
CASPER: Bridging Discrete and Continuous Prompt Optimization through
Feedback-Guided Gradient Descent

Aryan Jain, Pushpendu Ghosh, Promod Yenigalla

RBS Tech Sciences, Amazon
{arynjn, gpushpen, promy}@amazon.com

Abstract

Workflow automation is critical for reduc-
ing manual efforts in industries, yet existing
pipelines fail to handle generative tasks like
summarization and extraction without pre-built
tools, forcing human intervention. While LLM-
based agents offer solutions, their creation
depends heavily on prompt engineering—a
resource-intensive process often yielding sub-
optimal results. Current automated approaches
face a fundamental trade-off: discrete optimiza-
tion produces overfitted prompts without con-
vergence guarantees due to non-convex land-
scapes, while continuous gradient-based meth-
ods generate semantically incoherent prompts
through embedding optimization. We pro-
pose CASPER, a framework bridging discrete
and continuous prompt optimization through
feedback-guided gradient descent in embed-
ding space. CASPER employs a feedback
module producing detailed error analyses that
capture failure modes as optimization signals.
These insights are projected with prompt to-
kens into embedding space to steer gradient
descent. To preserve interpretability, we incor-
porate fluency regularization that penalizes in-
comprehensible tokens. We further accelerate
convergence through synthetic data generation
that oversamples failure cases, while also ad-
dressing data scarcity in industrial settings. We
evaluate CASPER on WDC, DROP, GSM8K
with F1 improvements of 2.3%, 1.6%, 2.3%
and VQA, internal benchmarks showing accu-
racy improvements of 1.1%, 3%, demonstrating
cross-domain generalizability.

1 Introduction

Modern industries are increasingly shifting towards
automation of redundant workflows through agen-
tic solutions. However, they face a fundamental ob-
stacle: workflows now depend on generative AI ca-
pabilities—summarization, information extraction,
and content generation which are non-deterministic
in nature. While Large Language Model (LLM)

agents offer a path toward end-to-end automation,
their effectiveness critically hinges on prompt en-
gineering, a process demanding extensive manual
effort, domain expertise, and costly iterative refine-
ment to achieve task-optimal performance.

This challenge persists despite recent automated
prompt optimization advances. Discrete optimiza-
tion approaches (Zhou et al., 2023; Yang et al.,
2024) iteratively refine prompts through LLM-
generated feedback, but the non-convex optimiza-
tion landscape offers limited control, frequently
yielding overly complex, suboptimal prompts with-
out convergence guarantees. Continuous opti-
mization methods (Wen et al., 2023; Pryzant
et al., 2023) learn soft prompt embeddings through
gradient-based optimization, enabling targeted
search through continuous embedding space. How-
ever, these produce model-specific prompts that
hamper cross-model portability and often yield in-
comprehensible results, impacting scalability and
interpretability.

Our key insight is that discrete and continuous
prompt optimization approaches are complemen-
tary; by representing prompts as continuous embed-
dings and optimizing via gradients while injecting
the LLM’s textual feedback about its errors to ac-
celerate convergence to the optimal prompt, we
treat it as a co-optimization problem where textual
feedback guides gradient descent toward effective
convergence.

Our main contributions include: 1) A novel
framework combining textual feedback as optimiza-
tion signals for gradient-based prompt refinement,
enabling faster convergence than continuous meth-
ods. 2) A failure amplification data generation
strategy that synthetically boosts error case distri-
butions, accelerating gradient optimization while
also making it achievable with sparse industrial
datasets. 3) A fluency-preserving loss function that
penalizes random token insertion during gradient
descent, ensuring optimized prompts remain com-

prehensible and editable.
Comprehensive evaluation across diverse bench-

marks — WDC, DROP, GSM8K and VQA demon-
strate broad applicability showing substantial im-
provements in execution accuracy with lesser roll-
out budget.

2 Related Works

Discrete prompt optimization: These methods
iteratively refine prompts through search-based
strategies. APE (Zhou et al., 2023) employs Monte
Carlo search, OPRO (Yang et al., 2024) frames
optimization as meta-optimization using error feed-
back, EvoPrompt (Guo et al., 2024) applies evolu-
tionary algorithms, and PromptAgent (Wang et al.,
2024) uses expert trajectories. DSPy (Khattab et al.,
2024) introduces a programmatic framework com-
piling declarative pipelines into optimized prompts
through bootstrapping. However, the exponential
token space creates non-convex landscapes prone
to local minima, often requiring hundreds of it-
erations without convergence, producing overly
complex prompts that overfit and generalize poorly
(Fernando et al., 2024).

Continuous prompt optimization: Gradient-
based methods address discrete optimization’s in-
efficiencies by operating in continuous embed-
ding space. Prefix-tuning (Li and Liang, 2021)
and prompt-tuning (Lester et al., 2021) learn soft
prompts through backpropagation, while Auto-
Prompt (Shin et al., 2020) uses gradient-guided to-
ken substitution. BBT (Sun et al., 2022) and BDPL
(Deng et al., 2022) perform black-box gradient esti-
mation. These methods produce embeddings lack-
ing semantic coherence that cannot be decoded into
interpretable prompts (Wen et al., 2024), hindering
cross-model transfer (Khashabi et al., 2022).

Recent works try to bridge both paradigms.
GrIPS (Prasad et al., 2023) alternates between gra-
dient descent and discrete projection but struggles
with fluency. InstructZero (Pryzant et al., 2023)
combines Bayesian optimization with soft tuning
but requires extensive meta-learning. RLPrompt
(Deng et al., 2022) uses reinforcement learning,
though credit assignment remains challenging.

