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Abstract. AES-GCM has seen great adoption for the last 20 years to
protect data in various use-cases because of its optimal performance. It
has also posed some challenges to modern applications due to its nonce,
block size, and lack of key commitment. Nonce-derived schemes address
these challenges by deriving a different key from random values and us-
ing GCM with the derived key. In this work, we explore efficient key
commitment methods for nonce-derived schemes. For concreteness, we
focus on expanding XAES-256-GCM, a derived key scheme originally in-
troduced by Filippo Valsorda. We propose an efficient CMAC-based key
commitment solution, and prove its security in the ideal-cipher model.
This proposal yields a FIPS-compliant mode and offers much better data
bounds than GCM. Finally, we benchmark the new mode’s performance
to demonstrate that the additional cost affects mostly small plaintexts.

Keywords: XAES · KC-XAES · Key Committing AEAD · CMAC based
key commitment.

1 Introduction

AES-GCM has been the status quo for efficient symmetric encryption for decades.
As technology and cryptographic applications evolved over time, AES-GCM has
posed some challenges to certain use-cases due to its default 96-bit nonce size,
128-bit block size, and lack of key commitment. Some of these challenges, in the
context of demanding applications in cloud environments, were discussed in [21].

Nonce-derived schemes are one way of addressing these challenges: Such
schemes derive multiple keys from nonce values, then apply standard AES-GCM
with the derived keys (and possibly another 96-bit nonce). The approach over-
comes the nonce length and data limit issues since each derived key is only
used to encrypt a few messages. One example of a derived mode is used in the
AWS Encryption SDK (ESDK) and AWS Key Management Service (KMS) [30]
which employ HMAC-based PRFs for key derivation. Other examples include
DNDK [16,17] and XAES-256-GCM [14]. Below we refer to the latter as XAES,
for brevity. By itself, the use of nonce-derived keys does not address key com-
mitment, however. Some schemes such as DNDK and the AWS ESDK chose to



include a built-in key commitment mechanism, while others such as XAES left
it out of scope.

In this work, we explore efficient key commitment methods that can be added
to any nonce-derived scheme in a black-box manner. Our focus is on options that
use the underlying block cipher, are efficient, and only use standard primitives
which are FIPS-approved. We propose an efficient CMAC-based key commitment
solution, and prove its security in the ideal-cipher model. We argue that adding
this solution to XAES yields a FIPS-compliant mode, quantify the data and
message length limits of this mode and compare this combination to other nonce-
derived schemes. We also benchmark our key committing XAES performance.

Recently, after its Accordion mode workshop [26], US National Institute
of Standards and Technology (NIST) has been exploring a new wide-block ci-
pher [28] which could be used in a new AEAD mode [27] to alleviate some of
AES-GCM challenges [21]. The blockcipher-based key commitment proposed in
this work is generic and could be used in any new wide-block derived key mode
variant by leveraging similar constructions with a wide block cipher instead of
AES256.

1.1 Related Work

As we said above, there has been significant work in the literature trying the
address the practical shortcomings of GCM. Prior works that use GCM in a
nonce-derived mode include AWS’ implementation that addressed key rotation
at scale using a solution based on HMAC-SHA256 [7], Gueron’s DNDK-GCM
mode [16], Bhaumik and Degabriele’s strong blockcipher-based PRF for GCM
derived key modes [6], and Valsorda’s XAES mode [14,13]. XAES is the focus of
our work. Gueron and Risternpart subsequently improved DNDK by introducing
DNDK version 2 [17,18] which uses less blockcipher calls to derive the key and
commitment string. One more related proposal is the new accordion mode AES-
GEM [3], which has large nonces, a derived key and a tweaked 64-bit internal
AES-GCM counter.

Another relevant area deals with key (and context) commitment [24,1,22,4],
with some works showing that GCM does not provide these properties and
proposing various solutions. For example, [15] introduced key commitment to
AES-GCM by using a pseudorandom function to generate a derived key and
a key commitment string from the main key and a random value. The AWS
ESDK and AWS KMS added key commitment in 2020 based on this work [30].
DNDK [16] and DNDK version 2 [17,18] introduced key commitment by using
a beyond birthday bound PRF and a large nonce.

1.2 Organization

The rest of this document is organized as follows: In Section 2 we recall the
notions of key commitment security, in Section 3 we review Valsorda’s XAES
mode [14] and describe our construction for adding key commitment, and in Sec-
tion 4 we discuss the usage of this mode, its data limits, and FIPS-comliance.
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We prove the security of our key commitment function in Section 5, and pro-
vide performance numbers in Section 6. The Appendices provide more details
about the implementation of the schemes and other key commitment options we
considered.

2 Key Commitment

Standard notions of security for authenticated encryption (AEAD, e.g., [5]) as-
sume that all keys are chosen at random by legitimate users, but there are
settings in which the entity choosing the keys may itself be adversarial. Perhaps
surprisingly, [12] showed that AES-GCM and other common authenticated en-
cryption schemes are susceptible to such attacks: It is rather easy to come up
with two different keys and a ciphertext which would pass the authentication
test relative to both keys and decrypt to two different plaintexts. It turns out
that some meaningful notions of security can be achieved even in these cases.
Specifically, Farshim et al. [12] and follow up works [15,22,4,1,29] described a
key commitment property, where even a key-choosing adversary cannot come up
with a ciphertext that decrypts to different plaintext messages under different
keys.

As described in [12,1], key commitment turns out to be important in several
real-world settings where an adversary may be able to trick different parties
into using different keys to decrypt the same ciphertext. For example, in storage
environments that support key rotation, an adversary could theoretically encrypt
a file with one key, then rotate the key and trick the system into decrypting with
the new key, causing readers to get the wrong file upon decryption. Similarly, in
systems that use key-wrapping for hierarchical key management, the adversary
can wrap different data keys under different high-level keys, causing different
users to decrypt the same ciphertext to different plaintexts.

The literature contains a few different formal definitions for the key-commitment
requirement. All of these definitions consider AEAD schemes with the following
encryption/decryption interfaces:

Encrypt(K,N,A, P ) 7→ C, Decrypt(K,A,C) 7→ P/ ⊥,

where K is the key, N is a nonce, A is some context information or additional
data that needs authentication (A is called “additional authenticated data”
(AAD) in AES-GCM), P is the message to be encrypted, and C is the cipher-
text. These formal key commitment definitions are summarized below in order
from weakest to strongest:

– The weakest notion was put forward by Farshim et al. [12]. It asserts that it is
hard for the adversary to come up with two different keys,K ̸= K ′, one nonce
value N , and two pairs (A,P ), (A′, P ′) such that Encrypt(K,N,A, P ) =
Encrypt(K ′, N,A′, P ′). Below we refer to this notion as FOR-KC.

– A stronger notion called CMT-1, put forward by Bellare and Hoang [4], as-
serts that it is hard for the adversary to come up with two different keys,K ̸=
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K ′ and two tuples (N,A, P ), (N ′, A′, P ′) such that Encrypt(K,N,A, P ) =
Encrypt(K ′, N ′, A′, P ′).

– Yet a stronger notion is CMT-2, implicit in [4] and mentioned explicitly by
Takeuchi et al. [29], asserting that it is hard for the adversary to come up with
two different pairs (K,N) ̸= (K ′, N ′) and two other pairs (A,P ), (A′, P ′),
such that Encrypt(K,N,A, P ) = Encrypt(K ′, N ′, A′, P ′).

– Bellare and Hoang [4] also defined the strongest notion of this type, called
CMT-4 (and also referred to as context commitment [24]), asserting that it is
hard for the adversary to come up with two different tuples (K,N,A, P ) ̸=
(K ′, N ′, A′, P ′) such that Encrypt(K,N,A, P ) = Encrypt(K ′, N ′, A′, P ′).
This last notion asks for all, key, nonce, additional data, and plaintext val-
ues to be committed to which differs from FOR-KC, CMT-1, and CMT-2.
Achieving efficient context commitment (while keeping the ciphertext length
independent of the length of A) requires two passes on the additional data
and plaintext and newer constructions like truncated Davies-Meyer or itera-
tive truncated-permutation [4], and we do not consider it in this manuscript.

