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Abstract
Designing intelligent assistants for e-commerce sellers presents

significant challenges, primarily due to the abstract nature of seller

queries and the complexity of orchestrating multiple internal tools.

In-context planning (ICP) has emerged as a promising adaptive

problem-solving approach for this setting. However, selecting effec-

tive exemplars for ICP remains a difficult problem, largely because

of the intricate coordination among underlying APIs. Relying solely

on semantic similarity between textual queries can misguide large

language models (LLMs) during planning, as semantically similar

queries may correspond to vastly different API execution graphs.

To address this, we propose TopoSem, a novel framework that en-

hances ICP by jointly considering the topological distance of API

execution graphs and the semantic differences in API payloads. We

leverage a contrastive learning approach to learn meaningful em-

beddings, which are then used in an enhanced dynamic clustering

mechanism to reduce noise and redundancy in exemplar selection.

Empirical results demonstrate that TopoSem substantially outper-

forms traditional exemplar selection methods in terms of planning

accuracy and generalization, particularly in scenarios involving

complex API orchestration.
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1 Introduction
Large Language Models (LLMs) ([3–5, 24, 32]) have been at the

forefront of advancing artificial intelligence, marking significant

breakthroughs in diverse fields. The planning capabilities of LLMs,

particularly their ability to use tools ([30, 31]), enable them not

only to execute commands and perform web searches but also

to enhance their advanced mathematical reasoning abilities. LLM

Compiler [12] and its subsequent work ([7, 8]) propose constructing

tooling usage as a directed acyclic graph (DAG) to enable the parallel

execution of independent tools, thereby improving tool-calling

efficiency. CodeAct [26] and CodePlan [27] propose leveraging the

generation of pseudo-Python code to outline high-level reasoning

processes for complex multi-step reasoning tasks, where each tool

usage is represented as a function call within the code. ReWOO

[28] proposes a modular framework that decouples the reasoning

process from the external observations of each tool usage, thereby

reducing token consumption and improving efficiency. [16] clusters

the provided tools into groups of toolkits, plans at the toolkit level,

and replans by selecting tools within the same toolkit if error comes

out. [17] proposes a method called Predictive-Decoding, which

leverages Model Predictive Control from the optimal control field to

mitigate early errors in planning and promote non-myopic planning,

thereby enhancing overall accuracy. ReasonFlux [29] proposes a

framework in which the LLM reasons over template fields, executes

tools based on the templates, and employs reinforcement learning

to improve planning accuracy using an action completion reward.

TopoSem Step 1. Embedding Learning
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Step 2. Dynamic Clustering 

Step3. In-context Planning

prompt = system + 

Plan = LLM(prompt)

Figure 1: Illustration of the TopoSem pipeline. During em-
bedding learning, TopoSem separates queries with different
APIs graphs despite similar semantics, while aligning those
with the same APIs graph and semantically similar payloads.
Color intensity reflects semantic similarity.
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Existing literature on tool-using capabilities primarily focuses

on general real-world API usage [20], such as send email and make
calendar, as well as related functionalities in web search applica-

tions like Manus. These APIs are uni-functional in that each API

is designed to perform a single action or answer a single question

and the description. Meanwhile, the descriptions and argument

definitions of these APIs are easily recognized by LLMs such as

GPT-4o [19] and Claude 3.5. For instance, the description of the

send-email API can be simply stated as send the email to the destina-
tion, with arguments including email content, email address source,
and email address destination. However, the APIs that a selling as-
sistant interacts with in the e-commerce domain—such as those

related to inventory status and performance metrics—are signifi-

cantly more complex and domain-specific, making them difficult

for general-purpose LLMs to interpret accurately. As a result, in-

context planning (ICP) has become a widely adopted approach,

wherein exemplars of relevant API executions are provided to the

LLMs prior to plan generation.

Selecting appropriate in-context planning artifacts is critical, as

irrelevant exemplars can mislead the LLM and result in subopti-

mal or incorrect planning. [33] enhances in-context planning and

tool-use capabilities by dynamically clustering action sequences

and selecting highly similar exemplars based on action sequence

similarity. However, defining similarity using the longest common

subsequence of actions may be insufficient for selecting effective

exemplars, as seller assistants often rely on more complex API

graphs—rather than simple linear API chains—to address seller-

related queries. In this paper, We propose TopoSem, a novel frame-

work that enhances ICP by jointly considering the topological dis-

tances of API execution graphs and the semantic differences in

API payloads to identify more effective exemplar candidates. These

candidates are then used in an enhanced dynamic clustering mech-

anism to reduce noise and redundancy in exemplar selection.