3 CASPER

Let Dseed = {(xi, yi)}Ni=1 denote a seed dataset of
input contexts x and task-specific targets y. Our
goal is to synthesize a prompt P = (t1, . . . , tL)
from a given task description t that, when provided

to an LLM M , maximizes task performance. We
represent prompts in both discrete token space and
as continuous embeddings z = ϕ(P) ∈ Rd, en-
abling gradient-based optimization while incorpo-
rating discrete textual feedback signals f from the
LLM on failure cases. The optimization objective
is:

min
z

Ltask(z;D) + λfluencyLfluency(z) (1)

where Ltask is the primary task loss and Lfluency(z)
penalizes uninterpretable tokens.

Figure 1 illustrates the CASPER framework ar-
chitecture. In workflow automation, individual
steps explicitly specify actions (e.g., Produce con-
cise summaries of positive signals and highlight
root causes of negative signals). We use this de-
scription as our initial prompt P0. since individual
steps may lack sufficient context about the task.

The CASPER framework consists of three inter-
connected modules operating iteratively:

1. Feedback Generation Module (Mf): An-
alyzes error cases Ei = {(xj , yj , ŷj) | ŷj =
Mθ(xj , Pi), ŷj ̸= yj} to generate textual feed-
back f (i) = Mf (Ei, Pi | Di) describing com-
mon failure patterns and potential improve-
ments.

2. Failure Amplification Data Generation
Module (MD): Augments the seed dataset
to mitigate data sparsity while expanding the
distribution of failure scenarios via Dtrain =
Dseed ∪ MD(Dsuccess, Ei), where MD sam-
ples synthetic examples (x′, y′) informed by
the current error distribution.

3. Soft Prompt Optimization Module (Ms):
Optimizes the prompt by leveraging textual
feedback and augmented data. The optimiza-
tion is performed in continuous embedding
space ϕ(P) ∈ Rd using gradient descent.

3.1 Feedback Generation Module
Recent studies demonstrate that textual feedback
from LLMs regarding their failures significantly en-
hances prompt optimization, providing rich learn-
ing signals when combined with quantitative met-
rics (Pryzant et al., 2023; Fernando et al., 2023).
This feedback provides several advantages: (1) it
acts as a signal offering directional guidance by
identifying critical points of error in the prompt,
(2) it provides a comprehensible way of changing

Figure 1: Illustration of how CASPER bridges the gap between continuous and discrete optimization, enabling the
generation of more optimal prompts.

the prompt allowing for better knowledge on how
prompt evolution is happening, and (3) it provides
interpretable optimization trajectories for tracing
decisions regarding prompt updates.

This motivates us to use the textual feedback
signal as a source for guiding the gradient descent
and enable faster convergence.

Formulation. Let D = {(xi, yi)}Ni=1 denote
input-output pairs where xi ∈ X and yi ∈ Y . Let
Pk ∈ P denote the prompt at iteration k in the dis-
crete prompt space P . The target LLM is modeled
as Mθ : P × X → Y with fixed parameters θ.

At iteration k, we evaluate Pk on batch Dk ⊆ D
to obtain predictions ŷi =Mθ(Pk, xi). Using task-
specific metric E : Y × Y → [0, 1], we identify
failures:

Fk = {(xi, yi, ŷi) | E(yi, ŷi) < th, (xi, yi) ∈ Dk}
(2)

where th is the threshold below which a prediction
is classified as erroneous. A critic LLM Mϕ then
generates feedback:

f (k) = Mϕ(Pcritic, Pk,Fk) (3)

where Pcritic instructs the critic to analyze failures
and f (k) is the textual feedback. This feedback,
combined with performance metrics, informs Pk+1

generation until convergence.

Feedback format. We cluster failures into cat-
egories with descriptions, patterns, and examples
that guide correction. The critic prompt is in Ap-
pendix A.5. Each cluster follows:

Error Cluster Template

Cluster [number]: Temporary name based on error pat-
tern
Pattern: Common error pattern description
Error Samples: Cases belonging to this cluster
Key Features: Distinctive characteristics

The idea behind clustering errors in this way
is to reduce the complexity in textual feedback
while incorporating all error scenarios in a compact
manner.

3.2 Failure Amplification Module

Gradient descent optimization generally requires
large training samples and significant iterations to
converge which is impractical for industrial work-
flow automation where testing and failing quickly
are key to building new systems. To accelerate con-
vergence and reduce rollout budgets, we propose
a failure amplification module which oversamples
error-prone cases. Let Dseed = {(xi, yi)}Ni=1 de-
note the original dataset.

Implementation: Given prompt P0 and seed
dataset Dseed, we identify initial failures Fk as
given by eq 2. We then construct the amplified
training set by sampling with replacement:

Dtrain = Dseed ∪ Sample(Dsuccess, α · |Derror|) (4)

where α ≥ 0 determines the replication factor and
Sample is a sampling function where we randomly
select samples from the distribution with replace-
ment. This biases the optimization process toward
correcting systematic errors while maintaining di-
versity from correct examples.

Validation and Hyperparameter Selection:
We retain Dseed as the validation set to ensure per-
formance is measured on the original data distri-
bution, preventing overfitting to the modified dis-
tribution and providing an unbiased estimate of
generalization. The resampling ratio α balances
error sample weightage against distribution preser-
vation: higher values accelerate convergence but
risk distribution shift, while lower values maintain
the original distribution but may require more iter-
ations.

3.3 Soft prompt optimization module
Gradient based methods have shown to produce
more targeted and optimal prompts in the past. The
idea of learning embeddings by minimising an ob-
jective loss function and projecting those learned
embeddings to the discrete token space to give an
optimal prompt has shown promising results. We
use these works as motivation to build upon our
solution.

Embedding Projection. We map the discrete
prompt Pk and feedback fk into a shared continu-
ous embedding space. Let Eenc : L → Rd denote
a learnable encoder that projects natural language
text into a d-dimensional latent space:

zk = Eenc(Pk), zf = Eenc(f
(k)) (5)

where zk, zf ∈ Rd are the prompt and feedback
embeddings, respectively.

