashion since the embedding vector e(1) influences both X = 0 through hash function
h1(·) and X = 1 through hash function h2(·).

An online interaction setting
We consider the following online prediction protocol. At each time t = 1, 2, · · · , the environment samples Xt from a

distribution over {0, 1} and produces to the predictor. The predictor then predicts Ŷt := ft(Xt) and is then shown the true label
Y ∈ R. The predictor incurs loss lt := 1

2 (Yt − Ŷt)
2 and uses the observed Yt to update the predictor to ft+1(·).

The only learnable parameters of the predictor is the embedding matrix E. Thus the predictor at time t denoted by ft(·) is
parametrized by the state of the embedding matrix Et with its three rows denoted by e

(i)
t for i ∈ {0, 1, 2}.

Update the hash embedding matrix through Online Gradient Descent (OGD)
In order to demonstrate that the hash embeddings can lead to forgetting, we will assume that they are updated through standard

online gradient descent. Observe that at time t, if Xt = 0, then Ŷt = e
(0)
t + e

(1)
t . The instantaneous loss at time t is given by

lt =
1
2 (Ŷt − Yt)

2. Thus, the gradients ∂lt
∂e(0)

= ∂lt
∂e(1)

= (e
(0)
t + e

(1)
t − Yt), if Xt = 0. Thus, assuming that the embedding matrix

Et is updated online using OGD at a fixed learning rate η ∈ R leads to the following update equations

e
(0)
t+1 =

{
e
(0)
t − η((e

(0)
t + e

(1)
t − Yt)), Xt = 0

e
(0)
t , Xt = 1.



Similarly the update equations for the other two embedding vectors are as follows.

e
(1)
t+1 =

{
e
(1)
t − η((e

(0)
t + e

(1)
t − Yt)) Xt = 0

e
(1)
t − η((e

(1)
t + e

(2)
t − Yt)) Xt = 1

e
(2)
t+1 =

{
e
(2)
t Xt = 0

e
(2)
t − η((e

(1)
t + e

(2)
t − Yt)) Xt = 1

These update equations for the embedding shows that e(1) which is shared for both X = 0 and X = 1 gets updated all the
time, while e(0) is only updated if X = 0 and similarly e(1) is only updated if X = 1.

A non-stationary distribution for the co-variates X
Consider a setting where the first N inputs consists of Xt = 0 for all t ∈ {1, · · · , N}, followed by another N inputs consisting

of Xt = 1 for all t ∈ {N + 1, · · · , 2N}. In these discussions we will assume N is large enough and the learning rate η is
appropriately tuned to make the variance of the predictor to be small. If all the 2N samples were shown to a training algorithm, it
could have (near) perfectly estimated the embedding matrix Ê, i.e., for a X that is sampled from {0, 1} that is equally likely
(matching the training data distribution of equal number of 0 and 1), the expected excess loss will be arbitrarily small (assuming
N is sufficiently large). We will show in the calculations below that if instead the embedding matrix was learnt using OGD, even
if N is large enough, the learnt model at the end will have a constant excess risk when the test input X is sampled with equal
probability among {0, 1}.

Analyzing the OGD update equations
To see this, we make some simplifying assumptions. First is that σ = 0, i.e., conditioned on X , Y is deterministic. Second is a

symmetric starting point of e(i)0 = 0 for all i ∈ {0, 1, 2}. It is easy to observe that both of these assumptions do not change the
the observation we will make, but makes the exposition easier. Thus, at the end of the first N samples, we will have e

(2)
N+1 = 0

and e
(0)
N+1 = e

(1)
N+1 ≈ 1/2. This follows as N is large and the noise σ is 0, thus leading OGD to converge to a local minima of

the loss function. Any embedding matrix with e(0) + e(1) = 1 is a local-minimum of the loss function and thus at the end of
time N + 1, OGD will result in e

(0)
N+1 + e

(1)
N+1 ≈ 1. Since the initialization and the loss function is symmetric in the arguements

e
(0)
t = e

(1)
t will hold for all t ≤ N .

At time t = N + 1, the N observed samples corresponds to X = 0. Thus, the prediction error for X = 0 by this learnt model
f̂N+1(X) is small, i.e., the excess risk (fN+1(X)− 1)2 ≈ 0.