In summary, this work makes several pivotal contributions:

• We define a novel distance metric between two queries based on

the API execution graph edit distance (GED), where node and

edge operations are weighted according to the semantic similarity

of their corresponding API payloads.

• We propose a synthetic data augmentation pipeline to augment

the existing (query, API graph) pairs, aiming to better adjust

the semantic embeddings of queries under the defined distance

metric.

• Extensive experimental results demonstrate the effectiveness

of TopoSem, highlighting the importance of incorporating the

topological structure of API execution graphs and the critical

role of high-quality exemplars.

2 Preliminaries
2.1 LLM Reasoning with Tools
Given a user query 𝑥 and a pretrained LLM 𝜌𝜃 (·), the LLM gen-

erates an API execution plan represented as a graph with 𝑝 =

{P1, . . . ,P𝑛} ∼ 𝜌𝜃 (𝑝 | T ,D, 𝑥), where 𝑝 is the plan list after

topological sorting, T is the set of available tools, and D is the

collection of descriptions for all available tools. At each step 𝑡 ,

the LLM generates an intermediate reasoning output 𝑟𝑡 ∼ 𝜌𝜃 (𝑟𝑡 |
T ,D, 𝑥, 𝑝,O1, . . . ,O𝑡−1) and executes the plan step P𝑡 to obtain

the observation O𝑡 . The final response is then generated as R ∼
𝜌𝜃 (R | T ,D, 𝑥, 𝑝,O1, . . . ,O𝑛). In-context planning occurs when

the LLM is provided with exemplar plans to guide the planning

process: 𝑝 ∼ 𝜌𝜃 (𝑝 | T ,D, 𝑥, 𝑝1, . . . , 𝑝𝑚), where 𝑝𝑖 is an exemplar

plan and𝑚 is the number of exemplars.

2.2 APIs Execution Graph
Given the plan 𝑝 determined by the LLM, it can be represented

as a directed graph G = (V, E), where V = (𝑣1, . . . , 𝑣𝑛) is the
set of nodes and E = (𝑒1, . . . , 𝑒𝑚) is the set of edges. The node 𝑣1
corresponds to the seller’s query, and 𝑣𝑛 denotes the final node

that collects observations and returns the response to the seller.

The intermediate nodes 𝑣2, . . . , 𝑣𝑛−1 represent API calls, each with

a node attribute corresponding to its API payload. We represent

all API payloads as text strings for simplicity and leave the ar-

gument parsing to future exploration. 𝑒𝑖 denotes a dependency

between two APIs, where the output of the source API serves as

the input to the target API. For evaluation and task assignment

END

APIs Execution Graph

APIs Tasks List

Task 1:

{task_id: task_1, API: getPerformanceMetric, Payload: get 

performance in Jan, dependencies: []

 Task 2:

{task_id: task_2, API: TrendAnalysis, Payload: Given $1, 

Analyze the trend…., dependencies: [task_1]

Seller Query

Performance Metric DB

Trend Analysis

Insight Generation

Sales Report DB

Sales Summary

…

Figure 2: Illustration of theAPI execution graph and its equiv-
alent representation as a list of API tasks.

convenience, the API graph is represented as a list of tasks, where

each task is defined: {task_id : task_3,API : analyzeData, payload :

Analyze data from $2, dependencies : [task_2]}.

3 Methodology
In the e-commerce domain, both API descriptions and orchestra-

tions are significantly more complex, making it difficult for LLMs

pretrained on general public data to accurately and robustly gener-

ate plans for diverse seller queries. Therefore, in-context planning

(ICP) has been widely adopted during the planning stage to help

LLMs generate more accurate execution plans. In ICP, selecting

the appropriate plan artifacts and presenting them effectively in

the prompt is crucial. TopoSem offers an end-to-end automated

approach for selecting diverse and relevant plan artifacts.

3.1 Tooling Graph-based Similarity Calculation
In ICP, given a user query, we first retrieve exemplars from a ground-

truth database of (query, API graph) pairs based on the semantic

similarity between the user query and queries in the database, and

then retrieve the corresponding API graphs. However, as discussed
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in [11, 33], relying solely on semantic similarity can result in select-

ing suboptimal in-context plan artifacts, potentially introducing

misleading exemplars that degrade planning performance.

The core of our approach is to measure similarity between two

queries by considering both the structure of their underlying API

execution graphs and the semantic similarity of their payloads.

Let 𝑞1 and 𝑞2 be two user queries, with their corresponding API

execution graphs denoted as G(𝑞1) and G(𝑞2). We compute the

graph edit distance (GED) between them using the Exact GED

algorithm [1], as the API graphs are typically of manageable size.

