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ABSTRACT

Multichannel audio mixer and limiter designs are conventionally decou-
pled for content reproduction over loudspeaker arrays due to high com-
putational complexity and run-time costs. We propose a coupled mixer-
limiter-envelope design formulated as an efficient linear-constrained
quadratic program that minimizes a distortion objective over multichan-
nel gain variables subject to sample mixture constraints. Novel methods
for asymmetric constant overlap-add window optimization, objective
function approximation, variable and constraint reduction are presented.
Experiments demonstrate distortion reduction of the coupled design,
and computational trade-offs required for efficient real-time processing.

Index Terms— Limiter, window optimization, constraint reduction

1. INTRODUCTION

Multichannel audio content reproduction over loudspeaker arrays has
grown in popularity in recent years with the proliferation of low-
cost sound-bar and smart-speaker consumer electronics. Such audio-
reproduction systems are typically resource-constrained compared
to professional-grade loudspeakers in terms of available transducer-
level digital-electrical headroom, and acoustic output. A conven-
tional method digitally compresses the audio content’s dynamic-range
throughout channel-mixing stages to stay under digital full-scale lev-
els, maximize loudness, and satisfy studio standards [1–4]. A channel
matrix-mixer [5, 6] or matrix-decoder [7–9] therefore allocates head-
room between input channels and output transducers; dynamic-range
controllers (DRCs) [10–12] such as peak-limiters are thereby placed
downstream for transducer and amplifier protection.

Several deficiencies of the conventional method are known: A mul-
tichannel matrix-mixer can conservatively pre-allocate headroom for
each input channel such that maximum channel mixture levels mini-
mally activate downstream DRCs. Pre-allocation however distorts the
audio mixture in the absence of run-time monitoring; a channel’s upper
dynamic range may be unnecessarily lowered when other channels are
sparse, and the choice of mixing gains can alter the spectral and channel
balance of the original content. Terminal DRCs operating on mixtures
of channels per transducer can limit at different times, intermittently
distorting both channel balance and the loudspeaker array’s directivity.

We address both pre-allocation and terminal-limiter problems by
coupling time-varying channel-gain reduction with per-sample con-
straints of the channel mixtures via a sequence of quadratic pro-
gramming (QP) problems. Section 2 presents our QP mixer-limiter
design, and relates the QP’s feasibility with a novel constant overlap-
add (COLA) [13] constrained gain envelope construction. Section
3 presents the channel-mixture’s distortion objective and derives the
QP objective from the former’s optimal Taylor series approximation.
Section 4 extends the QP formulation to joint multi-band [14] multi-
content mixers, and introduces novel variable and constraint size reduc-
tion methods for efficient computation. Section 5 shows experimental
results for distortion reduction and computational performance.

2. QUADRATIC PROGRAM MIXER-LIMITER

Let S ∈ RF×N be a matrix of N input channel column-vectors of F
samples in an audio frame. Each of the N input channels are mixed with
independent variable gains in vector x = [x1, . . . , xN ]T to produce a
single output channel mixture limited in dynamic range and satisfying

the equivalent modulus linear constraints given by

− τ ≤
N∑

n=1

Smnxn ≤ τ, τ ≥ 0, 1 ≤ m ≤ F, (1)

where τ is a user-specified non-negative threshold for any mixture of
samples within a frame. The variable gains are subject to non-negative
bounds under unity and are equivalent to box-constraints given by

0 ≤ ln ≤ xn ≤ un ≤ 1, 1 ≤ n ≤ N, (2)

and therefore only apply gain reduction to each input channel. The gain
variables x, constrained to the feasible space that satisfy the linear con-
straints, are then found by minimization over a quadratic polynomial
objective function. The latter’s standard form is given by

f(x) =
1

2
xTQx+ cTx+ d, (3)

where symmetric matrix Q ∈ RN×N , vector c ∈ RN×1, and constant
d parameterize our distortion objective in section 3. Minimizing (3)
subject to constraints (1), (2) in vectorized form is given by

x∗ = argmin
x

f(x), s.t. − τ ≤ Sx ≤ τ , l ≤ x ≤ u ≤ 1, (4)

where τ = τ1 = τ
∑F

i=1 ei ∈ RF×1 is the vector of constant thresh-
old τ over frame-samples, ei is the standard basis, and l,u ∈ RN×1

are the vectors of lower and upper bound respectively. We now construct
the limiter’s gain envelope across frame-wise solutions to (4).