FOR-KC vs. CMT-1 vs. CMT-2: While the three notions, FOR-KC, CMT-
1, CMT-2, are different, the distinction turns out to be meaningless for most
common AEAD use-cases. Specifically, these notions are the same if the nonce
value N is part of the output ciphertext C, which is usually the case. Note,
however, that the distinction could be important in applications where the nonce
value is implied and is not included explicitly in the ciphertext. For example, a
storage system that does not include the nonce in the ciphertext but instead uses
the object index as the nonce (bad idea) could be vulnerable to key commitment
attacks even if it satisfied the FOR-KC property. In this manuscript, we focus
on AEAD schemes that include the nonce explicitly with the ciphertext, hence
we only consider FOR-KC.

3 Adding Key Commitment to XAES

3.1 XAES

XAES-256-GCM by Filippo Valsorda [14] specified XAES as a variant of AES-
GCM which takes a 192-bit (24-byte) nonce and a 256-bit main key. It derives a
new AES-GCM key from the main key and half the nonce for every invocation.
The other half of the nonce is used as the Initialization Vector (IV) to encrypt
the message with AES-GCM and the derived key.

In more detail, the input to XAES is a 256-bit main key K, a 24-byte nonce
N , Plaintext P , and Additional Authenticated Data A. The output is the cipher-
text C. Denote the first 12 bytes of the nonce by U and the last 12-bytes by V .
XAES uses CMAC-AES-256 to derive another 256-bit key KU from K and U ,
and then encrypts the message using AES-256-GCM with key KU and nonce V .
We provide a pseudo-code below for self-containment. The two 32-bit constants
in that code are const1 = 0x00015800 and const2 = 0x00025800. (Note that
the GCM ciphertext includes in particular the nonce value V , so the output of
XAES includes the entire nonce N .)
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XAES-Encrypt(Key K, Nonce N , AAD A, Plaintext P ):

0. U = N [0 : 12], V = N [12 : 24] // U, V are the two halves of N
1. K1 = X ×AESK(0128) // Multiplication by X ∈ GF (2128)
2a. M1 = (const1 ∥ U)⊕K1
2b. M2 = (const2 ∥ U)⊕K1
3. KU = AESK(M1) ∥ AESK(M2) // CMAC-based key derivation
4. Output U | AES-GCMKU

(V,A, P ) // AES-GCM encryption

Note that the blockcipher-based key derivation in XAES is used beyond the
birthday bound. In a separate analysis manuscript [2], we prove that this use of
CMAC maintains the security of XAES, showing that it is safe to derive close
to 2n keys using an n-bit blockcipher in counter mode as in XAES.

3.2 KC-XAES

XAES is a derived key mode of AES-GCM. Like with plain AES-GCM, an
adversary could find two different derived keys, KU and K ′

U which could have
been produced from the same main key K and lead to the same ciphertext and
authentication tag. Decrypting the ciphertext with the two derived keys would
lead to two different plaintexts. Thus, XAES does not provide key commitment
for any of the notions defined in Section 2.

One solution for derived key modes is PRF-based key commitment, as pro-
posed by Gueron in [15], which provides key-commitment by using a hash-based
PRF (e.g., HMAC-SHA256), at the cost of the PRF performance. An alterna-
tive is to implement the generic solution of Albertini et al. [1, Sec 5.4], adding
to the ciphertext a key commitment value Fcom(K,N) that is verified upon de-
cryption. While Albertini et al. say that Fcom(K, ·) should be a PRF (which is
independent of the one used to derive data key), it is clear that this PRF must
also be collision-resistant. Specifically, for this construction to yield FOR-KC, it
must be hard for an attacker to find two keys K ̸= K ′ and a nonce N such that
Fcom(K,N) = Fcom(K ′, N).

Our aim in this work is to describe an efficient construction using only the
underlying blockcipher, so in particular we need to describe a blockcipher-based
construction that offers collision-resistance and does not leak information about
the main key K. To achieve this, we propose:

Fcom(K,N) = CMACK(c∥U∥V ∥c′) ∥ CMACK(c∥U∥V ∥c′′),

where c, c′, and c′′ are different 32-bit constants (that are also different from
the constants used for key derivation), which are defined later. With the 192-bit
nonce of XAES, the length of each of the CMAC inputs c∥N∥c′ and c∥N∥c′′ is
256 bits, or two AES blocks. We note that computing Fcom(K,N) only takes
three more block encryption operations on top XAES, since the first block is
the same in both CMAC calls. A depiction of the function Fcom(K,N) in given
in Figure 1, and a pseudocode for the combined XAES with key commitment
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is given in Figure 2. Note that all the derived values (both derived keys and
key-commitment values) are obtained by CMAC with the same main key on
different inputs, so they are pseudorandom and (pseudo)independent of each
other. In other words, revealing the key-commitment values does not weaken
the derived keys of XAES.

𝑐 𝑈 𝑉|𝑐′ Δ = 0|(c′ ⊕𝑐′′)

𝑢
𝑤1 𝑤2

𝑥
𝑧1 𝑧2

𝐸𝐾
𝐸𝐾 𝐸𝐾

K1

Fig. 1. The function Fcom, applied to the 192-bit nonce N = (U ∥ V ). c, c′, c′′ are
32-bit constants. The 256-bit output is KC = (z1 ∥ z2).

KC-XAES-Encrypt(Key K, Nonce N , AAD A, Plaintext P ):

0. U = N [0 : 12], V = N [12 : 24] // U, V are the two halves of N
1. K1 = X ×AES256K(0128) // Multiplication by X ∈ GF (2128)
2a. M1 = (const1 ∥ U)⊕K1 // CMAC-based key derivation
2b. M2 = (const2 ∥ U)⊕K1
3. KU = AES256K(M1) ∥ AESK(M2) //KU = CMACK(const1∥U) ∥ CMACK(const2∥U)
4. CT = AES256-GCMKU (V,A, P ) // AES-GCM encryption

5. X1 = AES256K(const3 ∥ U) // CMAC-based key commitment
6a. W1 = X1 ⊕ (V ∥ const4)⊕K1
6b. W2 = X1 ⊕ (V ∥ const5)⊕K1
7. KC = AES256K(W1) ∥ AES256K(W2) // KC = CMACK(const3∥U∥V ∥const4)
8. Output U∥ CT∥ KC // ∥ CMACK(const3∥U∥V ∥const5)

Fig. 2. The KC-XAES256 Specification. The constants are defined as const1 =
0x00015800, const2 = 0x00025800, const3 = c =“XCMT”= 0x58434D54, const4 =
c′ = 0x00010001, const5 = c′′ = 0x00010002. Prepending constant const3 to the input
of CMACK and appending const4 and const5 allows us to re-use X1 and omit an extra
AES256 call while remaining FIPS compliant as per [9].

Appendix A breaks down Figure 2 into a prescriptive implementation specifi-
cation. Appendix B abstracts the specification to allow for smaller nonces useful
to constrained use-cases and Appendix C lays out other Fcom(K,N) options we
considered and did not pick.
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4 KC-AES Usage and Data Limits

We analyze below the usage, data limits, and FIPS certification considerations
for the KC-XAES construction as specified in Figure 2.

4.1 Uses

XAES-256-GCM [14] introduces three additional AES-256 calls on top of AES-
256-GCM (one of which can be computed only once and cached for all the XAES
calls with the same main key). Our CMAC-based key commitment adds three
more AES-256 calls. The impact of these extra calls is very small when we use
this mode to encrypt large messages, since we anyways need many AES-256 calls
to produce the ciphertext.

Some of the use-cases that could benefit from XAES are described in [21].
These include high encryption rate uses that can run through 232 96-bit AES-
GCM IVs in seconds and where deterministic IVs pose challenges due to their
statefulness. Other uses include encryption clients and servers like the AWS
ESDK with AWS Key Management Service that encrypt many messages from
one main key and require key commitment without maintaining state.