We customize the node substitution cost in the GED computation

based on the following mechanism:

• In e-commerce, a single API can often address multiple in-scope

queries, leading to variations in payloads even when the API

node remains the same. Therefore, we define part of the node

substitution cost based on the semantic difference between the

API payloads.

• The other component of the substitution cost is a binary metric

that indicates whether the APIs themselves are the same.

We define sim
payload

as the semantic similarity between the pay-

loads, and simapi as a binary indicator of whether two API nodes

correspond to the same API. The node substitution cost is then

defined as:

cost = 1 − (𝑤𝑝 · sim
payload

+𝑤𝑎 · simapi), (1)

where𝑤𝑝 and𝑤𝑎 are weighting coefficients for payload similarity

and API identity, respectively, and they satisfy𝑤𝑝 +𝑤𝑎 = 1. In our

case, we set𝑤𝑝 = 𝑤𝑎 = 0.5. In this way, we define a semantically-

informed topological distance between two queries. Since this dis-

tance is always positive, we convert it into a similarity score within

the range (0, 1) using the following formulation:

TopoSem
sim

(𝑞1, 𝑞2) = exp (− (GED(G(𝑞1),G(𝑞2)) + 𝜏)) , (2)

where 𝜏 is a temperature hyperparameter, which we set to 0.01 in

our experiments.

During the production stage, the API execution graph of an in-

coming seller query is not available. This motivates us to directly

embed the seller query using a learned embedding model. We also

precompute and index the queries in the (query, API graph) data-

base using the same model. The embedding model is trained such

that the similarity between query embeddings reflects our defined

TopoSem
sim

(See Figure 1).

3.2 (query, APIs graph) Data Augumentation
To train the embedding model, we begin by fine-tuning a pre-

trained model rather than training one from scratch, to ensure

better generalizability. Our goal is that if two queries are similar

under TopoSem
sim

, then any other queries semantically similar to

these should also be close in the embedding space according to

TopoSem
sim

.

Organizations typically start with a small pool of APIs and of-

ten lack sufficient ground-truth (query, API graph) pairs. Conse-

quently, it is challenging to initiate domain-specific embedding fine-

tuning to generate the necessary volume of triplets (query
1
, query

2
,

similarity score). [22] proposes generating synthetic queries along

with corresponding ground-truth plan artifacts in a scalable manner.

However, relying solely on this pipeline may lead to a left-tailed

distribution of similarity scores, where most query pairs are not

similar under TopoSem
sim

. Moreover, since some query pairs ex-

hibit subtle relative differences in similarity, this approach may fail

to capture and rank these nuanced similarities accurately.

To build an effective synthetic data augmentation pipeline for

constructing triplets for fine-tuning, we propose the following four

scenarios to strategically augment the ground-truth (query, API

graph) pairs, using LLMs guided by scenario-specific prompts.

• Scenario 1. In this scenario, we prompt the LLM to generate

query pairs with entirely different semantic contexts. For ex-

ample, one query might be about organizing a trip to Italy and
requesting hotel contact information, while another could state

my home in Italy has a power shortage and I need temporary
accommodation, along with hotel contact information. Although
these queries are semantically dissimilar, they should exhibit high

TopoSem
sim

similarity because they share the same API execution

graph and identical payloads.

• Scenario 2 & 3. Given a pair (𝑞,G(𝑞)), Scenario 2 randomly

drops a subset of tasks from the API execution graph G(𝑞), in-
cluding any dependent tasks.We then prompt an LLM to generate

a new query that reflects this modified task set, producing di-

verse queries whose API execution graphs and payloads remain

identical to the original except for the omitted tasks. Scenario 3

operates similarly, but instead of dropping tasks, it substitutes

a subset with entirely new tasks (APIs). For example, the origi-

nal query might ask about the ticket price of a concert, while the
substituted query might ask Are there any tickets left?

• Scenario 4. As discussed earlier, many APIs in e-commerce can

handle multiple in-scope questions. Therefore, in Scenario 4, we

prompt LLMs to examine the API execution graph of the original

query along with the API descriptions for each node. The LLM

is then asked to generate entirely new, semantically different

payloads that are still valid inputs for the same APIs. Based on

these modified payloads, the LLM generates a new query that

can be answered by the original API orchestration structure, now

using the updated payloads at each node.

Original Query

New Query

API 1 API 2

END

Scenario 1 Scenario 2

API 1 API 2

END

New Query

API 1

END

New Query

API 1 API 2

END

Scenario 3

API 3

New Query

API 1 API 2

END

Scenario 4

Figure 3: Illustration of four scenarios in the (query, APIs
graph) Data Augumentation. Note that Color intensity and
color type reflect semantic similarity.
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The underlying motivation behind constructing these scenarios

is to augment the original (query, API graph) pairs in a way that

introduces and captures similarity under TopoSem
sim

at various

levels. Scenario 1 constructs diverse queries that maintain a high

degree of similarity to the original query. In contrast, Scenarios 2, 3,

and 4 generate queries that may not be as closely aligned with the

original query as those in Scenario 1; however, they are still more

similar to the original query than other queries in the original set

of (query, API graph) pairs. During the ICP stage, the LLM may still

be able to infer the correct plan by leveraging the partially correct

API graphs retrieved in response to the queries from Scenarios 2, 3,

and 4.