Constrained Limiter-Envelope Design: Attack, hold, and release-
time parameters are commonly used to restrict the velocity and shape
of a limiter’s gain envelope, constraining the latter to be smooth and re-
ducing any audible distortion when multiplied by the input signals [15];
attack refers to the early portion of the gain envelope of increasing gain
reduction, hold is the middle portion of constant gain reduction, and re-
lease is the late portion of decreasing gain reduction. We can define an
envelope function with attack, hold, release dynamics, and supports over
the solutions to (4) across overlapped audio frames with look-ahead.
Given an audio stream Y (m,n) of N input channels for sample index
m and channel index n, let S{k} ∈ RF̄×N be the kth audio frame
of size F augmented with L look-ahead samples per channel, where
F̄ = F + L, be defined as follows:

S{k}
mn =

{
Y (m+ (k − 1)F, n), 1 ≤ m ≤ F + L

0, otherwise . (5)

For the kth augmented frame, define the QP minimizer x{k}
∗ s.t. the

sample constraint set ξ{k} in the frame and look-ahead as follows:

x{k}
∗ = argmin

x
f(x) s.t. linear constraints ξ{k},

ξ{k} =

{
−τ ≤ S{k}x ≤ τ , 2F̄ Mixture limits (1)

0 ≤ x ≤ u ≤ 1, 2N Variable bounds (2)
,

(6)

where S{k} replaces S in (4), τ = τ1 ∈ RF̄×1, and the variable
lower bounds are set to 0 to ensure that a feasible solution exists. The
enveloped output mixture y(t) at time t is therefore given by the sum of
gain enveloped inputs and the envelope function v : R → R0+:

y(t) =

N∑
n=1

Y (t, n)vn(t), vn(t) =

∞∑
k=0

Wn(t− kF )x{k+1}
∗n , (7)



where vn(t) are weighted mixtures of solutions across frames. We show
the bounds −τ ≤ y(t) ≤ τ and 0 ≤ vn(t) ≤ 1 are satisfied via the
design of a weighting function Wn(t).

Fig. 1: Blue and red envelopes vn(t) are COLA weighted mixtures of
solutions in (7), belonging to different input channels, and computed
over augmented frames S{k} in (5) with different look-ahead times.

Observe in Fig. 1 that the convex set of solutions from consecutive
frames αx{k}

∗ +(1−α)x
{k±1}
∗ , 0 ≤ α ≤ 1 is non-empty for the half-

space intersection of ξ{k} ∩ ξ{k±1} common mixture-limit constraints
from overlapped look-ahead and frame samples of S{k},S{k±1} re-
spectively. The set of solutions vn(t) in (7), evaluated across multi-
ple consecutive frames, is convex and satisfies the mixture-limited con-
straints of (1) at time t if Wn(t) are window functions with bounded
non-negative supports in the frame and look-ahead interval, zero-valued
elsewhere, and have the COLA [13] property given by{

0 ≤ Wn(t) ≤ 1, 1 ≤ t ≤ F + L
Wn(t) = 0, otherwise

}
, Bounded supports,

∞∑
k=9∞

Wn(t− kF ) = 1, ∀t ∈ R, COLA property.
(8)

For bounded time t, the gain envelopes v(t) = [v1(t), . . . , vN (t)]T

span Barycentric weighted x
{k}
∗ of consecutive sequences of frame in-

dex k satisfying 1+(k−1)F ≤ t ≤ (k−1)F+F̄ . We therefore design
window function Wn(t) with bounded COLA and dynamics constraints
for smoothly transitioning between supports or frames as to minimize
discontinuities in the enveloped output mixture y(t).