4.2 Data Limits

XAES is a nonce-derived mode that derives a random data-key KU and IV for
GCM per invocation. Hence XAES remains as secure as AES-GCM as long as
the pair (KU , IV ) does not repeat, and as long as the data bounds per key
KU do not violate AES-GCM’s limits. There are various works that analyze
the security of AES-GCM which set the maximum data bounds based on the
desired confidentiality and integrity level [19,20,23]. These bounds still apply
to XAES and we consider them below when we calculate the maximum data
size per derived key KU . Additionally, a separate manuscript [2] proves that
using blockcipher-based key derivation beyond the birthday bound maintains
the security of the scheme to 2n keys for n-bit blockcipher in counter mode.

First, we focus on the (KU , V ) collision probability. Clearly, the pair (KU , V )
would repeat if the 24-byte nonce N was re-used with the same main key K. As
long as the nonces N do not collide, we will not have (KU , V ) collisions under
the same main key K. To see that, observe that since AES is a permutation, then
the two blocks of KU can only collide if the corresponding AES inputs (M1,M2

from Figure 2) repeat. K1 is fixed for the same K which means we can have
a KU collision (under the same main key K) only when we have a U collision.
Thus, a (KU , V ) collision requires a full nonce (U, V ) collision.1

It follows that when the nonce N is chosen at random, a full (KU , V ) collision
will only happen after roughly 2|N |/2 = 296 calls. If we want to limit the proba-
bility of such collisions to less than 2−32, then it is sufficient to limit the number

1 While it is theoretically possible to have a (KU , V ) collision under different main
keys K ̸= K′, if these main keys are chosen at random then the KU ’s will be
pseudorandom and so will not collide except with insignificant probability.
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of calls below 280. To see that, note that by the union bound the probability of
having a collision among a set of 280 random 192-bit (24-byte) strings is at most(

280

2

)
· 2−192 ≤ 22·80−1 · 2−192 = 2−33.

An AES-GCM (key, IV) collision probability ≤ 2−32 is typically considered
satisfactory. It was initially introduced by NIST in [11] and it usually dictates
AES-GCM’s rekey frequency when IVs are generated at random. We note that
while the analysis above rules out full-nonce collisions, we still could have colli-
sions for U = N [0 : 12], the portion of the nonce that is used for key-derivation.
Collisions like that would have us use the same data key KU to encrypt multiple
messages, which is not a problem as long as these different encryptions use dif-
ferent GCM nonces V (which is ensured by the analysis above). By the analysis
above, we can use each main key K to encrypt at most 280 messages.

Let m be a parameter (to be determined later), then the probability of the
same value U ∈ {0, 1}96 occurring m times among 280 messages (assuming ran-
dom nonces) is bounded using the union bound by(

280

m

)
· 2−96(m−1) ≈ 280m−96(m−1)

m!
=

296−16m

m!
. (1)

Setting m = 8, eq. (1) tells us that the probability of seeing an eight-way
collision is bounded by 296−(96−80)·8/8! ≈ 2−47.3. Hence we can safely assume
that we will not see more than seven collisions (with probability > 2−32), which
means that no derived data-key KU will be used to encrypt more than seven
messages. In settings where we can enforce fewer messages per main key, the KU

occurrence bound m is lower.
Some applications need to enforce usage limit for keys (say, no more than X-

bytes-per-GCM-key). In such applications, we need to ensure that no single data
key KU is used to encrypt more than X bytes. The bound from eq. (1) above
implies that except with probability ϵ < 2−47, we will only see at most m−1 = 7
messages encrypted under the same data key KU . Hence, an application that
wants to enforce X-bytes-per-GCM-key limit can achieve this by limiting the
length of the encrypted messages to no more than X/7 bytes each. (Note there
is still an inherent limit on each AES-GCM invocation where the plaintext cannot
exceed 236 − 32 ≈ 236 bytes [11, § 5.2.1.1]. Thus, the KC-XAES message limit
ought to be bound by min(X/7, 236) bytes). As an example, NIST [11] defines
a data limit of 264 blocks per GCM key which means X = 268. In that case,
each message could be up to 236 bytes (≪ 268/7). Other X values for AES-GCM
depending on the attack success probability can be found in [23] which calculates
the bounds based on the analysis in [20]. [19] includes a tighter AES-GCM data
bound analysis.

Are 280 messages enough? Some prior work such as [21] expressed a desire to
support as many as 2112 messages encrypted under a single key (which is what
we would get from a straightforward adaptation of GCM mode to a 256-bit block
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cipher). XAES with 24-byte random nonces does not satisfy this desire because,
as we point out above, it only supports up to 280 messages under a single main
key. Nonetheless, 280 messages is still much better than what we have today
with AES-GCM, and it seems sufficient for most of today’s use-cases. Indeed,
for most of today’s workloads it is enough to encrypt only 264 messages under
one key.

Multi-key XAES: The analysis above is only concerned with the case where
a single XAES main key is used for encrypting many messages. When dealing
with multiple keys, ensuring a small enough collision probability requires that
we bound not only the number of messages per key but also the total number of
messages under all keys. For example, if we use XAES 24-byte random nonces
and limit ourselves to 264 messages per main key, then for each key we get
a nonce N collision probability of at most 2−65, and we can use as many as
233 keys for a total of 264+33 = 297 messages before the multi-key-IV collision
probability increases to 2−32. Note that GCM’s multi-key-IV collision probability
is far worse. It becomes 2−32 after using just two keys to encrypt 232 messages
with each key (assuming random 96-bit IVs).

4.3 FIPS Compliance

Here we argue that KC-XAES falls under the NIST FIPS 140-3 program [25]
approved algorithms, and systems that use it could be FIPS validated. FIPS
140-3 defines a set of approved cryptographic algorithms and certifies their im-
plementations. Only certified cryptographic modules and approved algorithms
can be used in Federal Government systems in the USA and Canada. Other gov-
ernment and International requirements like Common Criteria [10] sometimes
require FIPS too.

Valsorda explains briefly in [14] how XAES maps to FIPS-compliant key
derivation and use of AES-GCM. We argue that KC-XAES can be used in en-
vironments that require FIPS compliance by showing that the derived KU key,
the IV used in the AES-GCM calls of XAES, and the derived KC follow FIPS
requirements.

In KC-XAES, a new 256-bit data key KU is derived from the main key K as

KU = CMAC-AES256K(0x00015800∥N [: 12]) ∥
CMAC-AES256K(0x00025800∥N [: 12]).

This translates to a Counter Mode Key Derivation Function (KDF) as defined
in NIST SP 800-108 [9], where CMAC-AES256 is the PRF, the fixed input data
is 0x5800∥N [: 12], and the counter i = 1, 2 is two bytes. Thus, the derived key is
FIPS approved as a Key Based Key Derivation Function (KBKDF) specified in
[9, §4.1]. Note that one issue with key derivation using CMAC-AES256 discussed
in [9, §6.7] is Key Control Security for inputs that span more than one 128-bit
blocks. XAES’ derived key KU does not have this concern because the CMAC
input is always one block.
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Subsequently, KC-XAES uses the derived key KU and the last 12-bytes of
the nonce V = N [12 : 24] in AES-GCM-256. If N [12 : 24] was generated by
using a FIPS-approved entropy source (or any other approved way of generating
nonces), then the KC-XAES encryption is FIPS approved because it encrypts
with AES-GCM which is FIPS-approved and a key KU and IV generated with
FIPS-approved methods. Of course, the message and data limits laid out in
Section 4.2 apply to ensure the NIST security bounds for AES-GCM hold.

Regarding key commitment, the key commitment string generation KC is

KC = CMAC-AES256K(“XCMT”∥N [: 24] ∥ 0x00010001) ∥
CMAC-AES256K(“XCMT”∥N [: 24] ∥ 0x00010002).

This translates to a Counter Mode KDF as defined in [9], where CMAC-
AES256 is the PRF, the fixed input data is “XCMT”∥N [: 24] ∥ 0x000100, and
the counter i = 1, 2 is one byte. Thus, the derived commitment string is generated
with a FIPS approved KBKDF [9, §4.1], although it admittedly is not used as
an encryption key.

5 Key Commitment Security

This section uses the notations from Figure 1.