Optimization Architecture. We construct a
composite representation by concatenating prompt
and the textual feedback, separated by a fixed token
< s >:

zcombined = [zk; Eenc(< s >); zf] (6)

This combined embedding is passed through an
encoder-decoder MLP Gψ parameterized by ψ:

zk+1 = Gψ(zcombined) (7)

The output embedding zk+1 is then decoded back
to natural language via a learned decoder Ddec :
Rd → L to obtain the refined prompt:

Pk+1 = Ddec(zk+1) (8)

Training Objective. We optimize the encoder-
decoder parameters {ψ, θenc, θdec} via backpropa-
gation to minimize a task-specific loss Ltask evalu-
ated on training set Dtrain:

min
ψ,θenc,θdec

E(x,y)∼Dtrain [Ltask(y,Mθ(Pk+1, x))]

(9)

This gradient-based approach enables end-to-end
learning of the embedding space and transforma-
tion function, directly optimizing for task perfor-
mance while incorporating structured feedback
from the critic model. For text-to-text tasks, we
employ cosine similarity as the primary loss func-
tion. Let ey and eŷ denote the embeddings of
ground-truth output y and predicted output ŷ =
Mθ(Pk+1, x). The task loss is:

Ltask(y, ŷ) = 1−
ey · eŷ

∥ey∥∥eŷ∥
(10)

However, soft prompt optimization is prone to
generating random tokens that render prompts un-
interpretable. We provide an example for this in
Table 8 in Appendix. This occurs due to the discon-
nect between the learned continuous embedding
space and the discrete token space—optimized em-
beddings may drift to regions far from any valid
token embedding. To address this, we introduce a
fluency regularization term that constrains learned
embeddings to remain proximal to the discrete to-
ken manifold.

Let V = {v1, . . . ,v|V|} denote the vocabulary
embedding matrix. We use the same vocabulary
as used by the encoder and decoder to maintain
uniformity. For each learned embedding zk+1, we
compute the distance to its nearest token embed-
ding:

Lfluency(zk+1) = min
v∈V

∥zk+1 − v∥2 (11)

The complete training objective combines task per-
formance with fluency regularization:

min
ψ,θenc,θdec

E(x,y)∼Dtrain

[
Ltask

(
y,Mθ(Pk+1, x)

)
+ λfluency Lfluency(zk+1)

]
(12)

where λ > 0 controls the strength of the fluency
constraint.

4 Experiments

We evaluate CASPER across five diverse datasets:
Text-based Tasks: (1) WDC Product Cor-

pus (Brinkmann et al., 2024) for product at-
tribute extraction from e-commerce descriptions;
(2) DROP (Dua et al., 2019) for reading compre-
hension requiring discrete reasoning over text pas-
sages, including numerical operations and multi-
hop reasoning; (3) GSM8K (Cobbe et al., 2021)
for multi-step mathematical reasoning problems

Dataset Metrics Manual Prompting Discrete Prompt Optimisation Soft Prompt Optimisation CASPER* CASPER

Claude
4.0 Sonnet

Claude
3.7 Sonnet

Claude
3.5 Haiku

DeepSeek+ GPT-4o IPC APE OPRO PEZ RLPrompt (w/o reg.)

WDC P 82.3 81.7 78.5 79.2 83.1 84.2 85.7 86.4 87.8 88.9 90.2 87.6
R 79.8 80.2 76.4 77.8 81.2 82.5 83.9 84.7 86.3 87.5 89.1 86.8
F1 81 81 77.4 78.5 82.1 83.3 84.8 85.5 87 87.2 89.6 87.2

DROP P 90.2 91.5 87.3 88.6 92.1 91.8 92.5 93.2 94.1 94.8 95.7 94.3
R 88.7 89.8 85.9 87.1 90.4 90.2 91.1 91.7 93 93.3 94.5 92.9
F1 89.4 90.6 86.6 87.8 91.2 91 91.8 92.4 92.3 93.5 95.1 93.6

VQA Acc 76.8 77.5 72.1 73.9 78.2 78.9 80.3 81.5 82.7 83.6 85.9 84.1

GSM8K Acc 92.8 93.2 88.5 90.1 92 93.5 94.2 95 95.8 96.2 97.3 96.5

Internal Acc 71.3 72.8 68.2 69.5 73.4 74.1 75.8 77.2 78.4 79.6 82.6 80.7

Table 1: Comparison of CASPER with other state-of-the-art approaches. CASPER* denotes ablation without fluency
regularization. DeepSeek+ refers to DeepSeek-R1-Distill-Qwen-32B. While CASPER* achieves highest accuracy
through unrestricted continuous optimization, CASPER (Full) trades marginal performance for interpretable prompts

requiring arithmetic computation and logical rea-
soning chains. Vision-Language Tasks: (4)
VQA (Agrawal et al., 2016) for visual question
answering over image-question pairs (5) Expiry-
Date (internal) for identifying expiration dates
from product images in various formats, compris-
ing 150 annotated samples with varying image
quality and orientations. We randomly sample
100 instances from the training set of each pub-
licly available dataset and use official test sets. For
Expiry-Date, we use a 100/50 train-test split.

5 Results and Discussions

Figure 2: Prompt length evolution demonstrating
CASPER’s efficiency-quality trade-off. Discrete meth-
ods (dashed) rapidly converge to complex prompts (220-
280 tokens, <50 iterations), while gradient methods
(dash-dot) slowly reach 140 tokens in 250 iterations.
CASPER achieves comparable quality in 120 itera-
tions—52% fewer than continuous optimization.