Dynamics Constrained COLA Window Design: We can approx-
imate a smooth COLA window W (t) with characteristic attack, hold,
and release dynamics via constrained optimization over the uniformly-
sampled and integer-spaced window samples ω(t) = W (t), t ∈ Z. Let
the characteristic dynamics of W (t) be defined by its first-derivative’s
intervals w.r.t. attack-release onsets as follows:

Attack dW/dt ≥ 0 1 ≤ t < TA Attack-onset TA

Hold dW/dt = 0 TA ≤ t < TR Release-onset TR

Release dW/dt ≤ 0 TR ≤ t ≤ M Window-size M.
(9)

The velocity, acceleration, and smoothness of W (t) can be approxi-
mated via the following first-order forward, central, and squared central
finite-differences of ω(t) respectively:

dW/dt ≈ ω(t+ 1)− ω(t) = ω(t) ∗ νv(t),
d2W/dt2 ≈ ω(t+ 1)− 2ω(t) + ω(t− 1) = ω(t) ∗ νa(t),(

d2W/dt2
)2 ≈ ω(t) ∗ νR(t) ∗ ω(t), νR(t) = νa(t) ∗ νa(t),

(10)

where ∗ is the discrete convolution operation, νv(t), νa(t), are the ve-
locity, acceleration kernels respectively given by

νv(t) =

 +1, t = 1
−1, t = 0
0, otherwise

, νa(t) =

 +1, t = ±1
−2, t = 0
0, otherwise

,

(11)

and νR(t) is the squared-acceleration smoothness kernel. We maximize

the overall smoothness of W (t) with characteristic dynamics of (9)
by minimizing the total squared-acceleration of (10) subject to causal
COLA of (8) and finite-difference velocity constraints.

Let ω = [ω(1), . . . , ω(M)]T ∈ RM×1 be the unknown window
samples, and the vectorized QP minimization be given by

ω∗ = argmin
ω

M∑
t=1

(ω(t) ∗ νa(t))2 = ωTTM
0 (νR)ω, s.t.

T F
0 (νc)ω = 1, νc(t) =

{
1, t ≡ 0 (modF )
0, otherwise , ω ≥ 0,

T TA
0 (νv)ω ≥ 0, T TR

TA
(νv)ω = 0, TM

TR
(νv)ω ≤ 0, (12)

where the listed constraints in (12) satisfy bounded and causal COLA
in (8), and attack-hold-release dynamics in (9); a feasible solution can
always be found for hold-sizes TR − TA ≤

⌊
M
F

⌋
F as COLA rectangle

windows can be shifted in time [16]. The operator T b
a (ν) ∈ R(b−a)×M

in (12) defines a truncated Toeplitz matrix [17] with constant diagonal
entries of the kernel function ν(t) given by

Tij =

{
ν(j − i− a), j − i ≤ b

0, otherwise , (13)

where ν(t) is shifted by a and upper-bounded by b in time. The objec-
tive (12) is convex as the symmetric Toeplitz kernel matrix TM

0 (νR) =(
TM
0 (νa)

)2
+e1e

T
1 +eMeT

M can be decomposed into the sum of pos-
itive semi-definite (PSD) products of the symmetric Toeplitz matrix of
νa(t) in (10) with itself and non-negative outer products. Furthermore,
TM
0 (νR) is consistent with the 0-value Dirichlet boundary conditions

of (8), causing window tails to taper in the solutions to (12), as shown
in Fig. 2 (M = 1024, F = 256); several regularities for attack-release
onset tuples (TA, TR) are noted.