5.1 CMT-2 Insecurity

In section 5.2 below we show that in the ideal-cipher model with n-bit blockci-
pher, our construction offers roughly n bits of security against “FOR-KC collision
attacks”, where the adversary must use the same nonce for the two keys. Be-
fore that, and in order to build some intuition, we describe an attack against
the stronger CMT-2 notion, where the attacker can use different nonces with
the different keys. We recall again that in most use-cases, where the nonce is
included as part of the ciphertext, FOR-KC implies also CMT-1 and CMT-2.
The attack below does not apply in those cases.

We now show a CMT-2 attack with complexity roughly 2n/2, even though the
key-commitment length is 2n bits. That is, it only takes about 2n/2 queries to the
blockcipher to find two different keys K ̸= K ′ and two sets of nonces U, V, U ′, V ′,
such that Fcom(K,U, V ) = Fcom(K ′, U ′, V ′) for the function Fcom from Figure 1.
The collision attack proceeds as follows (with the the blockcipher being AES and
with the constants c, c′, c′′ ∈ {0, 1}32): Denote ∆ = 0|(c′ ⊕ c′′) ∈ {0, 1}128.

1. Choose an arbitrary 128-bit block z1 ∈ {0, 1}128.
2. For i = 1, 2, 3, . . ., choose a random key Ki and compute:

wi
1 ← AES−1

Ki (z1), wi
2 ← wi

1 ⊕∆, zi2 ← AESKi(wi
2).

Repeat until you find a collision, zi2 = zj2 for different keys Ki ̸= Kj .

Below we denote the colliding value by z2 := zi2 = zj2. We also denote

K := Ki, w1 := wi
1, w2 := wi

2 and K ′ := Kj , w′
1 := wj

1, w
′
2 := wj

2.
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3. LetK1 = X×EK(0) andK ′
1 = X×EK′(0) (multiplication byX in GF (2n)).

4. Try many values for U ∈ {0, 1}96, for each value compute x← AESK(c∥U),
until x⊕K1⊕ w1 = (V ∥c′) for some V ∈ {0, 1}96.

5. Similarly try many values for U ′ ∈ {0, 1}96, for each one compute x′ ←
AESK′(c∥U ′), until x′ ⊕K ′

1 ⊕ w′
1 = (V ′∥c′) for some V ′ ∈ {0, 1}96.

6. Output (K,U, V ) and (K ′, U ′, V ′).

The complexity of step 2 is roughly 264, and the complexity of steps 4, 5 is
roughly 2|c

′| (which is 232 in our construction). Overall the complexity of this
attack is about 264. This collision attack on the key-commitment function can
then be extended to a full CMT-2 attack on XAES with this function, using the
known key-commitment attacks on AES-GCM [24].

5.2 FOR-KC Security

We now show that for the weaker FOR-KC notion, when the attacker must use
the same nonce for both keys, we get roughly n bits of security. We note that
proving the hardness of collision-finding for a blockcipher-based construction
often requires resorting to idealized models such as the ideal-cipher model, and
our proof is no different. Drawing conclusions from such a proof takes some
caution, especially when using AES256 for which related-key attacks are known.
The specific related-key attacks on AES256 do not seem to apply directly to
our construction, but more cryptanalysis may be needed before accepting the
numbers of our ideal-cipher analysis. This is an interesting topic for future work.

Fix an n-bit blockcipher and some n-bit block ∆ ̸= 0, and consider the
function

Fcom : Keys× ({0, 1}n)2 → {0, 1}2n, Fcom(K,U, V ) = CMACK(U∥V ) ∥
CMACK(U∥V ⊕∆).

(2)

(This is exactly our construction, except that in this section we give the adversary
a little more freedom by not insisting on the specific constants c, c′, c′′ from
Figure 1.) Below we prove that in the ideal-cipher model, an adversary asking
q ≪ 2n blockcipher queries has probability O(q)/2n of finding a collision, i.e.
two keys K ̸= K ′ and inputs U, V such that Fcom(K,U, V ) = Fcom(K ′, U, V ).

One high-level intuition is that a blockcipher query made by the adversary
can only induce a collision if it satisfies four equalities over n-bit blocks (i.e.,
the two nonce blocks and two output blocks). The adversary can force at most
two of these equalities to hold (e.g. by going backward from one of the output
blocks and choosing U as in the attack from above), but this leaves two n-bit
equalities to chance. After making i blockcipher applications, a new application
would therefore only induce collision with probability about i/22n. Hence, the
overall probability of finding a collision after q blockcipher queries cannot be
much more than

(
q
2

)
/22n.

Technically, what we need to prove is that even though an attacker can
induce “partial collisions” as per the attack from above with complexity 2n/2,
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they cannot get too many of them. In particular, in Lemma 1 we show that with
high probability, no key will induce partial collisions with too many other keys.
Once this is established, the rest of the proof proceeds via a straightforward (if
somewhat tedious) case analysis, resulting in the following lemma:

Theorem 1. With an n-bit blockcipher in the ideal-cipher model, an adversary
making at most q blockcipher queries (in either direction) has probability at most

adv(q, n) = min
β∈N

{
q ·

(
q−1
β

)
(2n − 2q)β

+
4(β − 1)q

2n − 2q

}
+

3
(
q
2

)
(2n − 2q)2

of finding two keys K ′ ̸= K and inputs U, V such that F (K,U, V ) = F (K ′, U, V ).

For example, with n = 128 and q = 280, using β = 3 yields a bound of adv(q, n) <
2−44 = 16q

2n .

Proof (of Theorem 1). We will use the notations from Figure 1, where for each
key K we have K1 = X × EK(0128), and the inputs and outputs of the block
cipher are denoted u,w1, w2 and correspondingly x, z1, z2. (Presumably the in-
puts are computed by the adversary as u = (c∥U), w1 = x ⊕ (V ∥c′) ⊕K1 and
w2 = x⊕ (V ∥c′′)⊕K1 for the nonce value N = (U∥V ) and constants c, c′, c′′.)
We also denote the 128-bit block ∆ = 0∥(c′ ⊕ c′′).

To slightly simplify the case analysis below, we consider a principled ad-
versary such that: (a) they never make a redundant blockcipher query that
they already know the answer to; (b) with each forward-query to a block cipher
s = EK(a) the adversary also makes another forward query s′ = EK(a⊕∆) with
the same key K; and (c) with each backward-query a = E−1

K (s) the adversary
also makes the forward query s′ = EK(a ⊕∆) with the same key K. Below we
call the two queries ((a, s)(a′, s′)) a query pair. It is a forward pair if the first
query in that pair is forward, and otherwise (if the first query is backward) it is
a backward pair.

Clearly, any q-query adversary can be converted into a principled adversary
making at most q pairs of queries. Also, note that query pairing is a parti-
tion of the queries relative to each key into disjoint pairs. This means that if
((a, s), (a′, s′)) is a query pair for key K, then neither (a, s) nor (a′, s′) belongs
to any other pair for that key.

Fix a principled adversary A, making at most q query pairs to the underlying
block cipher and also fix the randomness of A. The transcript of the interaction
between A and the scheme consists of entries of the form (K, dir, (a, s), (a′ = a⊕
∆, s′)), where dir ∈ {+,−} denotes whether this is a forward or backward pair.2

The transcript is a random variable over the choice of the random permutations
in the ideal cipher model. We use the following notations:

– We write (K, dir, (a, s), (a′, s′)) ∈ Π when this query pair appears in the
transcript Π. We replace some of these quantities with ‘·’ (or omit them
completely) when we mean them to remain unspecified. For a few examples:

2 Note that specifying a′ is redundant, it is there just to aid readability.

12



• We write K ∈ Π to denote that some query pair in Π was made with
respect to K;

• (K, (a, s)) ∈ Π means that Π includes either query s = EK(a) or a =
E−1

K (s);
• (K, ·, (a1, s1), (a2, s2)) ∈ Π means that this query pair is in Π without
specifying the direction;

• (K, {z, z′}) ∈ Π means that (·, z), (·, z′) showed up in some query pair
under K, in either order. Namely, either (K, ·, (·, z), (·, z′)) ∈ Π or (K, ·,
(·, z′), (·, z)) ∈ Π.