Now consider the times t = N + 1 till t = 2N . During this period, the gradients will not impact e(0), i.e., e(0)N+1 = e
(0)
2N+1 ≈

1/2. However, e(2) and e(3) are no longer symmetric. But one can work out the recursion for their evolution since the gradients
are the same.

In particular, for any time t ∈ {N + 1, · · · , 2N}, the observed Xt = 1. Thus, the gradient of e(1) and e(2) at all times
t ∈ {N+1, · · · , 2N} is the equal to (e

(1)
t +e

(2)
t +1). Thus, under the OGD update equations, for all times t ∈ {N+1, · · · , 2N},

the equality e
(1)
t+1 − e

(2)
t+1 = e

(1)
t − e

(2)
t , holds. Since at time N + 1, we have e(1)N+1 ≈ 1/2 and e

(2)
N+1 = 0, we have that e(1)2N+1 −

e
(2)
2N+1 ≈ 1/2. On the other hand, if N is large, we know that OGD will converge to a local minima, i.e., e(1)2N+1 + e

(2)
2N+1 ≈ −1.

These two equations in the variables e(1)2N+1, e
(2)
2N+1 gives e(1)2N+1 ≈ −1/4 and e

(2)
2N+1 ≈ −3/4.

Concluding that the updates leads to forgetting the representation for X = 0
Thus at the end at time 2N + 1, after having seen the first N samples of X = 0 and the last N samples of X = 1, the

predictor is such that f̂2N+1(0) ≈ 1/4 and f̂2N+1(1) ≈ −1. However, note that the true label when X = 0 is 1 while when
X = 1 is −1. Thus, the predictor f̂2N+1(·) has near zero prediction error when X = 1. However, when X = 0, the loss given
by (f̂2N+1(0)− Y )2 ≈ (1/4− 1)2 ≈ 9/16 is a constant.

This shows the discrepancy between a model trained offline using all the 2N samples and the model trained online where the
first N samples all correspond to X = 0 and the last N samples correspond to X = 1. The offline model will converge to a local
minima in which the prediction error for both X = 0 and X = 1 will be small, while the online model converges to a solution
where the prediction error for the categorical variable that was not seen recently is high.

Arguing that online Bayesian model does not lead to forgetting
A Bayesian method to ‘learn’ the embedding matrix is to posit a prior distribution p(E) for the emebedding matrix and then

given the data X compute the posterior distribution p(E|X). We will say that the Bayesian learning does not forget, if the
posterior distribution computed based on all the 2N samples (X1, Y1), · · · , (X2N , Y2N ) shown up-front matches the posterior
distribution computed in an online fashion. However, from classical results in online Bayesian learning, it is well known that if
one can compute the exact posterior p(E|X1, · · · , Xt) at all times t, then the posterior at time 2N is identical to the one that an
offline algorithm would have computed had it seen all the 2N samples at once. Thus, if the exact posterior can be computed at
each time, then there is no forgetting in the Bayesian mechanism.



Thus in this section, we showed through a simple linear-gaussian model, that online updating of hash embedding matrix leads
to forgetting while a bayesian updating of the embedding matrix does not lead to forgetting. In order to demonstrate this, we
defined forgetting to not occur if the model learnt at the end of seeing each online sample one by one is close to the model
learnt had all the samples been available up-front. Further, we show in experiments that this insight holds even in more complex
scenarios where exact Bayesian posterior cannot be computed, but only an approximation through variational inference can be
done.

G Experimental Details
G.1 An efficient embedding fetch schemes
When implementing the hash embedding fetching module, there are two available schemes: scheme one is first to sample a whole
hash table E and then fetch the corresponding embeddings Ehs (as Eq. (26)); scheme two is first to fetch the distribution p(Ehs)
and then sample Ehs (as Eq. (27)).

p(x|s) = p(x|hs) = Ep(E)[p(x|E,hs)] ≈ p(x|E,hs) (26)

= Ep(Ehs )
[p(x|Ehs)] ≈ p(x|Ehs) (27)

The two schemes lead to the same results, but scheme two is more memory-efficient as it does not need to sample the whole
embedding table. Thus in practice, we apply Eq. (27).

G.2 Hardware Information
We train and test our model on GPUs (RTX 5000) and use the deep learning framework PyTorch to enable efficient stochastic
backpropagation. In all supervised learning experiments, the total elapsed wall time (training and testing) for PHE is less than
half an hour, and the finetune baseline runs slightly faster. In the sequence modeling experiments, PHE runs about one hour since
Retail is a large dataset and has over 500k records. In the recommendation experiments, it takes about two hours for all methods.

