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ABSTRACT
Neural contextual biasing for end-to-end neural ASR transducers has
shown significant improvements in the recognition of named entities,
such as contact names or device names. However, it comes with the
cost of increased compute, as the biasing layers (which are usually
based on cross-attention) add complexity to the neural transducers.
In this paper, we propose gated contextual biasing models that can
estimate at runtime when contextual biasing is needed and can toggle
it on or off. That way, contextual biasing does not run on every au-
dio frame, but only on the frames where it can be helpful for correct
ASR recognition. We show that our gated contextual biasing models
can maintain all the performance improvements of contextual bias-
ing while offering significant compute-cost saving, as the contextual
biasing needs to be executed for fewer than 15% of the audio frames.

Index Terms— personalization, neural transducer, contextual
biasing, end-to-end, contact name recognition

1. INTRODUCTION

End-to-end (E2E) ASR models are gaining increased interest due
to their ability to outperform hybrid HMM-DNN systems, when
sufficient training data is available [1]. They are usually based on
neural transducers, such as the recurrent neural network transducer
(RNN-T) [2], transformer [3] or conformer-transducer (C-T) [4, 5].
However, they still struggle to recognize personalized words that are
uncommon and appear rarely in the training data, such as contact
names, proper nouns, device names, and other named entities. Ex-
amples of such personalized interactions include utterances such as
“call [Contact Name]” or “turn on [Device Name]”.

Prior work to integrate personalized context can be broadly cat-
egorized into two classes: post-training integration and in-training
integration [6–12]. The first category is only applied during infer-
ence and includes integration of external language models, such as
shallow-fusion [9,13] and on-the-fly re-scoring [14], which construct
n-gram weighted finite state transducers (WFSTs) in order to boost
contextual entities. The second class includes approaches that per-
form neural contextual biasing on the E2E ASR model [7,15–17]. A
popular approach is the contextual LAS model [7], which encodes
contextual entities through a bias encoder and uses a location-aware
attention mechanism to bias the ASR model towards them. Neural
contextual biasing was later introduced for RNN-T and transformer
transducers in [10, 15, 16]. These approaches train the neural trans-
ducer (augmented by a contextual biasing module) from scratch in
order to boost contextual entities (via an attention mechanism) that
are encoded using a catalog encoder. The approaches were later ex-
tended in [17], which proposed contextual adapters that are faster,
cheaper to train and more data efficient through the use of a pre-
trained neural transducer and an adaptation stage.

Neural contextual biasing has been shown to outperform post-
training approaches like shallow-fusion and provide significant
improvements on datasets containing named entities (henceforth
referred to as “contextual entities”). The performance on generic
speech datasets (that do not contain contextual entities) is maintained
through the addition of a < no-bias > token in the contextual enti-
ties, which teaches the neural adapter not to bias when no contextual
entity is present in the utterance. However, the neural biasing mech-
anism increases the complexity of the neural transducer architecture.
While false-biasing is avoided with the use of the < no-bias > to-
ken, the biasing mechanism, which is based on scaled dot-product
attention, has to run on every frame, increasing the computational
complexity and the latency of the overall system. This is even more
pronounced as the number of contextual entities increases, which
requires the biasing mechanism to attend over several hundreds or
even a few thousands of entities.

We propose training gated contextual adapters to reduce the
compute cost of contextual biasing. This can be especially desirable
for cases where the ASR model runs on devices with limited re-
sources and compute capabilities. We extend the contextual adapters
proposed in [17] by enabling them to toggle on and off based on
whether a specific frame needs to be biased towards the contextual
entities or not. This adds a form of dynamic compute, which has
found use in other speech recognition applications [18–21]. We
show that our gated contextual adapters can maintain all the accu-
racy improvements that come from contextual (non-gated) biasing
while offering significant compute-cost savings as the adapter needs
to be activated for less than 15% of the audio frames.