CASPER achieves superior performance
without fluency regularization. Table 1 demon-
strates that CASPER without fluency loss out-
performs all state-of-the-art methods across both
discrete and continuous prompt optimization
paradigms, achieving 2.4% improvement on WDC

Fluency
weightage,

λ

WDC
(F1)

DROP
(F1)

VQA
(Acc)

GSM8K
(Acc)

Internal
(Acc)

0 89.6 95.1 85.9 97.3 82.6
0.2 89.2 94.7 85.6 97.1 82.3
0.4 88.5 94.2 84.8 96.8 81.7
0.6 87.2 93.6 84.1 96.5 80.7
0.8 86.8 93.1 83.5 96.2 80.1
1 86.3 92.5 83.2 95.8 79.5

Table 2: Impact of fluency loss on performance with
Claude 4.0 Sonnet. Increasing λ reduces performance
while improving prompt interpretability. λ = 0.6 bal-
ances reasonable performance with readable prompts.

F1, 1.6% on DROP F1, 2.3% on VQA, 1.1% on
GSM8K and 3% on our internal dataset. Beyond
accuracy gains, CASPER exhibits faster conver-
gence compared to continuous optimization meth-
ods given in Table 3 while generating more com-
pact prompts than discrete approaches as shown in
Figure 2.

Fluency regularization trades performance
for interpretability. Incorporating fluency loss
consistently degrades CASPER’s performance
across all datasets, suggesting that optimal embed-
dings lie distant from discrete token representa-
tions, implying a trade-off between prompt com-
prehensibility and task performance. Table 2 quan-
tifies this trade-off on all the datasets, showing how
increasing regularization strength improves inter-
pretability at the cost of accuracy.

Textual feedback stabilizes gradient-based op-
timization. Figure 3 compares optimization tra-
jectories under different configurations: textual
feedback, failure amplification, and fluency loss.
Textual feedback provides the strongest stabiliza-
tion effect, substantially accelerating convergence.
While failure amplification also improves conver-

Method IPC APE OPRO PEZ RLPrompt CASPER* CASPER

WDC 150 180 220 420 580 280 320
DROP 140 170 200 380 520 250 290
VQA 160 190 240 450 610 300 340

GSM8K 130 160 190 360 490 240 270
Internal 170 200 250 480 640 320 360

Table 3: Rollout budget comparison for convergence
across datasets. Discrete methods are most sample-
efficient but achieve lower final accuracy while con-
tinuous methods (PEZ, RLPrompt) require 2-4× more
budget. CASPER uses only 50% of continuous op-
timization budget giving superior performance while
fluency loss adds a 12-15% overhead.

Model WDC DROP VQA GSM8K Internal

Lf = 0.6 0 0.6 0 0.6 0 0.6 0 0.6 0

Claude 4.0
Sonnet

87.2 89.6 93.6 95.1 84.1 85.9 96.5 97.3 80.7 82.6

Claude 3.7
Sonnet

84.8 81.2 91.5 88.9 81.6 78.3 95.2 93.1 78.9 75.4

GPT-4o 85.3 82.5 92.1 89.7 82.3 79.1 95.8 93.8 79.5 76.2
DeepSeek 82.7 78.9 90.3 86.5 79.8 75.7 94.3 91.2 76.8 72.1

Table 4: Impact of fluency loss on cross-model portabil-
ity. Prompts with fluency regularization Lf transfer bet-
ter to other models despite lower source-model scores.
Without Lf , prompts overfit to Claude 4.0 Sonnet, caus-
ing 3-5% degradation

gence speed, we attribute this primarily to the more
targeted textual feedback it enables. Fluency loss
slows convergence relative to variants with textual
feedback but still outperforms vanilla gradient de-
scent.

Figure 3: Convergence analysis on WDC dataset. (a)
CASPER substantially outperforms continuous base-
lines (PEZ, RLPrompt), converging faster and to higher
F1 scores. (b) Component ablation reveals textual feed-
back as the primary stabilizing factor, while fluency loss
slightly slows convergence.

Fluency regularization enhances cross-model
transferability. Table 4 evaluates prompts
trained on model A when deployed to other mod-
els. Prompts optimized without fluency regular-
ization exhibit poor transfer, indicating model-
specific overfitting. In contrast, fluency-regularized
prompts maintain near-training-time performance
across models, with degradation remaining mini-
mal or absent. This suggests that non-interpretable

Figure 4: Shows the impact of each word in the prompt
towards the final predicted output as calculated through
the GlobalEnc method on Internal dataset.

tokens (distant from discrete embeddings) encode
model-specific idiosyncrasies that fail to general-
ize, while human-readable prompts capture more
universal task semantics.

Non-interpretable tokens contribute meaning-
fully to model predictions. We analyze token-
level importance using the GlobalEnc attribution
method (Modarressi et al., 2022), which computes
each token’s contribution by measuring output sen-
sitivity to perturbations in its embedding. Figure 4
visualizes these importance scores, revealing that
non-interpretable tokens generated through contin-
uous optimization make substantial contributions
to correct predictions which validates that optimal
embeddings need not reside near discrete token
manifolds.

Performance gains justify computational over-
head. Table 3 shows the rollout budgets required
to obtain optimal prompts. While discrete meth-
ods require the fewest iterations, they consistently
produce inferior prompts. CASPER’s moderate
computational cost—falling between discrete and
continuous baselines—delivers the strongest per-
formance, offering favorable accuracy-efficiency
trade-offs for practical deployment.

Conclusion

We present CASPER, a prompt optimization frame-
work bridging discrete and continuous paradigms
through gradient-based optimization in embedding
space while preserving interpretability. Evalua-
tion across five diverse benchmarks demonstrates
CASPER’s effectiveness for automated agent cre-
ation, reducing manual overhead and enabling
rapid cross-domain workflow automation.

Limitations

While CASPER effectively bridges continuous and
discrete prompt optimization, CASPER currently
supports only single-agent optimization, whereas
many industrial workflows require multiple agents
coordinating across subtasks. Extending the frame-
work to handle multi-agent interactions and shared
optimization remains an important next step.