G.3 Details for Classification Experiments
The four public datasets all can be found online: Adult6, Bank7, Mushroom8, and Covertype9. Specifically, Adult has 14 columns
and 48,842 rows containing demographic information. The task is to predict whether or not a person makes over $50K a year;
Bank has 16 columns and 45,211 rows to predict if a client will subscribe to a term deposit; In Mushroom, of 22 discrete columns
and 8,124 rows, the goal is to predict whether a mushroom is poisonous; Covertype, involving 12 columns and 581,012 rows, is
to predict which forest cover type a pixel in a satellite image belongs to.

Regarding model architecture, we concatenate all category embeddings as well as continuous features as input to a deterministic
one-layer neural network, followed by a softmax activation function. For PHE and P-EE, we stress that only embeddings are
probabilistic and neural network weights are deterministic. We use negative cross entropy as the objective function assuming the
targets follow categorical distributions.

We apply the following criterion when selecting a categorical column to have a dynamic vocabulary. We select the column
to be dynamic if the weights of the column features have large scales when fitting a logistic regression model on the outputs.
Specifically, we first use one-hot encodings to represent categorical items, and then fit a logistic regression model on the targeted
outcomes. Finally, we select a column to be incremental if its corresponding categorical features have large weights because the
weights in linear regression models can be interpreted as feature importance. Following this procedure, we select education,
poutcome, odor, and wilderness column for the four datasets respectively. See detailed group information in Fig. 9.

For the continual learning setup in Supp. G.6, we first randomly and evenly split the categorical features of the selected
column into disjoint groups, then partition the original dataset according to the groups. Based on the column dictionary size, we
split Adult/Bank/Mushroom/Covertype into five/four/four/four disjoint groups. We randomly split each group into training and
testing subsets where the training subset takes two-thirds of the total data and the testing subset takes the remaining one-third.
We sequentially fit the prediction model to each non-overlapped group. The goal is to have high accuracy for all groups after
sequential updates. Therefore, after fitting the model on the current group’s training data, we report the average accuracy on all
previous groups’ test data.

Evidence lower bound. We first present the objective function of the latent variable supervised learning model. Similarly to
Eq. (12), we can derive the objective function as the evidence lower bound of

∑N
i=1 log p(yi|xi,hsi ; θ):

L(θ, λ) = Eqλ(E)

[
N∑
i=1

log p(yi|xi, Ehsi
; θ)

]
−DKL(qλ(E)|p(E)) (28)

6https://archive.ics.uci.edu/dataset/2/adult
7https://archive.ics.uci.edu/dataset/222/bank+marketing
8https://archive.ics.uci.edu/dataset/73/mushroom We also follow the recommendation and only use odor as the feature.
9https://archive.ics.uci.edu/dataset/31/covertype



For online adaptation to dataset D1 of size N1, we fix the classifier parameters and only adapt the hash embedding table E.
Denote the pre-trained parameters by θ∗ and λ∗

0. Treat the previous posterior qλ∗
0
(E) as the current prior, we can write down the

objective function

L(1)(λ; θ∗, λ∗
0) = Eqλ(E)

[
N1∑
i=1

log p(yi|xi, Ehsi
; θ∗)

]
−DKL(qλ(E)|qλ∗

0
(E)) (29)

Implementation details and hyperparameters. We implement the aggregation function g as a weighted sum where the
weights are parameters of g. Specifically, we have another random table W ∈ RP×K whose distribution is p(W ) and a hash
function h(W ) : S → N<P such that h(W )

s indexes the rows of W , noted by W
h
(W )
s

∈ RK . W
h
(W )
s

serves as the weights for

the K hash embeddings (see Fig. 2). Then g(E
h
(1)
s
, . . . , E

h
(K)
s

) =
∑K

k=1 W
k

h
(W )
s

E
h
(k)
s

where W k

h
(W )
s

is the kth value of vector
W

h
(W )
s

. During inference, we infer the posteriors of both E and W .
For all tabular datasets except Mushroom, we set B = 7,K = 3, d = 20, P = 11 (whose supported dictionary size is

P ×BK = 3773, which is ten times larger than the vocabulary size of the Adult dataset). We tried these values on Adult when
setting the group size to be one (i.e., the static supervised learning setup) and found the resulting accuracy (about 84%) is
comparable to the public results on this dataset10. We then use this same parameter setup on all other tabular data supervised
learning experiments. For Mushroom, we use a much smaller model size and set B = 5,K = 3, d = 5, P = 1, because only one
feature is used in the experiment.