Symmetric onsets times, TA = M − TR (solid-purple, dashed-red),
yield symmetric windows with shapes following convolved rectangle-
cosine constructions in [16]. Late attack-onsets TA ≥ M/2 (dashed-
purple, dotted-green) present identical asymmetric windows. Early
attack-onsets TA < F (solid-blue) exhibit piece-wise flat regions. The
remaining cases (red, yellow) have a single flat section in the hold-
interval (TA, TR). Lastly, solutions preserve their shapes for constant
M/F , and suggest a continuous and closed-form expression.

Fig. 2: Solutions (12) vary across attack-onset TA and release-onset TR

times, and are scale-invariant w.r.t the window/frame size ratio M/F .

3. CHANNEL-MIXTURE DISTORTION OBJECTIVE

We define channel-mixture distortion as the weighted summation of
channel gain reductions in decibels (dB), which can be expressed as
the logarithmic product g(x) of exponentiated gain variables xwn

n :
N∑

n=1

wn20 log10 xn = 20 log10 g(x), g(x) =

N∏
n=1

xwn
n , (14)

where wn ∈ R>0 is the positive attenuation rate parameterizing dB
reduction of channel Y (t, n) in (7) per dB reduction to xn. Larger wn

penalizes smaller xn and minimize distortion to select channels (e.g.



center). The maximizer of the summation in (14) is equal to that of the
product of gains as the logarithm is both monotonic and non-positive.
For QP objective (3), the quadratic approximation of g(x) follows the
Taylor series expansion h(x) at an expansion center a ∈ RN×1:

h(x) = g(a) + (x− a)T ∇g(a) +
1

2
(x− a)T H(a) (x− a) ,

(15)

where the gradient ∇g(x) ∈ RN×1 is the vector of partial derivatives

∇g(x) =

[
∂g

∂x1
, . . . ,

∂g

∂xN

]T

,
∂g

∂xi
= wix

wi91
i

N∏
n=1, n̸=i

xwn
n ,

(16)

and the Hessian H(x) ∈ RN×1 is the matrix of second-order partial
derivatives Hij = ∂2g

∂xi ∂xj
with entries given by

Hij =


wi(wi − 1)xwi92

i

∏N
n=1
n ̸=i

xwn
n , i = j

wiwjx
wi91
i x

wj91
j

∏N
n=1
n ̸=i,j

xwn
n , i ̸= j

. (17)

The expansion center at unity a = 1 in (15) incurs no distortion to (14),
and has the following gradient (16) and Hessian (17):

g(1) = 1, ∇g(1) = w, H(1) = wwT − diag (w) , (18)

where w = [w1, . . . , wN ]T ∈ RN×1 is the vector of attenuation rates,
and diag (w) =

∑N
n=1 wnen the diagonal operator. Rewriting (15),

(18) in the standard form (3) for QP minimization gives

f(x) = 1− h(x), Q = −H(1) = diag (w)−wwT ,

c = − (w +Q1) = (wT1− 2)w, d =
1

2
1TQ1+wT1,

(19)

where it is desirable to further constrain the critical point x∗ of f(x)
to x∗ ≥ 1 such that the minimizer of (4) lies on a constraint that
is near unity. Setting the gradient ∇f(x) = Q (x∗ − 1) − w to
zero, and computing the Sherman-Morrison [18] matrix-inverse Q91 =

diag (w)91 + 11T

1−1Tw
, yields the critical point given by

x∗ = Q91w + 1 = (2 + q)1, q = 1Tw
(
1− 1Tw

)−1

, (20)

where x∗ is a scaled vector of unity. Therefore, constraining x∗ to lie
outside of unity bounds the sum of rates wn below unity:

x∗ ≥ 1 ⇔ q ≥ −1 ⇔
N∑

n=1

wn ≤ 1, wn > 0. (21)