Based on the augmented (query, API graph) pairs, we construct

the required triplets (query
1
, query

2
, similarity score) for embed-

ding fine-tuning. Importantly, we do not compute TopoSem
sim

for

all possible query pairs. Instead, we compute it only between the

original query and its augmented variants, as well as between the

original query and a randomly selected subset of other queries from

the original dataset.

We denote the triplets as D = {(𝑞1𝑖 , 𝑞2𝑖 , 𝑠 (𝑞1𝑖 , 𝑞2𝑖 ))}𝑚𝑖=1, where
each triplet consists of two queries and their associated similarity

score. The embedding model is fine-tuned using the AnglE loss

[13], with the following objective:

log

1 +
∑︁

𝑠 (𝑞𝑖 ,𝑞 𝑗 )>𝑠 (𝑞𝑚,𝑞𝑛 )
exp

(
cos(𝑞𝑚, 𝑞𝑛) − cos(𝑞𝑖 , 𝑞 𝑗 )

𝜏

) (3)

where (𝑞𝑖 , 𝑞 𝑗 ) are query pairs within the same batch that have a

higher similarity score than the reference pair (𝑞𝑚, 𝑞𝑛), and 𝜏 is a
temperature parameter.

3.3 Dynamic Clustering to Select Exemplars
With the fine-tuned embeddingmodel obtained from the augmented

data stage, we efficiently index the queries in the training set using

their corresponding embeddings and store the associated plan ar-

tifacts. During inference, we retrieve the top-𝐾 artifacts based on

embedding similarity using approximate nearest neighbor search

methods such as FAISS [10]. These retrieved artifacts are then used

as exemplar candidates.

Following [33], we apply Agglomerative Clustering [18] to the

retrieved top-𝐾 exemplars and select one exemplar from each clus-

ter to form the final exemplar set. This promotes diversity among

the exemplars presented in the prompt, while reducing redundancy

and noise. For instance, if a seller query involves both performance

monitoring and a summary of last month’s sales, and the database

contains exemplars addressing only one aspect each, clustering

enables the selection of both relevant partial exemplars. This allows

the LLM to accurately infer a comprehensive plan.

4 Experiments
4.1 Experiment Setup
Dataset. Similar to prior work [16], we adopt ToolBench [20]

as our benchmark dataset. ToolBench includes 16,464 APIs and

provides three levels of prompts—𝐺1, 𝐺2, and 𝐺3—for generating

queries and corresponding plans using depth-first search (DFS) plan-

ning. Specifically,𝐺1 corresponds to single-tool instructions, 𝐺2 to

intra-category multi-tool instructions, and 𝐺3 to intra-collection

multi-tool instructions. We repurpose the ToolBench data by ran-

domly selecting 1,000 queries—300 from 𝐺1, 300 from 𝐺2, and 400

from 𝐺3—and use the ground-truth provided in the dataset to con-

struct the corresponding plan artifacts based on the defined task

list (see Figure 2).

Given the selected queries, we augment the dataset using the

(query, API graph) augmentation pipeline (section 3.2) that gener-

ates additional queries along with their corresponding plan arti-

facts, producing 10 augmented instances for each original scenario.

Therefore, the total number of (query, API graph) pairs amounts to

40,000.

To construct the triplets for embedding fine-tuning, we use only

the (query, API graph) pairs from the augmented dataset. Specifi-

cally, for each original query, we randomly select one augmented

query from Scenario 1 and compute TopoSem
sim

with all other 39

augmented queries derived from the same original query. Addi-

tionally, we randomly sample 61 augmented pairs from other origi-

nal queries and compute their similarities to complete the triplet

construction. This results in a training dataset containing 100,000

triplets. Since the original queries are not used during training,

we reserve them for the test set to evaluate in-context planning

performance.

To assess the effectiveness of TopoSem
sim

in real-world scenarios,

we also evaluate it on real-world seller-related APIs, such as status

checking or data fetching. We collect synthetic queries in the mag-

nitude of hundreds along with their ground-truth plan artifacts and

construct training triplets using the same methodology as applied

to the ToolBench dataset.