2. CONTEXTUAL NEURAL TRANSDUCERS

Neural transducer E2E ASR models typically consist of an encoder
network, a prediction network and a joint network. The encoder con-
sumes the T input audio frames xt = (x0, · · · , xt) and produces
high-dimensional representations henc

t . The prediction network con-
sumes previously predicted word-pieces yu−1 = (y0, · · · , yu−1)
and outputs hpred

u . The joint network first combines henc
t and hpred

u

via a joint operation and passes the output through a series of feed-
forward layers with activations and a final softmax in order to pro-
duce the probability distribution over word-pieces. The encoder and
decoder are typically stacked RNN layers [2], transformer [3] or con-
former [4,5] blocks. The model is trained with the RNN-T loss using
the forward-backward algorithm [2].

The contextual adapters, proposed in [17], augment the neural
transducer by adding two components: an encoder for a catalog of
contextual entities (catalog encoder) and a biasing adapter (shown in
blue in Figure 1). The catalog encoder is responsible for embedding
the list of contextual entities into encoded representations (hence-



Fig. 1: Training architecture of the gated contextual adapters.

forth referred to as “entity embeddings”). The entities are tokenized
into word-pieces and are passed through an embedding lookup and
a series of BiLSTM layers. To avoid biasing when a contextual
entity is not present, the list of entities is augmented by a special
< no-bias > token. For K catalog entities C = [c1, c2, · · · , cK ],
the catalog encoder produces Ce = [ce1, c

e
2, · · · , ceK ] entity embed-

dings. The biasing layer is responsible for adapting the neural trans-
ducer’s intermediate representations based on the entity embeddings.
This is done by a cross-attention mechanism to attend over the Ce

entity embeddings based on the input query representation q (typi-
cally the encoder outputs henc

t ). The attention score αi is computed
for each entity i using scaled dot-product attention. Based on the at-
tention scores, the weighted sum of the value embeddings (obtained
by a linear projection Wv of the entity embeddings) is computed as
bt =

∑K
i αiWvc

e
i . The biasing vector bt is used to update the in-

termediate representations of the neural transducer ASR model. This
is done by linearly projecting it to the dimensions of the intermedi-
ate representation and adding it to the intermediate representation,
resulting in the updated representation ĥenc

t

3. GATED CONTEXTUAL ADAPTERS

We augment the contextual adapters with a gating layer, as shown
in Figure 1. The gating layer informs whether contextual biasing is
needed for an audio frame. During inference, the gating layer can
toggle contextual biasing on or off. The gating layer is lightweight
and can be trained in an adaptation stage using a pretrained con-
textual neural transducer (grey and blue blocks in Figure 1), thus
making it easy and cheap to train. Note that we use the encoder rep-
resentation to perform biasing; however, our approach is applicable
to any intermediate representation (decoder or joint network states).

3.1. Gating layer

The gating layer takes the intermediate representation henc
t and

passes it through a feed-forward layer with tanh activation. The
output is projected to a scalar through another feed-forward layer
and a sigmoid activation is applied to get a weight, ωt ∈ [0, 1]:

zt = tanh(W1h
enc
t + b1) (1)

ωt = sigmoid(W2zt + b2) (2)

Here, W1, W2, b1, and b2 are learnable weights. The gating layer
produces a scalar weight ωt (gate), for every audio frame, that con-
tains information about how big the contribution of the bias vector
has to be in the neural transducer intermediate state.

3.2. Gated adapter training

During training, the output weight ωt of the gating layer is multiplied
by the bias vector bt and the intermediate encoder representation is
updated via element-wise additions as:

ĥenc
t = henc

t + ωt ∗ bt (3)

This way the gating layer scales (or gates) the contribution of the
contextual adapter to the intermediate neural representation.

By design, the gated contextual adapter is built by auxiliary
training of the gating layer. The neural transducer and contextual
adapter (shown in grey and blue in Figure 1) are initialized by a pre-
trained contextual neural transducer. The pretrained parameters are
kept frozen, while the gating layer is initialized randomly and trained
from scratch. Since the gating layer interacts with the biasing layer
only with a multiplication with the scalar weight wt, the pretrained
contextual ASR model architecture can remain the same. Thus, it
allows for a fast and cheap integration of the gated neural adapter,
as only the gating layer needs to be trained for a small number of
epochs.