– Two query pairs, (K, ·, (·, z1), (·, z2)), (K ′, ·, (·, z′1), (·, z′2)) ∈ Π, are called a
partial collision if K ̸= K ′ but {z1, z2} = {z′1, z′2} as sets, irrespective of
order. These are important since a collision between K and K ′ requires a
partial collision, in addition to using the same nonces U, V under both keys.
A partial collision between two query pairs is either a forward partial collision
or a backward partial collision, depending on whether the latter query pair
is forward or backward.3

– For any key K ∈ Π, let colΠ(K) denote the set of partial collisions involv-
ing K,

colΠ(K) = {(K ′, {z, z′}) ∈ Π : K ′ ̸= K, (K, {z, z′}) ∈ Π} . (3)

LetmaxCol be the largest number of partial collisions for any key,maxCol(Π) =
maxK∈Π (|col(K)|).

– A full collision between two keys K ̸= K ′ involves a partial collision (K, ·,
(w1, z1), (w2, z2)), (K

′, ·, (w′
1, z

′
1), (w

′
2, z

′
2)) ∈ Π with {z1, z2} = {z′1, z′2}, and

in addition queries (K, (u, x)), (K ′, (u, x′)) ∈ Π (with the same u) such that
either x ⊕K1 ⊕ w1 = x′ ⊕K ′

1 ⊕ w′
1 or x ⊕K1 ⊕ w1 = x′ ⊕K ′

1 ⊕ w′
1 ⊕∆.

(Recall that w′
2 = w′

1 ⊕∆.)

With these notations, we prove below the following three technical claims:

Lemma 1. For a transcript of q < 2n−1 query pairs,

Pr[∃ any forward partial collisions] ≤
2
(
q
2

)
(2n − 2q)2

.

Lemma 2. For a transcript of q < 2n−1 query pairs and any bound β ∈ N,

Pr[maxColΠ ≥ β with no forward partial collisions] ≤
q ·

(
q−1
β

)
(2n − 2q)β

.

Lemma 3. For a transcript of q < 2n−1 query pairs and any bound β ∈ N,

Pr[any full collision with maxColΠ < β and no forward partial collisions]

≤ 4(β − 1)q

2n − 2q
+

(
q
2

)
(2n − 2q)2

.

3 It is insignificant if the earlier query pair is forward or backward, only the direction
of the latter pair matters.

13



Theorem 1 is deduced just by adding the bounds in the three lemmas above.

Proof (of Lemma 1). A forward query pair (Ki,+, (·, zi1), (·, zi2)) ∈ Π can only
induce a partial collision with some prior query (Kj , ·, (·, zj1), (·, z

j
2)) ∈ Π if both

zi1, z
i
2 appeared in that prior query. This being a forward query, both zi1 and

zi2 are drawn at random from a set of size at least 2n − 2i ≥ 2n − 2q, so the
probability that it collides with the prior pair j is bounded by 2/(2n−2q)2. (The
factor 2 in the numerator is because it could collide in either order: zi1 = zj1 and

zi2 = zj2, or z
i
1 = zj2 and zi2 = zj1.) Hence, the probability of any partial collision

being induced by a forward pair is bounded by 2
(
q
2

)
/(2n − 2q)2 as in Lemma 1.

Proof (of Lemma 2). For any specific key K, a neighboring query pair to K (or
just a neighbor, for short) is a query pair using some other key K ′ ̸= K, which
is involved in a partial collision with K. Our goal is to bound the probability
of any key K having β neighbors, where all the partial collisions are induced by
backward queries.

We start by numbering all the keys that are used in the transcript (e.g., by
the order in which they appeared there), then fix one of these keys (call it K∗)
by choosing its number i ≤ q. We also fix a set of β query pairs under keys other
than K∗ by choosing j1 < j2 < · · · < jβ < q out of the indexes of pairs that are
not using K∗. There are at most q ·

(
q−1
β

)
ways to select this key and those pairs.

Below we prove that for each such choice, the probability of all these β query
pairs being neighbors of K∗ is bounded by 1/(2n− 2q)β . The claim then follows
by the union bound.

To prove our bound, we build a labeled directed graph whose nodes are (the
indexes of) all these β query pairs, as well as all the query pairs under the keyK∗.
We start by having a fixed set of (indexes of) query pairs J = {j1, j2, . . . , jβ},
and a fixed (index of) another query pair i that determines the key K∗. Initially
the nodes of this graph include only the set J . Every time the adversary makes a
query pair under K∗, then the index of that query pair is added as another node
to the graph. We label each node by the key that was used in the corresponding
query pair. A directed edge m → ℓ is tentatively added to the graph if all the
following conditions hold:

– m > ℓ;

– the m-th pair is a backward query pair, (Km,−, (·, zm1 ), (·, ·));
– the ℓ-th query pair is (Kℓ, ·, (·, zℓ1), (·, zℓ2)) with Kℓ ̸= Km and zm1 ∈ {zℓ1, zℓ2};
– the ℓ-th query pair has no other incoming edges.

Intuitively, the adversary is making the query pair m in an attempt to create a
partial collision with the query pair ℓ, starting with a backward query with one
of the blocks in the ℓ-th pair. The edge becomes permanent if the attempt is
successful, namely {zm1 , zm2 } = {zℓ1, zℓ2}, which happens with probability at most
1/(2n−2q), independently of anything that had happened before. Otherwise the
edge is removed from the graph and the adversary is moving to the next query
pair.
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This process continues until the transcript is done, at which point the neigh-
bors of K∗ from among the nodes J are those that are connected to some K∗-
labeled node in the underlying undirected graph. A crucial observation is that
any tentative edge in this process that does not turn into a permanent edge, im-
plies that the nodes in J cannot all be neighbors of K∗. Recall that a tentative
edge means that the two nodes share one of the z blocks, and it fails to turn
into a permanent edge if they do not share also the other z block.

Consider the case where one of these nodes (call it k∗) is labeled by K∗ and
the other is j ∈ J which is labeled by another key K ̸= K∗. Then no node
labeled by K∗ will be connected to node j in the underlying undirected graph,
because the node k∗ is the only K∗-labeled node that has the z block on which
they agree, and the other z block in that node differs.

For the same reason, if two nodes that are labelled by two keys other than K∗

had a tentative edge that did not turn into a permanent edge, then a K∗-labeled
node can be a neighbor of one of them or the other, but then the node that was
left out cannot be a neighbor of any K∗-labelled node.

Therefore, assuming no forward partial collisions, the only way in which this
process ends up with all the nodes in J being neighbors of K∗ is if the graph
only ever had β tentative edges that all turned into permanent edges. This
happens with probability at most 1/(2n − 2q)β , which is what we needed to
show for Lemma 2.

Proof (of Lemma 3). Consider a particular query pair i in Π, labeled by key K,
and we bound the probability that it is the first query that induces a full collision.
The full collision induced by this pair includes in particular a partial collision,
either between two prior query pairs or between the i-th query pair itself and a
prior pair. Either way, one of the keys in that partial collision is K and the other
is some K ′ ̸= K (or else the i’th pair could not have induced a full collision).
We analyze these two cases separately.

Case 1. A prior partial collision: In this case the partial collision happened be-
fore the i-th query pair. Note that before the i-th query pair, the key K could
have been involved in several partial collisions, but no more than β− 1 of them.
Below we fix one of them (say between the query pairs j and j′) and bound the
probability that the i-th query pair completes that partial collision into a full
collision.

For this case we denote the i-th query by (K = Ki, diri, (ui
1, x

i
1), (u

i
2, x

i
2))

(with ui
2 = ui

1 ⊕∆), and denote the prior partial collision involving K by (K =

Kj , ·, (wj
1, z1), (w

j
2, z2)) and (K ′ = Kj′ , ·, (wj′

1 , z1), (w
j′

2 , z2)), with the same z1, z2
but K ′ ̸= K. For the i-th query pair to complete this partial collision into a full
collision, it must be the case that:

– The same u block is queried under K and K ′, so at least one of ui
1 and ui

2

must have been queried as a pre-image of EK′(·). Since this is a principled
adversary, it means that they both appears in the same query pair (since
pre-images always come in pairs that are ∆ apart).