CASPER also does not yet support tool inte-
gration, which is central to real workflow automa-
tion. Many tasks depend on selecting and calling
external tools or APIs and stitching their outputs
together through frameworks like MCP. Incorpo-
rating tool planning and execution would make
CASPER more suitable for production settings.

Future work could integrate throughput-oriented
techniques—such as pruning or caching—to reduce
the overhead of running optimized prompts at scale.
Overall, these limitations outline clear avenues for
extending CASPER toward more comprehensive
workflow automation.

References
Aishwarya Agrawal, Jiasen Lu, Stanislaw Antol, Mar-

garet Mitchell, C. Lawrence Zitnick, Dhruv Batra,
and Devi Parikh. 2016. Vqa: Visual question answer-
ing. Preprint, arXiv:1505.00468.

Alexander Brinkmann, Nick Baumann, and Christian
Bizer. 2024. Using LLMs for the Extraction and Nor-
malization of Product Attribute Values, page 217–230.
Springer Nature Switzerland.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan
Wang, Han Guo, Tianmin Shu, Meng Song, Eric P
Xing, and Zhiting Hu. 2022. Rlprompt: Optimizing
discrete text prompts with reinforcement learning.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3369–3391.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
DROP: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2368–2378, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Chrisantha Fernando, Dylan Banarse, Henryk
Michalewski, Simon Osindero, and Tim Rocktäschel.
2024. Promptbreeder: Self-referential self-
improvement via prompt evolution. In International
Conference on Learning Representations.

Chrisantha Fernando, Dylan Banarse, Henryk
Michalewski, Simon Osindero, and Tim Rock-
täschel. 2023. Promptbreeder: Self-referential
self-improvement via prompt evolution. Preprint,
arXiv:2309.16797.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao
Song, Xu Tan, Guoqing Liu, Jiang Bian, and Yujiu
Yang. 2024. Connecting large language models with
evolutionary algorithms yields powerful prompt op-
timizers. In International Conference on Learning
Representations.

Daniel Khashabi, Yashar Kordi, and Hannaneh Ha-
jishirzi. 2022. Prompt waywardness: The curi-
ous case of discretized interpretation of continuous
prompts. In Proceedings of the 2022 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 3631–3643.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari,
Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T
Joshi, Hanna Moazam, Heather Miller, Matei Za-
haria, and Christopher Potts. 2024. Dspy: Compiling
declarative language model calls into self-improving
pipelines. In International Conference on Learning
Representations.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597.

Ali Modarressi, Mohsen Fayyaz, Yadollah
Yaghoobzadeh, and Mohammad Taher Pile-
hvar. 2022. GlobEnc: Quantifying global token
attribution by incorporating the whole encoder
layer in transformers. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 258–271, Seattle,
United States. Association for Computational
Linguistics.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit
Bansal. 2023. Grips: Gradient-free, edit-based in-
struction search for prompting large language models.

https://arxiv.org/abs/1505.00468
https://arxiv.org/abs/1505.00468
https://doi.org/10.1007/978-3-031-70626-4_15
https://doi.org/10.1007/978-3-031-70626-4_15
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.18653/v1/N19-1246
https://doi.org/10.18653/v1/N19-1246
https://arxiv.org/abs/2309.16797
https://arxiv.org/abs/2309.16797
https://doi.org/10.18653/v1/2022.naacl-main.19
https://doi.org/10.18653/v1/2022.naacl-main.19
https://doi.org/10.18653/v1/2022.naacl-main.19

In Proceedings of the 17th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 3845–3864.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chen-
guang Zhu, and Michael Zeng. 2023. Automatic
prompt optimization with "gradient descent" and
beam search. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language
Processing.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with au-
tomatically generated prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4222–4235.

Tianxiang Sun, Zhengfu Liu, Xiangyang Yan, Xipeng
Qiu, and Xuanjing Huang. 2022. Black-box tuning
for language-model-as-a-service. In International
Conference on Machine Learning, pages 20841–
20855. PMLR.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Hao-
tian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P Xing,
and Zhiting Hu. 2024. Promptagent: Strategic
planning with language models enables expert-level
prompt optimization. In International Conference on
Learning Representations.

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Gold-
blum, Jonas Geiping, and Tom Goldstein. 2023. Hard
prompts made easy: Gradient-based discrete opti-
mization for prompt tuning and discovery. In Ad-
vances in Neural Information Processing Systems,
volume 36, pages 51008–51025. Curran Associates,
Inc.

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Gold-
blum, Jonas Geiping, and Tom Goldstein. 2024. Hard
prompts made easy: Gradient-based discrete opti-
mization for prompt tuning and discovery. Advances
in Neural Information Processing Systems, 36.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu,
Quoc V Le, Denny Zhou, and Xinyun Chen. 2024.
Large language models as optimizers. arXiv preprint
arXiv:2309.03409.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2023. Large language models are human-level
prompt engineers. In International Conference on
Learning Representations.

A Appendix

A.1 Ablations without different components
of CASPER to show each component’s
impact

We compare CASPER’s performance with and
without its components: textual feedback, failure

amplification and fluency loss to show the impor-
tance of each part and its impact on the output. The
results are given in Table 5.

Textual feedback is the most critical component,
with its removal causing 3.4-4.0 F1 point drops
across models and 40-50% increases in rollout bud-
get (from 320-412 to 450-527 rollouts). Without se-
mantic error analyses, gradient descent relies solely
on scalar rewards, leading to inefficient exploration
of the embedding space.

Failure amplification also proves essential, with
its removal degrading performance by 2.1-2.5 F1
points while requiring 8-14% more rollouts. Strate-
gic oversampling of failure cases accelerates con-
vergence, particularly valuable in data-scarce in-
dustrial settings.

Removing fluency regularization improves task
performance by 2.4 F1 points on Claude 4.0 Son-
net and reduces rollout budget by 12.5% (from
320 to 280) but produces incoherent prompts (see
CASPER* in Table 1). The intermediate setting
(λ = 0.4) achieves 1.3 F1 points improvement with
only 6.25% reduction in budget (from 320 to 300
rollouts), confirming that moderate regularization
(λ = 0.4 − 0.6) optimally balances performance,
interpretability, and convergence efficiency for real-
world deployment.