Optimization. We use Adam stochastic optimization with a learning rate of 0.01 and a minibatch size of 128 in all experiments
for both our method and baselines. For other hyperparameters of Adam, we apply the default values recommended in the PyTorch
framework. When selecting these values, we fixed the minibatch size 128 and searched the learning rate (0.001, 0.005, 0.01, 0.05,
0.1) on the Adult dataset. We found the learning rate 0.01 leads to relatively fast and stable convergence. Then we apply the same
values on all other datasets. For the first group training, we train PHE 100 epochs; for the remaining groups, we train PHE 15
epochs as we only need to update the hash embedding table E. Note that on every group, we train PHE until convergence.

Evaluation metric. We use accuracy as an evaluation metric. As we sequentially adapt the model on each vocabulary group’s
training set and test the model on the test set, we have running accuracies on each group.

Additional results. We add all datasets’ online learning results in Fig. 6.

G.4 Details for Multi-Task Sequence Modeling Experiments
Datasets. We use the Retail dataset11 as a multi-task TTD to demonstrate PHE. The dataset involves over 4,000 products
indicated by StockCode column and the corresponding sale quantities represented by quantity column with invoice
timestamps. We treat quantity as a time series and then track quantity for all 4,000 selling goods over time in a filtering
setup. Prediction for each piece of product is regarded as one task and there are over 4,000 tasks in total. The task is to predict
the sales quantity for the product shown in each invoice record given the product’s previous sales.

For the continual learning setting in Supp. G.6, we treat all transactions as occurring at even time intervals. For each task, we
randomly split the training and testing set with a ratio of 2:1. To get multi-tasks in a dynamic setting, we treat StockCode as
the task identifier and evenly partition the products in StockCode into ten disjoint groups where each group involves about
400 goods, i.e., 400 new tasks. Correspondingly, the original dataset is converted into a task-incremental dataset where each
task refers to predicting sale quantities (i.e., taking Quantity column values as y) for one product, indicated by StockCode
column. We normalize the UnitPrice column into the range [0, 1] and do not use the Description column. We also drop
cancellation transactions that have Quantity values smaller than zero. Therefore, we refer to StockCode as u, Quantity
as y, UnitPrice as x, {Country, CustomerId} as m, and InvoiceDate as t.

Evidence lower bound. We assume the sales quantity follows Poisson distribution, consequently using the Poisson likelihood.
Implementation details and hyperparameters. We also implement a weighted aggregation function g as above in the

supervised learning setup. We did not try out different hyperparameter settings and directly set B = 109,K = 3, d = 20, P =
109 as these values can already support a large vocabulary (of size P ×BK). We apply the same values to both PHE and the
baselines.

Optimization. We use Adam stochastic optimization with the same learning rate of 0.005 and the same minibatch size of 128
as in supervised learning experiments. For other hyperparameters of Adam, we apply the default values recommended in the
PyTorch framework. For the first task training, we train PHE 15 epochs; for the remaining tasks, we train PHE 5 epochs. Note
that on every task, the epochs used are enough to train PHE until convergence.

Evaluation metric. We also evaluate the performance by the cumulative averages of errors. For each product, we use the first
nine observations to predict the 10th observation and measure the absolute error on the 10th observation. Then, the average of
all such absolute errors is the performance of this product. Since one group contains about 4,000 products, we further average
each product’s performance as the group’s performance. Specifically, we have a prediction model that has a Poisson likelihood

10See the baseline model performance in https://archive.ics.uci.edu/dataset/2/adult
11http://archive.ics.uci.edu/dataset/352/online+retail



Figure 6: Results of online learning on all data.
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Figure 7: First ten day results of data-streaming movie recommendation and sales quantity sequence modeling.

p(yt|yt−9:t−1,xt−9:t,hmt−9:t ,hu). We predict ŷt = E[yt|yt−9:t−1,xt−9:t,hmt−9:t ,hu] as the mean value and then measure
the absolute error between the ground-truth value |yt − ŷt|.