15



Let (K ′ = Ki′ , ·, (ui′

1 , x
i′

1 ), (u
i′

2 , x
i′

2 )) be query pair i′ where theses values were
queried with key K ′, to have full collision we must have {u1, u2} = {ui′

1 , u
i′

2 }
(as sets, in either order).

– A full collision means in particular the same block v was used, so at least
one of the following equalities must hold:

1. xi
1 ⊕ wj

1 ⊕K1 = xi′

1 ⊕ wj′

1 ⊕K ′
1 # u = ui

1, v ∈ {xi
1 ⊕ wj

1 ⊕K1,

xi
1 ⊕ wj

1 ⊕K1⊕∆}
2. xi

1 ⊕ wj
1 ⊕K1 = xi′

1 ⊕ wj′

1 ⊕K ′
1 ⊕∆ # (as above)

3. xi
2 ⊕ wj

1 ⊕K1 = xi′

2 ⊕ wj′

1 ⊕K ′
1 # u = ui

2, v ∈ {xi
2 ⊕ wj

1 ⊕K1,

xi
2 ⊕ wj

1 ⊕K1⊕∆}
4. xi

2 ⊕ wj
1 ⊕K1 = xi′

2 ⊕ wj′

1 ⊕K ′
1 ⊕∆ # (as above)

(4)

We now analyze separately the cases where query pair i is a forward pair or
a backward pair.

– If this is a forward pair then ui
1, u

i
2 are set by the adversary (with difference

∆) and xi
1, x

i
2 are drawn at random from a set of size > 2n − 2q. In this

case each of the equalities 1-4 from eq. (4) holds with probability at most
1/(2n − 2q).

– If this is a backward pair then xi
1 is set by the adversary, ui

1 is drawn at
random from a set of size > 2n − 2q, ui

2 is set to ui
1 ⊕∆ and xi

2 is drawn at
random from a set of size > 2n − 2q. Clearly, equalities 3-4 still only hold
with probability at most 1/(2n − 2q) each, but we claim that the same is
true also for equalities 1-2.
To see this, recall that at this point the keysK,K ′ are fixed, and so are all the
queries up to (but not including) the i-th pair. Denote the set of pre-images
under EK′(·) that are known so far by U(K ′) = {u1, u2, . . . , uℓ} (for some
ℓ), and the corresponding images by X(K ′) = {xi = EK′(ui) : ui ∈ U(K ′)}.
To satisfy equality 1, the value ui

1 must be equal to some uk ∈ U(K ′).
Moreover, once xi

1 is set by the adversary, there is at least one such value
that would make equality 1 hold, namely the value uk corresponding to

xk = xi
1 ⊕ wj

1 ⊕ wj′

1 ⊕ K1 ⊕ K ′
1. Hence once the adversary sets xi

1, the
probability of equality 1 holding is at most 1/(2n − 2q), i.e. the chance of
hitting just the right value ui

1 = uk. The exact same argument is true also
for equality 2.

We conclude that the case where the i-th query pair completes any specific
prior partial collision into a full collision only happens with probability at most
4/(2n−2q). Since key K has at most β−1 prior partial collisions, it means that
this case happens with probability at most 4(β−1)/(2n−2q) which satisfies the
bound in Lemma 3.

Case 2. In this case, it is a partial collision between the i-th pair itself and a
prior query pair that gives us the full collision. Here we denote the i-th query
by (K = Ki, ·, (wi

1, z
i
1), (w

i
2, z

i
2)) (where wi

2 = si1⊕∆ and {zi1, zi2} were obtained
before for some other key).
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We already bound the probability of any forward partial collision, here we
only need to analyze the case where the i-th query pair is a backward pair.
Namely the adversary sets zi1, then wi

1 is drawn from a set of size > 2n− 2q, wi
2

is set as wi
2 = wi

1 ⊕∆ and zi2 is drawn from a set of size ≥ 2n − 2q. We want to
bound the probability of the event where:

– The zi⋆’s collide with some prior query pair i′, denoted (K ′ = Ki′ , ·, (wi′

1 , z
i′

1 ),
(wi′

2 , z
i′

2 )). Namely {zi1, zi2} = {zi′1 , zi
′

2 } as sets irrespective of order, which
happens with probability at most i/(2n − 2q).

– In addition, there were two other query pairs involving K and K ′, denoted

(K = Kj , ·, (uj
1, x

j
1), (u

j
2, x

j
2)) and (K ′ = Kj′ , ·, (uj′

1 , x
j′

1 ), (u
j′

2 , x
j′

2 )) (where
j, j′ can be the same as or different from i, i′), such that at least one of the
following equalities hold:

1. xj
1 ⊕ wi

1 ⊕K1 = xj′

1 ⊕ wi′

1 ⊕K ′
1 # u = uj

1, v ∈ {x
j
1 ⊕ wj

1 ⊕K1,

xj
1 ⊕ wi

1 ⊕K1⊕∆}
2. xj

1 ⊕ wi
1 ⊕K1 = xj′

1 ⊕ wi′

1 ⊕K ′
1 ⊕∆ # (as above)

3. xj
2 ⊕ wi

1 ⊕K1 = xj′

2 ⊕ wi′

1 ⊕K ′
1 # u = uj

2, v ∈ {x
j
2 ⊕ wi

1 ⊕K1,

xj
2 ⊕ wi

1 ⊕K1⊕∆}
4. xj

2 ⊕ wi
1 ⊕K1 = xj′

2 ⊕ wi′

1 ⊕K ′
1 ⊕∆ # (as above)

(These are exactly the same equalities as in eq. (4), except with i ↔ j and
i′ ↔ j′.)

The partial collision happens with probability at most i/(2n− 2q), and since wi
1

is drawn at random then each of the equalities above holds with probability at
most 1/(2n−2q), so this case only happens with probability at most 4i/(2n−2q)2.

By the above, the probability of the i-th query inducing the first full colli-
sion (when maxCol < β and no forward partial collisions) is bounded by 4(β −
1)/(2n − 2q) + 4i/(2n − 2q)2. Therefore, Pr[any full collision with maxColΠ <
β and no forward partial collisions] ≤ 4(β − 1)q/(2n − 2q) +

(
q
2

)
/(2n − 2q)2, as

needed by Lemma 3.

6 Performance

XAES introduces three additional AES256 calls to AES-GCM and KC-XAES
introduces six. For comparison, DNDK [16], another efficient derived key mode,
adds six AES256 calls without key commitment and ten with key commitment.
DNDK version 2 [17,18], on the other hand, adds three and five, respectively.
Note that DNDK v2 requires more frequent rekeys to keep theKC collision prob-
ability conservatively low than every 280 messages mandated by (KC-)XAES.
Regardless, the impact of a few extra AES256 calls per invocation is minimal
especially when XAES encrypts large plaintexts. To investigate this impact, we
implemented XAES and KC-XAES and benchmarked them against AES-GCM
in x86 64 and AArch64-based platforms. Note that our implementation could
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be further sped up by taking advantage of vectorization and optimizing the
AES256 calls (by parallelizing AES256K(0128) with AES256K(const3 ∥ U) and
AES256K(M1) with AES256K(M2), AES256K(W1), and AES256K(W2) from
Figure 2).

Intel® Xeon®Platinum 8375C AWS Graviton4 - Neoverse V2
AES-GCM XAES KC-XAES AES-GCM XAES KC-XAES

Init 0.134 0.053 0.054 0.082 0.041 0.042

Encrypt

32B 0.087 0.244 0.296 0.089 0.209 0.251
1KB 0.219 0.376 0.432 0.250 0.411 0.454

16KB 1.448 1.620 1.686 2.644 2.767 2.810
1MB 91.24 90.74 90.13 164.2 164.4 164.5

Decrypt

32B 0.094 0.242 0.298 0.096 0.217 0.258
1KB 0.225 0.373 0.431 0.254 0.415 0.457

16KB 1.457 1.618 1.671 2.587 2.711 2.752
1MB 85.40 86.33 85.93 160.4 160.3 160.6

Table 1. AES-GCM, XAES, and KC-XAES cost in µs/operation with small and large
plaintexts in x86 64 and AArch64-based platforms.