A second desirable property is a PSD Q ⪰ 0 or negative semi-
definite H(1) ⪯ 0 to ensure that f(x) is convex in (4) and solv-
able in polynomial time [19]. We show that the summation bound∑N

n=1 wn ≤ 1 in (21) is necessary and sufficient for PSD Q. Let
the eigenvalues λ ∈ R of symmetric Q be the zeros of secular equation
S(λ) of a rank-1 update to a diagonal matrix [20]:

S(λ) = 1−
N∑

n=1

w2
n

wn − λ
= 1−

N∑
n=1

(
w2

n − λ2
)
+ λ2

wn − λ

= 1−
N∑

n=1

wn − λ

N∑
n=1

wn

wn − λ
. Diff. of Squares

(22)

Setting (22) to zero and applying bounds (21) gives the necessary con-
ditions that constrain the eigenvalues as follows:

N∑
n=1

wn = 1− λ

N∑
n=1

wn

wn − λ
≤ 1 ⇒ λ ≥ 0, (23)

whereby λ must be non-negative via proof by contrapositive as λ <
0 ⇒

∑N
n=1

wn
wn−λ

> 0 ⇒ 1−λ
∑N

n=1
wn

wn−λ
> 1. For the sufficient

condition, let rates 0 < w1 ≤ w2 ≤ . . . wN and eigenvalues λ1 ≤

λ2 ≤ . . . λN of Q be sorted in ascending order. We prove λ1 ≥ 0 ⇒∑N
n=1 wn ≤ 1 via the contrapositive

∑N
n=1 wn > 1 ⇒ λ1 < 0 < λ2

and examine S(λ) in (22) as follows:

S(−∞) = 1, S(0) = 1−
N∑

n=1

wn < 0,

lim
λ→w±

n

S(λ) = ±∞,
∂S(λ)

∂λ
= −

N∑
n=1

w2
n

(wn − λ)2
< 0,

(24)

where the partial derivative ∂S(λ)/∂λ is negative. The intermediate
value theorem therefore guarantees the existence of the two smallest
roots in the intervals λ1 < 0 and w1 < λ2 < w2 respectively. Thus in
practical implementations, we normalize wn to sum to or below unity.

4. VARIABLE AND CONSTRAINT REDUCTION

QP solvers exhibit quadratic to cubic compute costs w.r.t. the number
of constraints and variables [21], [22] in (6), which is prohibitive for
real-time processing within an audio frame’s period in practical appli-
cations. Consider the case of multi-band, multi-content channel inputs
with multiple output-mixer terminals. Let the channel gains be the col-
umn matrix X ∈ RNB×NC of NB multi-band gains per NC content
channels, and the sample data be the tensor S ∈ RF̄×NB×NC×NM of
F̄ samples per frame and look-ahead, NB bands, NC content channels,
summed into NM mixers. The constraint set is given by

−τm ≤
NB∑
j=1

NC∑
k=1

S(i, j, k,m)Xjk ≤ τm, 0 ≤ Xjk ≤ 1, (25)

where 1 ≤ i ≤ F̄ , 1 ≤ m ≤ NM , and the variables x = vec (X) ∈
RN×1 can be vectorized by stacking the columns of matrix X for con-
sistency with 6. Both the number of variables N = NBNC , and sam-
ple constraints M = 2F̄NM are multiplicative and large. We give two
methods for reducing the number of variables and constraints.

Pre-mixing Variable Reduction: We can consider pre-mixing sub-
sets of input channels as an approximation to the QP in 6 that constrains
the variables x to a linear transformation x = Py, P ∈ RN×NP of
fewer NP < N variables in vector y ∈ RNP×1:

y∗ = argmin
y

f(y) =
1

2
yTP TQPy + cTP + d,

s.t. − τm ≤ SmPy ≤ τm, 0 ≤ Py ≤ u,

(26)

whereby P TQP ⪰ 0 preserves convexity, channel matrix Sm ∈
RF̄×N reshapes S(:, :, :,m) in (25), τm = τm1 ∈ RF̄×1 specifies
mixer-dependent thresholds, and SmP downmixes channel samples.
The following pre-mixer matrices P are lossless if P1 = 1, uncouples
variables in y if each row contains exactly one non-zero entry, and
induces finite upper-bounds on y if all entrants are non-negative:

Pre-mixer Definition P NP Uncoupled
Single channel 1N 1 True

Multi-band INC ⊗ 1NB NC True
Multi-content 1NC ⊗ INB NB True

Concatenation [α1NC ⊗ INB ,
INC ⊗ (1− α)1NB ] NB +NC False

(27)

where ⊗ is the Kronecker product operator. The single, multi-band,
and multi-content pre-mixers sums all, banded, and content channels
respectively. The concatenation pre-mixer contains multi-band, and
multi-content weighted downmixes with lossless 0 < α < 1, and box-
constraints 0 ≤ y ≤

[
α911NB ; (1− α)911NC

]
. We omit downmix

matrices that are both lossy and coupled (cross-format AC-3 [23]), but
can be used to preserve left-right content balance in practice.

Occlusion Culling Constraint Reduction: We can efficiently iden-
tify and remove a class of mixture limit constraints in (1) that do not
support the QPs feasible space. Let V {m} be the set of extreme ver-
tices in RN of the convex hull H{m} defined by the following half-
space intersection of the signed |m|th mixture constraint sm(x) =



sgn (m)
∑N

n=1 S|m|nxn ≤ τ and the box-constraints in (6):

H{m} =
{
x ∈ RN : sm(x) ≤ τ ∧ 0 ≤ x ≤ u

}
, (28)

where sgn () is signum, V {m} ⊂ V {m} is the subset of vertices that
also lie in equality of the mth constraint sm(x) = τ , and has cardinality
|V {m}| ≤ 2N91 bounded by maximum number of edges 2N91N in the
N -dimensional hyper-cube. A convex hull H{i} is fully contained in
convex hull H{j} iff the ith mixture constraint occludes the jth mixture
constraint via the following indicator function:

Io(i, j) =

{
1, si(x) > τ, ∀x ∈ V {j}

0, otherwise
, (29)

whereby all vertices in V {j} lie on the negative half-space of the ith

constraint. The jth constraint sj(x) ≤ τ can therefore be removed
from constraint set ξ in (6) as it does not support the intersection of
convex hulls Ĥ = ∩iH{i} that defines the feasible space in Fig. 3. We
compare the costs of finding Ĥ to solving the QP given M number of
constraints and M̄ ≤ M supports of Ĥ in N variables, where M ≫ N .

Let the cost of finding the support constraints of Ĥ via dual space
methods [24] be O(MM̄⌊N/2⌋/(M̄ ⌊N/2⌋!)), which exceeds that of
solving the QP via interior-point methods [21] in O(M3/2N2) or first-
order methods [22] in O((M + N)3). It is therefore efficient to solve
the QP (6) over a small super-set of support constraints, initially de-
termined by pre-processing [25] in O(MN), before applying further
constraint reduction in sub-quadratic time. Consider the following set
Ξ of mixture constraints not occluded by any other constraints:

Ξ = {sj(x) ≤ τ : Io(i, j) = 0, ∀ i ̸= j} , M̂ = |Ξ| , (30)

which contains the supports of Ĥ. The costs of computing V {j} and
evaluating Io(i, j) in (29) are O(2NN2) and O(2NN) respectively. We
can determine Ξ in O(2N (N2 + NM̂ + logM)M) time via sorted
constraints defined in the following propositions:

Io(i, j) = 1 ⇒ min
x∈V {i}

∥x∥ < min
x∈V {j}

∥x∥ , (31)

whereby the vertex in V {i} closest to the origin is closer than that of
V {j} if constraint i occludes constraint j following H{i} ⊂ H{j}. The
contrapositive of (31) is therefore true and expressed by

min
x∈V {i}

∥x∥ ≥ min
x∈V {j}

∥x∥ ⇒ Io(i, j) = 0, (32)

where if the vertex in V {i} closest to the origin is further than or
equidistant to that of V {j}, then constraint i does not occlude con-
straint j. We can therefore sort the M constraints in ascending order
by the min-norm vertex minx∈V ∥x∥ in O(2NM logM) time, add
the first constraint to Ξ for the base case, and add subsequent sorted
constraints j to Ξ if all constraints i in Ξ do not occlude constraint j
(I0(i, j) = 0, ∀si(x) ≤ τ ∈ Ξ) in O(2NNM̂M) time.