Baselines. Since the target task is ICP, the selection of exemplars

presented in the prompt plays a critical role in determining per-

formance. Therefore, we select baseline models based on their ex-

emplar selection strategies, including zero-shot planning, semantic

search and hybrid search methods that combine sparse vector re-

trieval (e.g., BM25[21]) with semantic similarity. We also evaluate a

baseline that selects exemplars based on action sequence similarity

[33]. For these methods, we evaluate performance using different

base LLMs, including GPT-4o, Claude 3.7 (v1), and Claude 3.5 (v2).

We use Jina Embedding (v3) [23] for computing payload semantic

similarity in the TopoSem
sim

calculation, and employ BGE-M3 for

embedding fine-tuning.

Metrics. For evaluation metrics, similar to [2, 25, 33], we employ

planning accuracy, which measures the percentage of test samples

where the generated plan artifacts correctly call the intended API

at each step, including the appropriate dependency APIs.

It is important to note that, in the context of e-commerce, a single

API may be capable of answering multiple in-scope questions, and

the input payload to each API is in textual form. This corresponds

to Scenario 4 in the (query, API graph) augmentation pipeline.

Therefore, beyond accurately predicting the API types in the plan,

it is also essential to verify the correctness of all payloads. In this

context, assessing the semantic consistency between two payloads

is a straightforward task for LLMs such as Claude 3.5 (v2). Therefore,

we adopt an LLM-as-a-judge [9] approach to measure payload

accuracy. Specifically, we prompt the LLM to verify whether the

payload is in the correct format andwhether it appropriately reflects

the query by including the correct entity or temporal information.
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4.2 Analysis of the Augmented Data
As mentioned in Section 4.1, we construct the embedding fine-

tuning triplets using only the augmented (query, API graph) pairs,

while reserving the original queries from ToolBench as the test

set to evaluate ICP performance. For each triplet, we randomly

select one query from Scenario 1—where the API execution graph

and payloads remain consistent, but the narrative context differs

significantly—as the anchor. We then compute TopoSem
sim

between

this anchor and both the other augmented queries of the same

original query and those associated with different original queries.

Therefore, it is important to verify whether the LLMs used in the

augmentation pipeline truly generate distinct narrative contexts

in Scenario 1. Otherwise, the similarity between the anchor and

original queries may introduce bias into the test set, as the original

queries from ToolBench are used for evaluation.

Nova Pro Claude 3.5 (v2) Claude 3.7 (v1) GPT-4o
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Accuracy of detecting distinct narrative contexts between Scenario 1 examples and original queries.

Figure 4: Accuracy of detecting distinct narrative contexts
between Scenario 1 examples and original queries for differ-
ent base LLMs

For each base LLM, we use the Scenario 1 prompt (see Appen-

dix A.1) to generate 2 Scenario 1 examples for each of the 1,000

original queries. We then employ an LLM-as-a-judge prompt to

evaluate whether the generated examples differ in narrative context,

including changes in verbs or locations. We bootstrap 100 samples

from the total generated examples five times, and report the re-

sulting accuracy in Figure 4. As shown in Figure 4, there remains

a chance that the base LLM produces a narrative context similar

to the original query. Among the models, GPT-4o and Claude 3.7

perform best at following the instructions in the prompt.

A key motivation behind our data augmentation pipeline is to ad-

dress the issue of a left-skewed similarity score distribution during

embedding fine-tuning, asmost original queries are not TopoSem
sim

-

similar to one another.

As shown in Figure 5, the augmentation method mitigates the

left-skewed distribution to some extent and introduces a density

peak near 1, primarily due to the inclusion of Scenario 1 exam-

ples. Additionally, the presence of the other three scenarios con-

tributes to a more balanced distribution by introducing density in

the middle similarity range. However, a left tail still persists, as

each Scenario 1 anchor also computes TopoSem
sim

scores against

augmented queries from different original queries. By modifying
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TopoSemsim Value
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After Augmentation

Figure 5: Density of TopoSemsim similarity scores before and
after augmentation.

the similarity distributions through augmentation, we enable the

embedding model to learn the relative ordering of similarity scores

and better capture what constitutes the most relevant exemplars in

our setting.

4.3 Experiment Results
As noted in Figure 4, a small percentage of anchors still produce nar-

rative contexts that are similar to their original queries. In this case,

using the original queries as the entire test set may introduce bias

in evaluating ICP planning accuracy and payload accuracy. There-

fore, to provide a more comprehensive assessment of TopoSem,

we also report its out-of-distribution (OOD) planning performance.

We collect an additional 100 queries from the ToolBench query

collection and apply the same augmentation pipeline to generate

corresponding (query, API graph) pairs. These augmented pairs are

added to the vector store using the fine-tuned embedding model

without further fine-tuning. The resulting OOD performance is

reported later in this section.