3.3. Loss function

The gated contextual adapter is trained by enhancing the RNN-T
loss with a regularization term. The goal is to teach the model that
when no contextual biasing is needed, the weights that are output
by the gating layer must be small. We investigate two different loss
configurations:

L = LRNN−T +
λ

T

T∑
i=1

ωi (4)

L = LRNN−T +
λ

T

T∑
i=1

ω2
i (5)

Eq. (4) performs ℓ1-regularization to the weights of the gating layer,
while Eq. (5) performs an ℓ2-regularization. The loss penalizes high
weight values and incentivizes the network to deactivate the biasing
layer more often. The hyperparameter λ controls how aggressively
the model prioritizes on outputting small weights over maintaining
the accuracy of the contextual adapter.

3.4. Inference

During inference, the weight acts as a gate to toggle the biasing layer
on and off. A hard-thresholding operation is applied to the weight
and the neural transducer intermediate state is updated as follows:

ĥenc
t =

{
henc
t , if ωt <= ϵ

henc
t + bt, otherwise

(6)

The above rule implies that when the gating weight is less than
a pre-defined threshold ϵ, the biasing layer can be switched off com-
pletely. Since the biasing layer is based on an attention mechanism
in which the keys (i.e., entity embeddings) can be of a large dimen-
sion, this in turn saves compute cost (and thus latency).
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Fig. 2: Relative WER reduction (WERR) compared to a non-contextual neural transducer and % of frames where the contextual adapter is
executed for different gated contextual adapter models.

4. EXPERIMENTAL SETUP

Datasets. We use in-house de-identified far-field datasets from voice
assistant traffic, consisting of audio and corresponding transcrip-
tions. The training set to train the baseline neural transducer model
contains ∼ 114k hours of data. For training the neural adapters and
the gating layers we use 290 hours of data that contains a mix of spe-
cific and general training data in a ratio of 0.4:1. Specific datasets
contain utterances in the Communication domain with mentions of
named entities (NE), e.g., proper names that can be used for biasing.
General utterances are sampled from the original training data dis-
tribution. We evaluate our models and report results on two test sets:
a specific (NE) test set of 22 hours and a general test set of 75 hours.
Evaluation metrics. As evaluation metrics, we report the relative
word error rate reduction (WERR) on the two test sets. Given a
model A’s WER (WERA) and a baseline model B’s WER (WERB),
the WERR of A over B is WERR = (WERB − WERA)/WERB .
Higher values indicate better performance. A negative value indi-
cates degradation compared to the baseline. WERR is reported rela-
tive to the baseline neural transducer with no contextual biasing. For
the gated contextual adapter models, we also report the fraction of
frames where the biasing layer will need to be executed, as a proxy
of the compute-cost reductions of gated contextual biasing.
Baseline neural transducer. We use a conformer-T [4, 5], which
was trained on ∼ 114k hours of randomly sampled general voice
assistant data. The input features are 64-dimensional Log-filter bank
energies (LFBEs) extracted by segmenting utterances with a window
of 32 ms and frame rate of 10 ms. We use a left context of 3 frames,
resulting in 192-dimensional input feature vectors, with a skip rate
of 3 frames. The features are normalized with global mean and
variance. The conformer encoder network consists of two convo-
lutional layers followed by 14 conformer blocks. The convolutional
layers have 128 kernels of size=3 and strides=2 and 1 for the first
and second convolutional layer, respectively. Each conformer block
contains a feed-forward network module with 1024 units, a convo-
lutional module with kernel size 15 and an attention module with 8
64-dimensional attention heads. All convolutions and attentions are
computed on the current and previous audio frames to make the en-
coder streamable. The prediction network consists of 2 LSTM layers
with 1024 units. The output of the encoder and decoder are projected
to 512 units. The joint network consists of a feed-forward layer of
512 units. A 4k word-piece tokenizer [22] is used to create the out-
put tokens. During decoding we perform the standard conformer-T
beam search with a beam size set to 8. The total parameters of the
model is 81M. For training, we used the Adam optimizer with varied