A.2 Error distribution ablation

We experiment with different values of error ra-
tio, α, in the training data distribution to find the
optimal balance between successful and failed ex-
amples. The error ratio controls the proportion
of failure cases in synthetic data generation. The
results are shown in Table 6.

Performance peaks at α = 0.6, where 60% of
training data consists of failure cases. At α = 0,
with only successful examples, the model lacks ex-
posure to failure modes, resulting in 3.4-4.3 point
drops across datasets. This confirms the impor-
tance of failure amplification for effective gradient
guidance. Conversely, at α = 1 with only fail-
ures, performance degrades by 2.3-2.8 points as
the model loses reference to correct behaviors. The
optimal 60:40 failure-to-success ratio provides suf-
ficient failure mode coverage while maintaining
positive examples for contrast, enabling CASPER
to learn nuanced error boundaries in the embedding
space.

https://proceedings.neurips.cc/paper_files/paper/2023/file/a00548031e4647b13042c97c922fadf1-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a00548031e4647b13042c97c922fadf1-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a00548031e4647b13042c97c922fadf1-Paper-Conference.pdf

Dataset CASPER
Without Textual

Feedback
Without Failure
Amplification

Without fluency
loss

With fluency
loss = 0.4

F1 Rollout F1 Rollout F1 Rollout F1 Rollout F1 Rollout

Claude 4.0 Sonnet 87.2 320 83.8 450 85.1 365 89.6 280 88.5 300
Claude 3.7 Sonnet 81.0 346 77.2 454 78.9 355 89.6 301 88.5 325

DeepSeek+ 78.5 412 74.8 527 76.4 462 89.6 429 88.5 408
GPT-4o 82.1 377 78.5 502 80.1 341 89.6 331 88.5 362

Table 5: Performance comparison of CASPER by removing different components on WDC dataset averaged across
5 trials. Rollout budget indicates the number of LLM calls required for convergence. Without fluency loss achieves
highest F1 but produces uninterpretable prompts.

Error ratio,
α

WDC DROP VQA GSM8K Internal

0 83.8 90.5 80.2 93.7 76.4
0.2 85.4 92.1 82.3 95.1 78.6
0.4 86.7 93.2 83.6 96.0 79.9
0.6 87.2 93.6 84.1 96.5 80.7
0.8 86.3 92.8 83.2 95.8 79.8
1 84.9 91.4 81.7 94.6 77.9

Table 6: Analysis of impact of error ratio on the perfor-
mance of the prompt generated through CASPER with
Claude 4.0 Sonnet.

A.3 Fluency loss impact on interpretability
Table 7 shows the impact of fluency loss weigh-
tage on incomprehensible tokens in optimized
prompts. Without regularization (λ = 0), contin-
uous optimization produces 15-18% gibberish to-
kens—semantically incoherent sequences exploit-
ing model artifacts. While achieving highest perfor-
mance (Table 2), these prompts are uninterpretable
and fail cross-model transfer (Table 4).

At λ = 0.6, gibberish tokens reduce to 3-5%
with only 1.5-2.5% performance cost. The flu-
ency term Lf penalizes low-probability tokens,
constraining gradient descent to natural language
regions. Increasing λ to 1.0 eliminates gibberish
but costs additional 2-3% performance. Simpler
tasks like GSM8K show smaller gaps (1.3%) while
complex tasks like WDC exhibit larger gaps (2.4%),
confirming λ = 0.6 as optimal.

A.4 Prompt evolution sample
Table 8, 9 shows how the prompt for the internal
dataset of finding the expiry date from product
images, evolves across iterations when optimized
with CASPER. We include ablations, both with and
without fluency loss to show the impact of the same
on the generated prompts.

Fluency
weightage,

λ

WDC
(%)

DROP
(%)

VQA
(%)

GSM8K
(%)

Internal
(%)

0 17.8 15.3 18.2 14.7 16.9
0.2 13.5 11.2 14.1 10.8 12.7
0.4 8.9 7.3 9.5 6.7 8.2
0.6 4.7 3.8 5.2 3.1 4.3
0.8 2.1 1.6 2.5 1.3 1.9
1.0 0.6 0.4 0.8 0.3 0.5

Table 7: Proportion of incomprehensible tokens vs. flu-
ency loss weightage λ. At λ = 0.6, gibberish reduces
to 3-5% with minimal performance cost.

A.5 Feedback Generation module prompt

Cluster formation prompt

You are an expert at analyzing and categorizing errors in language model outputs.
Your task is to cluster similar error cases together based on the fundamental nature of the errors,
where each cluster should represent a distinct type of failure mode.

For each error case, you will receive:
1. Input: The original input given to the LLM
2. Prediction: What the LLM output
3. Ground Truth: The correct output that was expected

Task Description: $task

Guidelines for clustering:
- Create clusters based on the root cause or pattern of the error, not surface-level similarities
- Ensure clusters are mutually exclusive - an error should clearly belong to one primary cluster
- Focus on systematic patterns rather than one-off mistakes
- Consider both the type of mistake (e.g., hallucination, missing information) and
the context in which it occurs
- Each cluster should be distinct enough that it could be addressed with a specific intervention

For each error case, please:
1. Analyze the nature of the error
2. Identify the key characteristics that define this type of error
3. Assign it to an existing cluster or create a new cluster if it represents a distinct error pattern
4. Provide a brief explanation of why this error belongs to that cluster

After clustering all cases, list each cluster with:
1. A summary of the common pattern
2. Representative examples
3. Key distinguishing features from other clusters

Output Format:
<output>
<cluster>
{

"Cluster #[number]": [Temporary cluster name based on error pattern],
"Pattern": [Brief description of the common error pattern],
"Error_Samples": [List of all error cases that belong to this cluster.],
"Key_Features": [What makes this cluster unique],
"Index": "[Indices of all the input samples belonging to this cluster]"

}
</cluster>
</cluster> ... </cluster>
</output>

A.6 Failure amplification module prompt

Synthetic data generation

You are tasked with generating synthetic training examples to augment a dataset for prompt
optimization. Your goal is to create examples that are similar to identified failure cases to
accelerate model convergence on difficult instances.