Moreover, it is valuable to examine how planning performance

varies with different values of 𝐾 , the number of planning artifacts

retrieved. A larger 𝐾 may introduce dissimilar exemplars into the

prompt, potentially misleading the LLM and resulting in incorrect

planning. Based on this, we analyze how the clustering method

described in Section 3.3 helps select exemplars for the ICP prompt

presented to the LLM. Specifically, we investigate whether reducing

noise and increasing exemplar diversity contribute to improved

ICP performance in our setting.

We denote the models in the experiments using the following for-

mat: if zero-shot prompting is used with the planning LLM Claude

3.7, we refer to it as Zero-shot Claude 3.7 ; if exemplar selection is

performed via semantic search and planning is done using GPT-4o,

we denote it as Semantic Search GPT-4o. We summarize all testing

questions in Table 1.

4.3.1 How does TopoSem perform on the original query sets? Ta-

ble 2 presents ICP planning accuracy and payload accuracy across

various base LLMs and exemplar selection methods. We evaluate

hybrid search with the largest number of base LLMs, as it leverages

both sparse vector methods like BM25 and the strengths of semantic
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Table 1: Testing Questions

Test Question Test set Metrics

ICP 1000 original queries Planning & Payload Acc.

ICP 100 OOD queries Planning & Payload Acc.

Sensitivity Analysis of 𝐾 1000 original queries Planning Acc.

search. Zero-shot and semantic-search-based ICP methods are used

as baselines for comparison.

Table 2: TopoSem ICP performance on the original queries
(All experiments were run 10 times with the temperature of
the base LLMs set to 0.1 and 𝐾 = 10)

Models Planning Acc. Payload Acc.

Zero-shot Claude 3.7 (0.67 ± 0.06) (0.75 ± 0.11)

Semantic Search Claude 3.7 (0.58 ± 0.09) (0.71 ± 0.08)

Hybrid Search Claude 3.5 (0.76 ± 0.02) (0.82 ± 0.04)

Hybrid Search Claude 3.7 (0.75 ± 0.03) (0.84 ± 0.06)

Hybrid Search GPT 4o (0.78 ± 0.03) (0.80 ± 0.02)

Action Similarity Claude 3.7 (0.81 ± 0.04) (0.86 ± 0.03)

TopoSem Claude 3.5 (0.87 ± 0.02) (0.85 ± 0.02)

TopoSem Claude 3.7 (0.87 ± 0.01) (0.88 ± 0.04)

TopoSem GPT 4o (0.85 ± 0.03) (0.86 ± 0.02)

Table 2 reveals several key findings and insights. Notably, the

results for Semantic Search with Claude 3.7 show that its perfor-

mance is not consistently superior to zero-shot planning, where the

LLM is provided only with the correct API description and plan in a

zero-shot manner. This observation aligns with the findings of [33],

which highlight that semantic search may retrieve exemplars with

incorrect plans, potentially misleading LLM planning, particularly

in domain-specific scenarios.

The hybrid search demonstrates better results compared to both

pure semantic search and zero-shot methods. This improvement is

attributed to the BM25 component, which helps filter outmisleading

exemplar candidates retrieved by semantic search through key

token matching. However, as shown, hybrid search combined with

different base LLMs yields similar planning and payload accuracy,

indicating that given the same in-context plans, these LLMs perform

comparably in terms of ICP planning and payload accuracy.

Both action similarity-based methods and TopoSem outperform

traditional search methods by assessing similarity at the plan arti-

fact level, rather than inferring plan similarity solely from query

similarity. Moreover, our method surpasses action similarity-based

approaches in planning accuracy while maintaining comparable

performance in payload accuracy.

Here is an example (see A.5) that illustrates why our method

outperforms traditional search approaches such as semantic search

and hybrid search.

4.3.2 How does TopoSem perform on OOD query sets? Our method

performs well not only because it considers similarity at both the

topological and semantic levels of the payload, but also because

the embedding model is fine-tuned on triplets constructed from the

augmented dataset. However, analysis of the augmented queries re-

veals that the anchor used for pairwise similarity computation may

sometimes share a similar narrative context. Therefore, evaluating

performance on OOD data is also important.

Table 3: TopoSem ICP performance on OOD queries (All ex-
periments were run 10 times with the temperature of the
base LLMs set to 0.1 and 𝐾 = 10)

Models Planning Acc. Payload Acc.