learning rate following [3, 23].
Baseline contextual adapter. For the contextual adapters, the cat-
alog encoder is a Bi-directional LSTM with 128 units with an input
size of 64. The final output is projected to a 64-dimensional rep-
resentation. The biasing layer projects the query, key, and values
into 128 dimensions and the final biasing vector is projected to the
same output as the encoder intermediate representation using a lin-
ear projection. For training the neural adapters we used the Adam
optimizer with a learning rate of 1.2e-3. The models are trained with
early stopping. During training the maximum catalog size (i.e., enti-
ties in the catalog encoder) is set to 100 in order to fit in memory.
Gated contextual adapter. For the gating layer we use a feed-
forward layer with 128 units. The output is consumed by a second
feed-forward layer that outputs the weight ωt. We use the same spe-
cific and general training sets to train the gated adapter as we used
for the baseline contextual adapter. We used an Adam optimizer with
a learning rate of 1.2e-3. Note that the gating layer is trained on an-
other adaptation stage using a pretrained contextual ASR (i.e., neural
transducer + catalog encoder + biasing layer) model. Thus, the neu-
ral transducer is trained first and used as a pretrained model to train
the catalog encoder and biasing layer, through an adaptation step.
This model is then used as pretrained model (keeping its parameters
frozen) in order to train the gating layer at a second adaptation step.
The gating layer is comprised of only 65K parameters which is less
than 0.1% of the total parameters of the model and less than 12% of
the contextual adapter. During the second adaptation, the maximum
catalog size is again set to 100. During inference, all the contextual
adapters use a variable catalog size (based on the number of named
entities available for each utterance), with a maximum catalog size
of 5K. The mean catalog size is 1500 entities.

5. RESULTS

Figure 2 presents the results of different gated adapter models for
different operating thresholds ϵ. The models were trained with dif-
ferent loss configurations (Eq. (4) and (5)) and various settings for
the hyperparameter λ. It can be observed that all models can achieve
similar WERR on named entities as the baseline contextual adapter
with no gating (black line), for thresholds up to 0.5 (Figure 2a). Af-
ter 0.5, the performance improvements start to deteriorate, with the
models trained on ℓ2 regularization deteriorating much faster. The
reason is that as we become more aggressive in toggling the con-
textual adapter off, frames that benefit from contextual biasing are
not biased anymore. In terms of ℓ1 versus ℓ2 regularization, it is ex-



Table 1: Ablation. Hard- vs. soft-thresholding during inference

WERR (%)
Named Entities General

Soft 26.23 -1.33
Hard, ϵ = 0.1 26.05 -1.66
Hard, ϵ = 0.3 26.05 -1.50

pected that ℓ1 will have superior performance as it is popularly used
to induce sparsity, i.e. push the gating weights close to zero. Re-
garding the WERR in the general dataset (Figure 2b), we observe a
degradation of 3% for the original contextual adapter with no gating.
This degradation is consistent with the results presented in [17] and
shows a small degree of false-biasing. However, the gated contex-
tual adapters are able to offer improved performance, reducing the
degradation of the original contextual adapter with no gating. This
shows that the model learns to toggle the adapter off when no context
is present and avoids false-biasing.

Figure 2 also shows the fraction of time frames where the model
chooses to perform biasing for the specific (Figure 2c) and general
(Figure 2d) datasets. As expected, the fraction of frames where the
adapter is enabled is decreased with increasing ϵ. Note that the frac-
tion of frames to bias are much smaller in the general dataset, which
validates that the gated adapter is learning to toggle on or off based
on the presence of context. Comparing different values of λ, the
tradeoff between performance and how aggressively the adapter is
disabled is evident. Smaller values of λ are able to maintain perfor-
mance better (especially for large threshold values) at the expense of
running the contextual adapter on a larger number of frames.