For the continual learning setup, after learning group t, we can evaluate the performance of all previous and current groups,
denoted by Rt,≤t. We refer to the cumulative mean absolute error R̄t =

∑t
a=1 Rt,a/t at group t as the performance at t. We

report R̄t as a function of group numbers in Fig. 11. We report R̄T after learning the final group T in Tab. 5.
Additional results. Because we smoothed the results with a 1-D Gaussian filter in the main paper, we provide the first ten

days’ result without smoothing in Fig. 7.

G.5 Details for Recommendation Experiments
Beside the first five years, this up-to-date and largest MovieLens dataset 12 have 8688 days (time steps) with possibly no records
on some days. Note after pre-training, all model parameters are fixed except the hash embeddings. Regarding the likelihood
function, we assume the rating follows Gaussian distribution.

We randomly split the data into a validation (20%) and a test set (80%). We searched the learning rate, batch size, neural
network size, and likelihood scale on the validation set and reported final results on the test set. PHE, EE, and FastAda train the
hash embeddings for 5 epochs per time step while MediumAda trains 2 epochs and SlowAda trains 1 epoch.

We also use the mean absolute error as the evaluation metric.
Results. We plot the online learning results in Fig. 6. The curves in are smoothed with a 1-D Gaussian filter. The initial

performance gap on Day 0 is an artifact of smoothing, in fact, all methods have similar performance initially (see Fig. 7 in
Supp. G.5). An interesting observation: MovieLens made two major changes in their rating system around 2003 and 2014
https://grouplens.org/blog/movielens-datasets-context-and-history/(link), which is reflected in our results – two sharp changes in
the online learning plot.

G.6 Additional Results
More Motivation Examples We report additional results in Fig. 8 as a complement to Fig. 1 in the main paper. Fig. 8 provides
more evidence for the motivation of our work. For tabular data in a dynamic setting, not including the newly created categorical
feature values in the prediction model will lead to a performance drop. Therefore, an efficient way to incorporate the new
categorical features is necessary to maintain the efficacy of a prediction model. The “After update” performance in the plots
demonstrates PHE is desirable for adapting to the new features. The splitting details are in Supps. G.3 and G.4 and Fig. 9.

Table 4: Number of parameters in the embedding module. Ratios are computed by dividing PHE by P-EE. The results show that
PHE consumes as little as 2% of the number of parameters (i.e., hardware memory) of P-EE, demonstrating the memory-efficiency
benefit of PHE. (See details in Supp. G.6.)

Adult Bank Covertype Mushroom Retail MovieLens-32M

PHE (ours) 346 346 346 56 5014 460414
P-EE 3920 1760 1760 90 332760 11541320

Compression Ratio 0.09 0.2 0.2 0.62 0.02 0.04

Memory Efficiency Memory efficiency of PHE can be seen from the number of parameters in the embedding module,
which we summarized for both PHE and P-EE in Tab. 4. Note that P-EE sets the performance upper bound but its size scales
linearly with the vocabulary size. The fact that PHE on all datasets achieves the same performance as P-EE illustrates PHE’s
impressive memory efficiency, especially considering PHE only consumes as low as 2% memory of P-EE. Besides, being a

12https://files.grouplens.org/datasets/movielens/ml-32m.zip
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Figure 8: Adult dataset is randomly split into disjoint groups based on the education column. Groups arrive sequentially. We
report results before and after the updates on the hash embeddings for each group to motivate the need to incorporate new groups
into the model. Results are averaged on five independent runs with different random parameter initializations.

Adult

Group 1 (Preschool, 5th-6th, Bachelors)
Group 2 (10th, 11th, 12th)
Group 3 (7th-8th, HS-grad, Prof-school)
Group 4 (9th, Assoc-voc, Doctorate)
Group 5 (1st-4th, Masters, Some-college, Assoc-acdm)

Mushroom

Group 1 (Musty, None)
Group 2 (Anise, Almond)
Group 3 (Spicy, Creosote)
Group 4 (Foul, Fishy, Pungent)

CoverType

Group 1 (A1)
Group 2 (A3)
Group 3 (A4)
Group 4 (A2)

Bank

Group 1 (Unknown)
Group 2 (Failure)
Group 3 (Other)
Group 4 (Successs)

Figure 9: Group information for continual classification tasks.