Hybrid Search Claude 3.7 (0.73 ± 0.05) (0.79 ± 0.06)

Action Similarity Claude 3.7 (0.79 ± 0.03) (0.83 ± 0.03)

TopoSem Claude 3.7 (0.77 ± 0.04) (0.80 ± 0.02)

To further analyze performance on OOD queries, we manually

investigated the sources of error. We found that the model often

fails when faced with entirely new request patterns involving un-

seen API orchestrations. For example, queries related to shipment

tracking, which were absent from both the original and augmented

training data, were frequently planned incorrectly. In contrast, for

queries involving familiar request patterns, the model was able to

generate correct plans

Table 4: Error Matrix of OOD queries

Pattern New Request Pattern Old Request Pattern

Correct 25 52

Wrong 18 5

Although the model exhibits performance degradation on OOD

data, it remains a powerful tool when combined with the (query,

API graph) generation pipeline, such as in [22], to quickly adapt to

new request patterns involving entirely new APIs or API orches-

trations. Moreover, since the inference stage only requires using

the fine-tuned embedding model to index augmented queries in a

vector store, the system achieves efficient retrieval performance

when integrated with tools like FAISS. This makes it well-suited

for production deployment.

4.3.3 Sensitivty Analysis of 𝐾 in TopoSem. As noted in prior work

[25, 33], the number of exemplars can significantly impact ICP

performance. Including too many exemplars may introduce noise

and redundancy, and when up to 20 plans are provided, it may lead

to the lost-in-the-middle issue [14].
To conduct the experiments, we evaluate planning accuracy

using TopoSem with varying values of 𝐾 , where 𝐾 denotes the

number of retrieved exemplars, and perform an ablation study to

assess the impact of dynamic clustering on ICP.

From Figure 6, we observe that the planning accuracy of TopoSem

without clustering is initially high because more exemplars are pre-

sented to the LLM, providing richer information for ICP. However,

at this value of 𝐾 , the number of clusters is often just one or two,

meaning only a few exemplars are ultimately used, some of which

may contain incorrect artifacts. As 𝐾 increases, TopoSem with



TopoSem: In-Context Planning with Semantically-Informed Tooling Graph Similarity LLM4ECommerce Workshop at KDD ’25, August 4, 2025, Toronto, ON, Canada

6 8 10 12 14
TopK artifacts

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Planning Accuracy

TopoSem(Clustering)
TopoSem(No Clustering)

Figure 6: Planning Accuracy as 𝐾 changes

clustering outperforms the no-clustering variant by reducing re-

dundancy and increasing diversity. This prevents overwhelming

the LLM with too many exemplars in the prompt, leading to better

overall performance.

However, both methods show that increasing 𝐾 indefinitely is

not always beneficial, as larger 𝐾 values can introduce noise—even

with clustering—since not all clusters provide valid information for

the LLM to perform correct planning. Thus, in production, selecting

the optimal 𝐾 requires hyperparameter tuning techniques.

4.4 Online Experiments
As mentioned in Section 4.1, we also evaluate our method on real-

world seller-related APIs. We collect synthetic queries in the mag-

nitude of hundreds along with their ground-truth plan artifacts.

Note that each of these APIs can answer a handful of in-scope

questions, and real-life seller queries may be more abstract than

those in ToolBench.

We apply the same data augmentation pipeline and still uses the

augmentaed (query, APIs graph) pair as the vector store and test on

the origional queries. Using TopoSem with clustering, we obtain

Table 5: TopoSem ICP performance on real data with respect
to Hybrid Search Claude 3.7. Note that only relative perfor-
mance is reported for confidentiality reasons. (All experi-
ments were run 10 times with the temperature of the base
LLMs set to 0.1 and 𝐾 = 10)

Models Planning Acc. Payload Acc.

TopoSem Claude 3.7 (+0.15 ± 0.02) (+0.12 ± 0.01)

5 Conclusion, Limitation, and Future Work
The LLM Agentic framework has seen extensive adoption in in-

dustry, particularly within the e-commerce sector, due to its ability

to significantly lower costs and enhance productivity through au-

tomation. Planning is central to the agentic framework, harnessing

the LLM’s ability to utilize tools to formulate an effective execu-

tion plan and ensure that responses provided to users are accurate

and relevant. In the context of e-commerce, APIs tend to be more

complex, their coordination more abstract, and the scope of related

queries more domain-specific. Consequently, in-context planning

(ICP) has become a standard approach to assist LLMs in navigating

this complexity. However, relying solely on semantic similarity or

hybrid search methods may fail to retrieve the appropriate planning

artifacts, as different organizations or teams often employ distinct

API orchestrations to address semantically similar queries.

In this paper, we propose TopoSem, an end-to-end framework

designed to rapidly adapt pretrained embedding models to domain-

specific queries for retrieving plan exemplars. TopoSem accounts

for both the topological distance between API execution graphs and

the semantic distance between payloads to the APIs within those

graphs. Extensive experimental results demonstrate the effective-

ness of TopoSem, highlighting the importance of integrating the

topological structure of API execution graphs alongside the critical

role of high-quality exemplars.