Table 1 shows the performance of each mode in microseconds spent per op-
eration in x86 64-based Intel® Xeon®Platinum 8375C and AArch64-based AWS
Graviton4 (Neoverse V2) processors, respectively. The Init operation for AES-GCM
includes a) the key scheduling, b) one AES256 encryption of a counter (for the AES-
GCM tag T ) and c) a pre-computation of the GHASH constants which depend on
the implementation; the more blocks processed in parallel (i.e. the more optimized the
implementation), the more constants are pre-computed. In the case of (KC-)XAES,
Init includes only the AES256 encryption to produce K1 used in key derivation (and
commitment). Note that (KC-)XAES Encrypt and Decrypt include the AES256 calls
to derive the key (two calls) and the commitment string (three calls). They also include
a), b) and c) for the newly-derived KU as (KC-)XAES initializes GCM with every in-
vocation. We can see that for small plaintexts, XAES and KC-XAES encryption and
decryption cost ×2 − ×3 than AES-GCM respectively because of the cost of deriving
KU and KC and initializing GCM for KU . As the plaintext size increases this cost is
amortized over the cost of plaintext encryption and it ends up being unnoticeable for
large 1MB plaintexts. The difference between AES-GCM and (KC-)XAES is almost
constant because the overhead for the key derivation and commitment does not depend
on the size of the plaintext.

Table 2 shows the percentage overhead for each mode in both the Intel® and AWS
Graviton4 platforms. Init is ∼60% slower for GCM since (KC-)XAES only includes
the K1 derivation. Encrypt and Decrypt starts much slower for (KC-)XAES for small
plaintexts and drops as the cost of the GCM initialization and KU , KC derivation
for every invocation of (KC-)XAES becomes insignificant compared to the cost of
encryption/decryption of the plaintext.

Table 3 compares the schemes for small plaintexts in an Intel® Xeon®Platinum
8375C. Init remains cheaper for (KC-)XAES. Encryption and decryption is still ex-
pensive for (KC-)XAES especially since the plaintexts are small. Note that the amor-
tization of the (KC-)XAES overhead compared to AES-GCM is not linear because
GCM’s performance also increases as the plaintext grows in size.
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Intel® Xeon®Platinum 8375C AWS Graviton4 - Neoverse V2
XAES vs GCM KC-XAES vs GCM XAES vs GCM KC-XAES vs GCM

Init -60.45% -59.70% -50.00% -48.78%

Encrypt

32B 180.46% 240.23% 134.83% 182.02%
1KB 71.69% 97.26% 64.40% 81.60%
16KB 11.88% 16.44% 4.65% 6.28%
1MB -0.55% -1.22% 0.12% 0.18%

Decrypt

32B 157.45% 217.02% 126.04% 168.75%
1KB 65.78% 91.56% 63.39% 79.92%
16KB 11.05% 14.69% 4.79% 6.38%
1MB 1.09% 0.62% -0.06% 0.12%

Table 2. (KC-)XAES impact comparison against AES-GCM with small and large
plaintexts in x86 64-based and AArch64-based platforms.

AES-GCM XAES KC-XAES
µs/op µs/op vs GCM µs/op vs GCM

Init 0.134 0.054 -60.29% 0.055 -59.56%

Encrypt

32B 0.087 0.247 183.91% 0.303 248.28%
128B 0.096 0.258 168.75% 0.313 226.04%
256B 0.123 0.285 131.71% 0.341 177.24%
512B 0.176 0.333 89.20% 0.388 120.45%
1KB 0.220 0.377 71.36% 0.429 95.00%

Decrypt

32B 0.092 0.250 171.74% 0.303 229.35%
128B 0.096 0.252 162.50% 0.306 218.75%
256B 0.116 0.269 131.90% 0.326 181.03%
512B 0.180 0.334 85.56% 0.388 115.56%
1KB 0.224 0.379 69.20% 0.433 93.30%

Table 3. AES-GCM, XAES, and KC-XAES cost with small plaintexts in Intel®

Xeon®Platinum 8375C.

To confirm that blockcipher-based key derivation is more performant that HMAC-
based key derivation, we also compared (KC-)XAES against HMAC-based derived key
modes. AES256 is generally one order of magnitude faster than HMAC in common
implementations. An HMAC derived key mode is described in [7] with a goal to pre-
vent frequent re-keying in high-scale cloud environments. HMAC-based key derivation
and key commitment implementations in our experiments included the exact same op-
erations in all Init, Encrypt and Decrypt operations of (KC-)XAES with the only
difference being the PRF function. Table 4 shows the experimental results. We can
see that when HMAC-SHA256 is used as the PRF instead of CMAC-AES256 for (KC-
)XAES key derivation and key commitment, both the Init and Encrypt/Decrypt op-
erations for messages up to 16KB introduce more overhead to GCM than the overhead
of (KC-)XAES (Table 2). When the plaintext increases to 1MB, the cost of AES-GCM
encryption and decryption diminishes the performance benefit of cheaper key deriva-
tion and commitment. Using other HMAC-based PRF functions like HKDF instead of
HMAC would be of similar or worse performance.
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AES-GCM H-AES-GCM H-KC-AES-GCM
µs/op µs/op vs GCM µs/op vs GCM

Intel® Xeon®Platinum 8375C

Init 0.136 0.142 4% 0.142 4%

Encrypt

32B 0.086 0.357 314% 0.501 481%
1KB 0.219 0.487 122% 0.637 191%

16KB 1.462 1.718 17% 1.882 29%
1MB 87.23 86.64 -1% 88.11 1%

Decrypt

32B 0.093 0.361 289% 0.506 445%
1KB 0.225 0.493 119% 0.640 184%

16KB 1.458 1.726 18% 1.879 29%
1MB 85.33 85.22 0% 85.10 1%

AWS Graviton4 - Neoverse V2

Init 0.083 0.091 10% 0.091 10%

Encrypt

32B 0.089 0.285 220% 0.395 344%
1KB 0.250 0.485 94% 0.594 138%

16KB 2.643 2.841 7% 2.951 12%
1MB 164.6 164.3 0% 164.8 0%

Decrypt

32B 0.096 0.290 202% 0.399 316%
1KB 0.254 0.487 92% 0.595 134%

16KB 2.587 2.784 8% 2.892 12%
1MB 160.8 160.4 0% 160.6 0%

Table 4. AES-GCM, HMAC-based Derived Key AES-GCM (H-AES-GCM), and
HMAC-based Derived Key and Key Committing AES-GCM (H-KC-AES-GCM) cost
with small and large plaintexts on x86 64 and AArch64 processors. H-(KC-)XAES is
shown much more expensive than CMAC-based (KC-)XAES in Table 2.

7 Conclusion

In conclusion, we revisited Valsorda’s XAES [14] and described how to add key com-
mitment to it, resulting in a scheme that we call KC-XAES. We showed that in the
ideal-cipher model, KC-XAES provides n-bit security against the FOR-KC key com-
mitment attacks of Farshim et al. [12]. We established usage- and data-bounds for
(KC-)XAES, and argued that these modes are FIPS-compliant. We confirmed XAES
is very performant, especially for larger plaintexts where the additional key deriva-
tion and/or key commitment are amortized over the encryption of the whole message.
Finally, we briefly discussed applications where KC-XAES would be suitable.
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"kdfMode":"counter",

"macMode":"CMAC-AES256",

"counterLocation":"before fixed data",

"counterLength":16,

For the KC derivation, the ACVP “KDF”//“1.0” module test will include

"kdfMode":"counter",

"macMode":"CMAC-AES256",

"counterLocation":"after fixed data",

"counterLength":8,

The module registration for both the KU and KC derivation will include

"supportedLengths":[ {"min":256, "max":256, "increment":1 } ]

The fixed data field in the ACVP test vector response will be

"fixedData":"0x5800⟨U⟩"

and

"fixedData":"0x58434D54⟨U⟩⟨V ⟩000100"

for the KU and KC derivation respectively.