Figure 10: Comparision of online learning methods’ adaptation and forgetting in a streaming online setup. Our PHE achieves
similar performance with the collision-free P-EE on both metrics. Notably, SlowAda forgets the least but is slow in adaptation;
FastAda is in the opposite regime.

Figure 11: Cumulative average results in continual learning. Column names in the parentheses are the ones made to have changing
vocabulary and used to split groups. PHE is closest to the performance upper-bound P-EE.

unified embedding where all categorical columns share the same embedding table (Coleman et al. 2024), PHE is compatible with
modern hardware and can benefit from the hardware acceleration.

We multiply each number by two because every parameter has its mean and variance. 20 is due to each embedding has 20
dimensions. For PHE, refer to implementation details (Supp. G) for the number of parameters (B × d+ P ×K). We compute
the P-EE parameter size by V × d where V is the vocabulary size.

Adaptation and Forgetting analysis We designed experiments to specifically measure the adaptation to new data and
forgetting of old data. We split the data into two disjoint groups based on a random partition of one column’s vocabulary. The
model was initialized using the first group and online updated on the second group whose items are unseen in initialization. We
let the data arrive one at a time. Adaptation is measured by the cumulative predictive accuracy of new datum and the forgetting
by the accuracy of the first group’s test data. Results in Fig. 10 show that our PHE has almost the best adaptation and forgetting
performance on all four datasets. The P-EE while does not suffer forgetting, its adaptation to new categories is slow as each new
embedding is initialized at random.

Regarding baselines, SlowAda uses a small learning rate (1e-4); MediumAda uses a medium learning rate (1e-3); FastAda
uses a large learning rate (1e-2).

In Fig. 10, we compare on all four classification datasets used in the paper, our PHE against the four baselines. We observe
from Fig. 10 that the SlowAda baseline with smaller LR (1e-4) leads to slower forgetting at the cost of slower adaptation, while
larger LR (1e-2) has faster adaptation at the cost of faster forgetting (FastAda). Thus a data-stream dependent LR is needed for
deterministic hash embeddings to trade off adaptation and forgetting. In contrast, our PHE has almost the best adaptation and
forgetting performance on all four datasets due to the regularization from the posteriors. The EE while does not suffer forgetting
as each category has a separate row in the embedding table, its adaptation to new categories is slow as each new embedding is
initialized at random.

Continual learning We also investigated classification and sequence modeling in the continual learning setup (Kirkpatrick
et al. 2017), we split the dataset into disjoint groups based on a random partition of a selected column’s vocabulary, assuming
data distribution differs conditioned on each partition. This is similar to Supp. G.6. We then sequentially update the embeddings
on each group’s training data. After each group training, we evaluated the model performance on all previously seen groups’ test
data. The splitting details are in Supps. G.3 and G.4 and Fig. 9. While data-streaming setup aims to have good performance
on the latest task, the goal of continual learning is to perform well on all groups after sequential training. Fig. 11 and Tab. 5
summarizes the results. Our PHE has the top performance among hash embedding methods.

Ablation studies Variants of updating protocols. We provided evidence on our updating protocols in Tab. 6, showing updating
incremental column’s embeddings as well as fixing other parameters has the best performance. Tab. 6 presents the accuracy of



Table 5: Performance on classification and sequence modelling tasks. Adult, Bank, Mushroom, and Covertype are classification
tasks and thus evaluated by average accuracy, which is larger the better. Retail is a regression task and we use the metric mean
absolute error, lower the better.

SlowAda MediumAda FastAda P-EE (collision-free) PHE (ours)

Adult 76.1±1.8 75.0±4.7 71.6±3.1 85.6±0.1 78.9±3.0
Bank 63.0±4.0 67.5±4.5 69.9±1.2 70.5±0.7 70.1±1.4
Mushroom 75.5±7.6 90.1±8.6 84.7±12.3 96.8±0.0 91.6±7.6
Covertype 41.7±4.0 43.8±5.7 39.5±5.1 52.2±1.1 48.8±2.3
Retail 16.8±17.6 38.9±50.9 - 2.92±0.16 2.73±0.23

Table 6: Comparison between updating all categorical columns’ embeddings, only updating incremental columns’ embeddings,
and updating all model parameters. We used collision-free expandable embeddings in the experiments. The first two updating
protocols have little difference but updating all parameters sometimes result in performance deterioration, possibly due to
catastrophic forgetting in the network weights.