Context:
We are optimizing prompts for the following task: [TASK_DESCRIPTION]

Seed Dataset Examples:
[3-5 REPRESENTATIVE EXAMPLES FROM seed dataset]

Identified Failure Cases:
[CURRENT FAILURE CASES WITH INPUT-OUTPUT PAIRS AND ERROR DESCRIPTIONS]

Your Task:
Generate [N] new synthetic examples that exhibit similar characteristics to the
failure cases while introducing controlled variations. For each synthetic example:

1. **Identify the target failure mode**: Select one of the identified failure
patterns above

2. **Create a challenging input**: Design an input that would likely trigger
this failure mode, incorporating:
- Similar structural patterns to failed cases
- Edge cases and boundary conditions
- Realistic variations (noise, ambiguity, multiple candidates)

3. **Provide the ground truth output**: Give the correct expected output
4. **Explain the difficulty**: Briefly describe why this example is challenging

and which failure mode it targets

Output Format:
For each synthetic example, provide:
Example [N]:
- Input: [Generated input]
- Expected Output: [Ground truth]
- Failure Mode Targeted: [Which failure pattern this addresses]
- Difficulty Explanation: [Why this is challenging - 1-2 sentences]

Quality Constraints:
- Examples must be realistic and plausible for the domain
- Maintain diversity: don't generate near-duplicates of existing failures
- Balance difficulty: examples should be challenging but solvable with better prompts
- Ensure ground truth labels are unambiguous and correct

Generate [N] synthetic examples following these guidelines.

Iter Prompt (Without Fluency Reg.) Acc
1 Extract the expiry date from the product label image. 52%
10 Extract the expiry date from the product label image. Look carefully at the label and identify text containing

date informationflumexisiehs Search for common expiry indicators including "EXP", "Best Before", "USE BY",
"Expiry Date", "BB" ... Pay attention to the positioning of dateshhasgdhvexoral on the label. Manufacturing
dates often appear with labels like "MFG", "Manufactured on", or "Production Date" - these are different from
expiry dates. zynthiche expiry date is typically what you need to find. When you locate dates, gravmont determine
which one represents when the product expires. Consider that dates might be written in various formats such as
DD/MM/YYYY, MM/DD/YYYY, or with abbreviated month names. pleximarmonj Some labels may have dates in
non-standard positions or orientations. Check differentskelrix areas of the label including corners, edges, and sides.
Return the expiry date you identify in YYYY-MM-DD format. [6 gibberish tokens]

73%

100 Carefully analyze the product label image to locate and extract the expiry date. luxvasdasdcxdfar Follow this
systematic approach: First, scan the entire label for expiry date indicators. Common phrases include "EXP", "Best
Before", "USE BY", "BB", "Expiry Date" ... vriminalinexpas and similar variations ... When examining the label,
you will likely encounter multiple dates. nexthroskjsks It is critical to distinguish between manufacturing dates
and expiry dates. Manufacturing dates are usually marked with "MFG", "Manufactured", "Production Date" ...
kassorthen Expiry dates indicate when the product should no longer be used ... Pay attention to spatial relationships
between dates on the label. gravshiftIn most cases, expiry dates appear below, after, or to the right of manufacturing
dates. vrimesh. However, this is not always consistent ... Date formats vary significantly. plendoral You may
encounter formats such as DD/MM/YYYY, MM/DD/YYYY ... or dates with abbreviated or full month names like
"15-Jan-2025" ... flaxidor When you see ambiguous numeric dates like "03/05/24", praximal default to interpreting
them as DD/MM/YYYY unless contextual clues suggest otherwise. Some labels print dates in non-standard
orientations. skelmorph Check for vertically printed text, diagonal text ... or dates printed on label edges and seams.
zynthwave Examine the entire visible surface systematically. vexthros Once you identify the expiry date, convert it
to YYYY-MM-DD format. If no expiry date can be found, return "NOT FOUND" with a brief explanation. [14
gibberish tokens]

89%

280 Systematically analyze the product label image to accurately identify and extract the expiry date. nexiform Follow
these detailed steps: Step 1: vexalith Examine the entire visible label surface carefully ... gravion Expiry dates
can appear anywhere on the label including front panels, side panels, bottom edges, caps, or seals. Step 2:
plexmor Search for common expiry date markers: "EXP", "Expiry", "Best Before" ... zynthcore Step 3: luxmorph
Product labels often display multiple dates. skelthren Carefully differentiate between Manufacturing dates (labeled
"MFG", "Manufactured" ...) vrimthros and Expiry Dates ... korthenix Manufacturing dates indicate when the
product was made; expiry dates indicate when it expires ... flaxvern Step 4: praxithol Dates appear in various
formats: DD/MM/YYYY, MM/DD/YYYY ... text formats like "15-Jan-2025" ... gravex For ambiguous dates (e.g.,
"03/05/24"): nexalith Default to DD/MM/YYYY. Consider product origin. vexthral Look for contextual clues. Step
5: plexion Dates may be printed vertically, skelmorion diagonally, on curved surfaces, zynthex embossed/debossed
... luxthren Systematically check all visible areas. Step 6: vrimshore If partially obscured: reconstruct from visible
digits. korthal Use contextual logic with reasonable shelf-life ranges. flaxthros Common shelf lives: beverages
(6-24 months) ... Step 7: praxven Convert to YYYY-MM-DD format. gravshore Ensure logical validity. nexvorn If
not found: Return "NOT FOUND". vexilith Provide brief explanation. Edge Cases: skelven Multiple expiry dates:
extract earliest ... zynthral Batch codes: parse carefully. plexthral "Best Before" vs "Use By": prioritize "Use By".
[24 gibberish tokens]

94%

Table 8: Prompt evolution without fluency regularization for expiry date extraction. Red tokens are incomprehen-
sible insertions from gradient descent in embedding space. Gibberish token count increases (0→6→14→24) as
optimization prioritizes performance over interpretability, achieving 94% final accuracy. We include truncated
version of the prompt, only showing important details.