Specification 1 KC-XAES with a 24-byte random nonce and a 256-bit key

Input: K[0 : 32], N [0 : 24], P , AAD
Output: C, T , KC [0 : 32]
1: T1 = AES256K(0x(00)16).
2: if MSB1(T1) = 0 then
3: K1[0 : 16] = T1≪ 1
4: else
5: K1[0 : 16] = (T1≪ 1) ⊕ 0x(00)1587 ▷ X ×AESK(0128)

6: end if
7: M1[0 : 16]← (0x00015800 ∥ N [0 : 12]) ⊕ K1[0 : 16]

8: KU [0 : 16]← AES256K(M1[0 : 16]) ▷ CMAC-AES256K(0x00015800 ∥ U [: 12])

9: M2[0 : 16]← (0x00025800 ∥ N [0 : 12]) ⊕ K1[0 : 16]

10: KU [16 : 32]← AES256K(M2[0 : 16]) ▷ CMAC-AES256K(0x00025800 ∥ U [: 12])

11: V [0 : 12]← N [12 : 24]

12: (C, T ) ← AES-256-GCM(KU [0 : 32], AAD, IV = V , P )

13: X1[0 : 16]← AES256K(0x58434D54 ∥ N [0 : 12])
14: W1[0 : 16]← X1[0 : 16] ⊕ (N [12 : 24] ∥ 0x00010001) ⊕ K1[0 : 16]

15: KC [0 : 16]← AES256K(W1) ▷ CMAC-AES256K(“XCMT”∥U ∥ V ∥ 0x00010001)
16: W2[0 : 16]← X1[0 : 16] ⊕ (N [12 : 24] ∥ 0x00010002) ⊕ K1[0 : 16]
17: KC [16 : 32]← AES256K(W2) ▷

CMAC-AES256K(“XCMT”∥U ∥ V ∥ 0x00010002)

18: KC ← KC [0 : 16] ∥ KC [16 : 32]
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B An extension that supports shorter nonces

Some constrained use-cases may not be able to use 24-byte nonce N or generate 24-byte
entropy fast enough. Such scenarios could benefit from slightly smaller b-byte nonces.
Figure 3 breaks down KC-XAES by using a b-byte nonce N [: b] instead of constant
24-bytes, where 20 ≤ b ≤ 24. To avoid trivial KC collisions between nonces of different
lengths under the same main key K, we redefine the two constants from Figure 2,
depending on the length b of the nonce, as const4 = ⟨24− b⟩ ∥ 0x010001 and const5 =
⟨24− b⟩ ∥ 0x010002. XAES as specified in Figure 2 follows exactly Figure 3 for b = 24.

0x0001 || “X” || 0x00 || U[:12]

AES256K

AES256K

0x0002 || “X” || 0x00 || U[:12]

256-bit AES-GCM Key 
K

“XCMT” || U[:12]

128 bits

128 bits

256-bit 
key KU

256-bit 
commitment Kc

K

K

128 bits

AES-GCM
KU

AAD

IV= V[:12]

Plaintext128 bits 128 bits 128 bits 128 bits

CMAC-AES256 subkey K1

CMAC-AES256 subkey K1

CMAC-AES256 subkey K1

AES256K

V[:12] ||<24-b>||0x0100||0x01

K
AES256K

128 bits

V[:12] ||<24-b>||0x0100||0x02
K

AES256K

CMAC-AES256 subkey K1

CMAC-AES256(0x0001||“X”||0x00||N[:12])
CMAC-AES256(“XCMT”|| U || V||0x<24-b>010001)

CMAC-AES256(“XCMT”|| U || V ||0x<24-b>010002)

C, T,  Kc

K

X1[:16]

b-byte 
nonce N

U[:12]=N[:12] V[:12]=N[b-12:b](24-b) 
bytes

CMAC-AES256(0x0002||“X”||0x00||N[:12])

M1[:16]

M2[:16]

W1[:16]

W2[:16]

Fig. 3. KC-XAES with a b-byte random nonce N and a 256-bit key, where 20 ≤ b ≤ 24

Note that when b < 24, N [b − 12 : 12] is used as-is in the AES-GCM IV, but it
passes through a pseudorandom permutation for deriving KU . The collision-resistance
analysis from section 5 applies to this setting too; using b < 24 does not affect the
key-collision security of KC-XAES. It is worth mentioning that even in the theoretical
scenario where b = 12, XAES is not less secure than plain AES-GCM. Additionally,
KC ’s derivation function remains a FIPS approved KBKDF [9, §4.1] as explained in
Section 4.3 with the fixed input data becoming “XCMT”∥U ∥ V ∥ ⟨24− b⟩ ∥ 0x0100.

Also, it is easy to adjust the data limit analysis from Section 4.2 to this case. For
example, for b = 20 we need to bound the number of messages encrypted under one
main key to at most 264 to ensure a nonce collision probability of 2−33. Setting the KU

re-occurrence bound m = 4, we get Pr[4-collisions] ≤
(
264

4

)
· 2−96·3 ≈ 264·4−96·3/4! ≈

2−36.6 < 2−32. We can therefore assume that there will be no four-way KU collisions for
the life of the main key K, which means that every data key KU will be used to encrypt
at most three messages. The data bound per message will then be min(X/3, 236), where
X is the use-case specific X-bytes-per-GCM-key limit as defined in Section 4.2.
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C Other Key Commitment Options

Additionally to the commitment scheme proposed in this work, we considered other
constructions, some of which had already been proposed in the literature.

C.1 Padding Fix

Since XAES uses AES-GCM for encryption, then perhaps the simplest way to add key-
commitment to it is using the GCM-specific padding-fix mechanism from [1]. Namely,
instead of computing just AES-GCMKU (V ;P ), prepend ℓ zero bits to the plaintext and
compute AES-GCMKU (V ; 0ℓ|P ). Albertini et al. proved in [1, Thm 1] that this yields
ℓ/2 bits of security, in the sense of FOR-KC. In particular, to get 128-bit security we
need to prepend two 128-bit blocks to the plaintext before encrypting it. Decryption
needs to verify that the plaintext begins with ℓ zeros, then remove those zeros and
return the rest of the plaintext.

In terms of performance, this proposal adds two blocks to the ciphertext, and uses
only two additional AES block encryption and two GF 128-bit block multiplication
operations. The practical disadvantages of padding key commitment is its lack of mod-
ularity and the requirement for the application layer to be aware of the encryption layer
which violates common programming abstractions. It also needs for decryption to take
place before the commitment string can be verified to confirm that the ciphertext was
produced with the expected key.

C.2 HKDF

The AWS ESDK and KMS have introduced key commitment by using HKDF with a
random 256-bit salt and an info string to generate a 32-byte commitment string.

KC = HKDFK

(
salt, ′′COMMITKEY′′, 32)

This is PRF-based key commitment as described in [15]. It achieves CMT-2 security
at the cost of the PRF performance. Given that CMAC-AES-based PRFs are much
more performant than HKDF, we chose to pursue the former in this work.

C.3 Using less bits for KC derivation

We considered further optimizing the performance of KC-XAES by using part of the
nonce N to produce the key commitment string. For example, we could use 120-bits
(N [: 15]) with an one-byte counter which would allow for KC to be generated with two
AES256 calls instead of three.

KC = CMAC-AES256K(0x01∥N [: 15]) ∥ CMAC-AES256K(0x02∥N [: 15])
= AES256K((0x01∥N [: 15])⊕K1) ∥ AES256K((0x02∥N [: 15])⊕K1).

Of course, that would mean we can encrypt up to 248 messages before a KC collision
with 2−32 probability.

[17,18] follow this approach. Gueron et al. consider the collision probability and
conclude that by limiting DNDK v2 to 250 queries, the collision probability remains
below 2−21 which is satisfactory as a KC collision reveals information about the re-use
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of the main key and part of the nonce, but it does not reveal information about the
plaintext. Although KC-XAES could have used part of the nonce for deriving the key
commitment string to save an AES256 call, we decided against it because because we
considered the performance advantage marginal versus the KC collision disadvantage.
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