Overall, the best performance is achieved for the models trained
with the ℓ1 regularization term and λ = 0.5 and 0.3. The models
are able to maintain all the improvements gained by the contextual
adapter with no gating and only run the biasing layer for less than
15% of frames for the specific dataset and less than 4% of the frames
for the general dataset. This translates into significant compute cost
savings, as for over 85% (specific) and 96% (general) of frames the
contextual biasing can be switched off and recognition can be exe-
cuted by the neural transducer alone. For all subsequent experiments
we use the gated adapter model with ℓ1 regularization and λ = 0.5.
Reducing false-biasing. Motivated by the results in Figure 2b, we
further investigate the ability of the gated adapters to reduce false-
biasing in general test sets. Figure 2e compares the performance of
the original adapters [17] and the proposed gated adapter in the gen-
eral test set for different catalog sizes. As observed in [17], there
is a small degradation, that becomes more evident as the number
of contextual entities becomes larger. However, the gated contex-
tual adapters are able to reduce the degradation, offering improved
performance. The reason is that the model toggles the adapter com-
pletely off when biasing is not needed, which avoids false-biasing.
Impact of hard-thresholding during inference. To evaluate the
effects of gating with a hard-threshold on ωt during inference, we
evaluate the gated contextual adapter by running inference with a
soft-threshold. Instead of performing the hard-thresholding oper-
ation in Eq. (6), we simply multiply the weight with the biasing
vector as we do when training the gated adapter in Eq. (3). The
results are shown in Table 1 which validates that hard-thresholding
does not negatively impact the model for small thresholds: marginal
differences are observed between the two inference modes.
Impact of regularization term. To evaluate the importance of the
regularization term in the loss function, Table 2 compares the gated
biasing adapter (ℓ1, λ = 0.5) to a gated biasing model we trained

Table 2: Ablation. Effect of regularization term in gated adapters

WERR (%) % frames, biasing “on”
Named Ent. General Named Ent. General

ϵ = 0.1 26.05 -1.66 14.74 3.48
w/o reg. 26.05 -2.83 99.9 99.88

ϵ = 0.99 22.21 -0.67 6.73 0.56
w/o reg. 19.29 -2.00 64.52 66.34

(a) “call harry potter”

(b) “call mom”

Fig. 3: Visualization of the gate values

Table 3: Original contextual adapter gating using no-bias entity

WERR (%) % frames, biasing “on”
Named Ent. General Named Ent. General

Org. CA (no gating) 26.14 -3.00 100 100
Org. CA (gating) 25.59 -1.0 35.70 6.21

just on the RNN-T loss (not including regularization). We can ob-
serve that for the same thresholds, the model without regularization
achieves similar or worse performance, while selecting to bias al-
most all (ϵ = 0.1) or more than 50% of the frames (ϵ = 0.99).
Gating ability of original contextual adapters. We study the abil-
ity of the original contextual adapter [17] to perform gating, based
on the value of the < no-bias > entity which is present in the con-
textual entities. To do that, we do not perform biasing in the frames
where the < no-bias > entity has the maximum attention score
over all entities. Table 3 shows that this form of gating can provide
some level of discrimination between contextual and non-contextual
frames; however, our proposed gated adapters outperform it by pro-
viding a lower number of frames where the adapter is activated. Note
also, that this form of gating does not come with any compute-cost
savings, since in order to estimate the no-bias score, we need to run
the attention module, which is the biggest source of added complex-
ity in the contextual adapters.
Visualizations. Finally, Figure 3 shows the gating values (ϵ = 0.1)
for every frame during decoding for two contextual utterances taken
from the specific test set. It can be clearly seen how the gates are
activated (white color) in the frames corresponding to the contex-
tual entity “harry potter”, which validates that our gated contextual
adapters are learning to toggle the adapter on based on context. Also
note that while “mom” is provided as a contextual entity, the token
can be easily recognized by the transducer without biasing and the
gate toggles the adapter off. This validates that the gated adapter is
learning to toggle on and off, based both on context and confidence.

6. CONCLUSION

We proposed gated contextual biasing of E2E ASR neural transduc-
ers as a way to reduce compute cost of contextual ASR models. We
trained a contextual adapter that can learn to toggle contextualization
on or off based on the presence of context and showed that we can
maintain all the performance improvements of contextual biasing by
only performing biasing on less than 15% of the audio frames.
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