Adult (Acc.) Bank (Acc.) Mushroom (Acc.) Covertype (Acc.) Retail (Err.)

Update all columns embeddings 84.7±0.0 90.0±0.0 98.8±0.0 64.1±0.0 3.4±0.3
Update incremental columns embeddings (in use) 84.8±0.0 90.1±0.0 98.8±0.0 64.0±0.4 3.2±0.4
Update all model parameters 83.3±0.1 89.5±0.0 98.8±0.0 64.0±0.1 287.9±125.5

multiple updating schemes, justifying this updating protocol in use achieves both high accuracy and computational efficiency.
The impact of potential hash collisions and the mitigation measures.
We experimented on the large Retail dataset under the continual learning setup as in Supp. G.6. We varied the hyperparameters

bucket size B and the number of hash functions K to control the potential number of hash collisions. In particular, we varied one
hyperparameter when fixing the other.

We repeated each experiment five times with different random seeds. The tables below show the mean absolute errors (the
lower the better) with standard deviation under each hyperparameter setting. In the first table, we varied bucket size B while
fixing the number of hash functions to be K=2. In the second table, we fixed the bucket size B to 109, which is the same as in the
paper, and changed the number of hash functions. The collision probability increases from right to left for both tables. The results
in the first table show the more likely a hash collision, the more unstable the model performance. However, the deterioration is
slow, showing the method’s robustness to potential hash collisions and various hyperparameter settings. In the second table,
although increasing K reduces the probability of hash collisions, increasing K also increases the number of effective parameters
(related to model complexity) to fit in the model. It thereby increases the variance of the predictive performance. Thus, we
recommend choosing a small K (such as 2-3) that trades off both hash-collision and predictive performance variance. Note when
K=1, the hash collision will cause two items to have exactly the same resulting hash embeddings, leading to a high variance
among all settings. We will add these results to the ablation section in the revised paper.

Ablation study on bucket size B
B=40,K=2 B=60,K=2 B=80,K=2 B=109,K=2

2.83±0.23 2.65±0.16 2.56±0.10 2.58±0.09

Ablation study on the number of hash functions K
B=109,K=1 B=109,K=2 B=109,K=3 B=109,K=4 B=109,K=5

2.66±0.34 2.58±0.09 2.63±0.16 2.78±0.18 2.76±0.13

Remedy. We use the standard trick of multiple independent hash functions to reduce the collision probability of two unique
items. As is standard in universal hashing [Carter and Wegman, 1997], the probability of collision with all K hash functions each
hashing into B buckets is proportional to (see section 3.3). Collision of hash values could happen among popular, important
categories. To address this issue, we can select the desired hash functions that avoid important collisions before applying the
hash functions. In addition, users come and go fast, and collisions may become unimportant over time.

Double memory of Ada baselines. In Tab. 1, Ada baselines do not have the same number (actually half) of parameters as PHE
because PHE maintains a pair of mean and variance parameters for each embedding. We conducted another set of experiments
on the Ada baselines using the same settings as in Tab. 1, except that we doubled the size of embedding tables, i.e., B → 2B and
P → 2P . This way, both PHE and the deterministic Ada baselines have the same number of parameters, but Ada has much
lower collision rates. We report the results in the table below. It shows that: 1) PHE is still the top performer; 2) the average



performance gap between the Ada baselines and PHE narrows; 3) no single Ada baseline works well across all datasets; and 4)
PHE has smaller performance variation.

Results of double-memory Ada baselines
SlowAda MediumAda FastAda PHE (ours)

Adult 83.6 ± 0.9 79.9 ± 2.2 76.1 ± 2.5 84.1 ± 0.2
Bank 89.7 ± 0.1 89.4 ± 0.3 87.7 ± 1.6 89.6 ± 0.0
Mushroom 97.9 ± 1.5 98.4 ± 0.5 98.5 ± 0.2 98.8 ± 0.0
Covertype 64.2 ± 0.6 61.6 ± 1.0 55.8 ± 3.2 64.3 ± 0.2
Retail 6.4 ± 0.6 8.2 ± 2.3 - 3.0 ± 0.2
MovieLens 15.4 ± 0.1 15.1 ± 0.0 15.2 ± 0.1 14.7 ± 0.0