Fig. 3: The sample constraint set’s feasible space Ĥ is contained in the
non-occluded set of constraints Ξ in (30) which excludes ξ3.

5. EXPERIMENTS

We evaluate the distortion objective g(x) in (14) in terms of the QP
objective f(x) in (6) across pre-mixers in (27) of decreasing number
of channels compared to the full mixer-limiter. The multi-band and
mult-content channel tensor S in (25) is populated by amplitude modu-
lated signals S(t, j, k) = sin (2πajt) sin (2π(bkt+ ϕjk)), where a =
[101, 443, 1627] and b = [2, 5, 11] are lists of frequencies (Hz) for the
carrier band and message content respectively, and ϕjk = (k−1)NB+j

NBNC

the latter’s phase-offset. We plot the time-evolution of g(x) over a 1-
second duration in Fig. 4, and show the distortion improvement gap
with the full mixer-limiter decreases for summative NB+NC number of
channels. The mean and standard deviation of f(x) across pre-mixers
validate the trend: Single channel limiter 0.23 ± 0.23, multi-band and
multi-content channel limiters 0.2 ± 0.21, concatenation (α = 1/2)
0.19± 0.2, and full 0.16± 0.18.

Fig. 4: Distortion objective g(x) in (14) for (27) pre-mixers converges
to the full mixer-limiter as the number of channels increases.

We evaluate constraint reduction performance by simulating a multi-
band mixer-limiter in (6) of frame-size F = 256, look-ahead L = 768,
mixture threshold τ = 1, and upper bound u = 1. The input signals
consist of N full-scale sine tones at [101, 443, 1627, 4153, 8747, 15733]
Hz (1-second duration at 48 kHz sample rate). Pre-processing [25]
implied-bounds and tightening x methods reduce the number of
mixture-limit constraints (originally 2048). The non-occluded sets
Ξ (30) computed with or without pre-processing are equivalent. We
compare its cardinality M̂ to that of the convex hull’s supports in Ta-
ble 1 across frames for mixer-limiter instances of increasing number
of channels, containing the first N tones. The ratio of constraint to
convex-support set sizes reduces in range from (8.07, 51.24) (pre-
processing) to (1.37, 1.88) (non-occluding set), thereby approaching
the cardinality’s lower-limit.

Table 1: Mixer-limiter Number of Constraints (Mean ± Std. Dev)

N Implied-bounds Tightening Non-occluded Convex

2 384.7± 52 374.1± 50.5 10± 4.3 7.3± 2.6
3 805.8± 103.7 799± 102.8 41.8± 14.7 25.9± 7.5
4 1167± 149.4 1164± 149 99.1± 22.9 58.5± 14
5 1442± 184.5 1441± 184.3 226.3± 64 130.1± 35.7
6 1636± 209.3 1636± 209.2 381.5± 78.6 202.8± 41.8

6. CONCLUSIONS

We presented a coupled multichannel mixer-limiter design for adaptive
channel-headroom allocation and loudspeaker protection. A minimum
distortion objective was approximated and optimized via a QP formula-
tion over a frame-based processor. Limiter envelopes satisfying the QP
constraints were constructed from dynamics-constrained COLA win-
dow formulations. Pre-mixing and occlusion-set variable-constraint re-
duction methods decreased the QP problem size and achieved compara-
ble performance with the full mixer-limiter in experiments.
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