Iter Prompt (With Fluency Reg.) Acc
1 Extract the expiry date from the product label image. 52%
10 Extract the expiry date from the product label image. Look carefully at the label and identify text containing

date information. Search forexpdatsies common expiry indicators including "EXP", "Best Before", "USE BY", or
"dasdasdsaExpiry Date". Pay attention to the positioning of dates on the label. Manufacturing dates often appear
with labels like "MFG" or "Manufactured on" - these are different from expiry dates. iuyweruysdg When you locate
dates, determine which one represents when the product expires. Consider that dates might be written in various
formats such as DD/MM/YYYY or MM/DD/YYYY. Check different areas of the label including corners and edges.
Return the expiry date in YYYY-MM-DD format. [3 gibberish token]

68%

100 Carefully analyze the product label image to locate and extract the expiry date. Follow this systematic approach:
First, scan the entire label for expiry date indicators. Common phrases include "EXP", "Best Before", "USE BY",
"BB", "Expiry Date", "Expires", "Best By", and similar variations. hhdgsudus These indicators are typically placed
near the actual date information. When examining the label, you will likely encounter multiple dates. It is critical to
distinguish between manufacturing dates and expiry dates. Manufacturing dates are usually marked with "MFG",
"Manufactured", "Production Date", or "Made on". Expiry dates indicate when the product should no longer be
used, while manufacturing dates indicate when it was produced. Pay attention to spatial relationships between dates
on the label. In most cases, expiry dates appear below, after, or to the right of manufacturing dates. However, this is
not always consistent acrossghbggfgfh all product types and regions. Date formats vary significantly across different
regions and manufacturers. You may encounter opitumklonformats such as DD/MM/YYYY, MM/DD/YYYY,
YYYY-MM-DD, or dates with abbreviated or full month names like "yuitrks15-Jan-2025" or "March 20, 2024".
When you see ambiguous numeric dates like "03/05/24", default to interpreting them as DD/MM/YYYY unless
contextual clues suggest otherwise. Some labels print dates in non-standard orientations. Check for vertically
printed text, diagonal text, text along curved surfaces, or dates printed on label edges and seams. Examine the entire
visible surface of the product label systematically. Once you identify the expiry date, convert it to the standardized
YYYY-MM-DD format. If no expiry date can be found on the label, return "NOT FOUND" along with a brief
explanation. [4 gibberish token]

84%

320 Systematically analyze the product label image to accurately identify and extract the expiry date. Follow these
detailed steps: Step 1: Initial Label Scan Examine the entire visible label surface carefully. Look for any text,
numbers, or symbols that might indicate date information. Expiry dates can appear anywhere on the label including
front panels, side panels, bottom edges, caps, or seals. Step 2: Identify Expiry Date Indicators Search forinresthib
common expiry date markers and phrases: "EXP", "Expiry", "Expiry Date", "Expires", "Best Before", "Best
By", "BB", "USE BY" ... Step 3: Distinguish Between Date Types Product labels often display multiple dates.
Carefully differentiate between Manufacturing/Production Dates (labeled "MFG", "Mfg Date", "Manufactured" ...)
and Expiry Dates (the date when the product should no longer be consumed or used). Key distinction: Manufacturing
dates indicate when the product was made; expiry dates indicate when it expires. On most labels, manufacturing
dates appear chronologically before expiry dates, and spatially they often appear above, to the left, or before
the expiry date. Step 4: Handle Ambiguous Date Formats Dates appear in various formats: Numeric formats
(DD/MM/YYYY, MM/DD/YYYY ...), textfopertys formats ("15-Jan-2025", "January 15, 2025") ... For ambiguous
numeric dates (e.g., "03/05/24"): Default to DD/MM/YYYY interpretation; consider product origin (US products
may use MM/DD/YYYY); look for contextual clues. Step 5: Check Non-Standard Orientations Dates may be
printed: vertically along side edges, diagonally or curved on cylindrical packages, as small print on caps/necks/seals,
embossed or debossed ... Systematically check all visible areas and orientations. Step 6: Handle Partial or
Degraded Text If the expiry date is partially obscured, faded, or damaged: Attempt to reconstruct missing digits
from visiblechisofdod portions; use contextual logic (expiry dates should be after manufacturing dates and within
reasonable shelf-life ranges). Step 7: Format and Return Result Once identified: Convert to YYYY-MM-DD
format; ensure the dateplkskfjuj is logically valid ... If no expiry date can be confidently identified: Return "NOT
FOUND" with brief explanation. [4 gibberish tokens]

91%

Table 9: Prompt evolution with fluency regularization for expiry date extraction. Red tokens are rare incomprehensi-
ble insertions that fluency regularization progressively eliminates. Gibberish token count remains less (0→3→4→4)
as fluency constraints enforce natural language, achieving 91% final accuracy while maintaining complete human
interpretability.

	Introduction
	Related Works
	CASPER
	Feedback Generation Module
	Failure Amplification Module
	Soft prompt optimization module

	Experiments
	Results and Discussions
	Appendix
	Ablations without different components of CASPER to show each component's impact
	Error distribution ablation
	Fluency loss impact on interpretability
	Prompt evolution sample
	Feedback Generation module prompt
	Failure amplification module prompt