Despite its strengths, TopoSem has limitations. When confronted

with a novel user request involving entirely newAPIs or API orches-

trations, it relies on a synthetic plan artifact generation pipeline to

expand the vector store and improve performance. In future work,

we plan to integrate this approach with tool knowledge graphs,

such as those proposed in [6, 15], to enhance generalization to

previously unseen APIs and orchestrations.
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A Prompts in Data Augmentation Pipeline
Given the original query along with its ground-truth plan artifacts,

A.1 Scenario 1
Prompt for scenario 1

You are given a query which a customer ask to an assistant,

and you will be also given a list of tasks about how the

assistant execute the underlying executors and its executor

tools to ask the query.

You task must generate a different story context, different

words and style, different order of sentences, and also the

verb (for example, if the original querymay talks about trip,

then the modified query could talks about go to hospital),

and also you could change the date or the location, but

the executors, executors tools, and the task dependencies

need to keep as the same with only changing the time or

location for the query since you could answer the modified

query with only changing the time, date or amount or

location in the payload.

Here is the {query} and here are the {tasks}.

Here is the modified query:

Here is the modified tasks:

Return me the result without saying anything else.

A.2 Scenario 2
Prompt for scenario 2

You are given a query which a customer ask to an assistant,

and you will be also given a list of tasks about how the

assistant execute the underlying executors and its executor

tools to answer the query.

You task is to delete one task from the task lists and the

most important thing is that this task should not be a

dependent task of another task.

After that deletion, you need to also remove the part in

the query where contains this task, and after removing

the part, you need to use the different words and styles

to rewrite the rest of the query, but the query for each

left task after task deletion should be the same with only

changing the time, location or date or amount or cost.

The task lists after deletion should answer the modified

query after deletion exactly.

Here is the {query} and here are the {tasks}.

Here is the modified query:

Here is the modified tasks:

Return me the result without saying anything else.
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A.3 Scenario 3
Prompt for scenario 3

You are given a query which a customer ask to an assistant,

and you will be also given a list of tasks about how the

assistant execute the underlying executors and its executor

tools to answer the query.

You need to look the query and change some parts of the

query and also change the task list based your change

in the customer query. For example, if part of customer

query asks ’I am planning on a trip to New York. I am

looking for the public transit sector. Could you tell me

their location?’ Then you could tweak this query to ’I

am thinking about traveling to Tokyo. I want to take the

public transportation for looking the cityview. Could you

tell me their ticket price?’. Therefore, correspondingly, in

the task lists, you need to corresponding change that task

by changing the executor tool to ticketpricing, and also

changes the query of this task to get the ticket price of the

Tokyo public transportation. Meanwhile, keep other parts

of the query and also the tasks in the task list unchanged

by only rewriting them using different words or style but

should be the same meaning,

Here is the {query} and here are the {tasks}.

Think step by step and give me the answers as follow:

Here is the modified query:

Here is the modified tasks:

Return me the result without saying anything else.

A.4 Scenario 4
Prompt for scenario 4

You are given a query which a customer ask to an assistant,

and you will be also given a list of tasks about how the

assistant execute the underlying executors and its executor

tools to answer the query.

You need to come up with a total new query that com-

pletely different with the original and totally new queries

for each task in the list. Note that you need to keep all tasks

unchanged except for the query. Therefore, you need to

open the imgination to think about a total irrelevant new

query with roughly same length for each task [if the old

query is asking about the address, then the new query may

asks about dinner] and this new query should be finished

by the executor and its executor tools. you need to think

about this new query by the name of the executor and

executor tools. After putting each new query in the task

list, you need to think about a case where you could use

these tasks in the task list to answer.

Here is the query and here is the tasks tasks.

Think step by step and give me the answers as follow:

Here is the modified query:

Here is the modified tasks:

Return me the result without saying anything else.

A.5 Offline running example
Offline running example

Query: = I need to prepare a trip to China, I need to rent

an Airbnb and book reservation tickets for the visit.

TopoSem: I’m planning a surprise trip and need to find

a cozy cabin in the mountains. Can you help me locate a

cabin rental and assist with the booking?

Semantic Search: I’m planning a trip to China and I want

to stay informed with the latest news articles in Chinese.

Could you help me with that?

Hybrid Search: I’m planning aweekend getaway to Tokyo

with my partner and I need some information to make the

trip more enjoyable. Can you suggest some popular dining

spots in Tokyo along with their reviews? Additionally, I

would like to know the current weather forecast for Tokyo

and find a cozy Airbnb in the Shibuya district for our stay.
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