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ABSTRACT
The substitute-based recommendation is widely used in E-commerce
to provide better alternatives to customers. However, existing re-
search typically uses customer behavior signals like co-view and
view-but-purchase-another to capture the substitute relationship.
Despite its intuitive soundness, such an approach might ignore
the functionality and characteristics of products. In this paper, we
adapt substitute recommendations into language matching prob-
lem. It takes the product title description as model input to consider
product functionality. We design a new transformation method to
de-noise the signals derived from production data. In addition, we
consider multilingual support from the engineering point of view.
Our proposed end-to-end transformer-based model achieves both
successes from offline and online experiments. The proposed model
has been deployed in a large-scale E-commerce website for 11 mar-
ketplaces in 6 languages. Our proposed model is demonstrated to
increase revenue by 19% based on an online A/B experiment.

CCS CONCEPTS
• Computing methodologies→ Learning from implicit feedback;
Natural language processing.
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1 INTRODUCTION
Substitute recommendations are widely adopted in E-commerce by
giving customers more options, especially when the reference prod-
uct is out-of-stock, higher-priced, or lower-rated [7, 10]. It improves
the shopping experience and increases customer affinity and loyalty
to the E-commerce service provider. It provides alternative prod-
ucts from a reference product, which can be regarded as <reference
product, alternative product> pairs. When learning such pairs, ex-
isting research usually utilizes customer behavior signals to extract
the substitute relationship [4]. Two commonly adopted substitute
definitions are co-view and view-but-purchase-another [12]. These
behavior-based heuristics are called buyability signals in this paper
since they are correlated with customer purchase behavior.

However, such an approach does not consider product function-
ality. As shown in Figure 1, although vitamin D and C are usually
coupled together based on co-view, they are not substitutable in
functionality or product characteristics. Such bad cases harm cus-
tomer trust and might incur legal regulation issues when claiming
them substitute with each other. Therefore, in this paper, we define
substitute recommendations based on both buyability and func-
tionality and then further consider product functionality in the
proposed model. Ideally, such functionality relationships can be
learned from human-annotated labels. However, in practice, ac-
quiring such information is highly time-consuming and expensive.
Hence, we still use the signals from production (i.e., impressions,
clicks, purchases, and revenue) to train our models with the aware-
ness of their weak supervision nature. The corresponding technical
challenges are described as follows:

(1) Inaccurate supervision: Customer behavior might be con-
founded by factors other than functional substitutabilities,
such as complementary products and customer preference.

(2) Selection bias: It occurs when data samples are not represen-
tative of the underlying data distribution [13].

(3) Domain-specific text understanding: E-commerce text has
unique characteristics compared to the other public corpus.

To address the above challenges, we first build a dedicated clas-
sification dataset to incorporate functionality in evaluation. We use
negative sampling augmentation to address selection bias. We adopt
a regression setting with log transformation to de-noise the weakly
signals and consider product functionality and buyability together.
We convert our substitute recommendation problem into a natural
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Figure 1: Popular substitute pair based on co-view substitute
definition, but the alternative product has a different func-
tion with the reference product.

language matching problem, in which the reference product title
is regarded as the “query” and the alternative product title is the
“answer” or “document”. Recently, deep learning based method has
achieved great success in different application [2, 6, 16, 21]. Specifi-
cally, we adopt the XLMR [5] into our use case, a state-of-the-art
transformer-based multilingual model. It enables us to exploit con-
textual information efficiently, provides multilingual scalability,
and reduces development and maintenance efforts.

To summarize, our contributions are as follows:

(1) To our best knowledge, it is the first work to consider product
functionality in the substitute recommendation.

(2) We employ the state-of-the-art transformer-based model to
learn textual information from the product title and fine-tune
it in our E-commerce specific domain.

(3) We design new transformation methods and loss function
objectives to de-noise label signals from production data
and adopt the corresponding negative sampling strategy to
improve robustness.

(4) We further consider multilingual support for better scala-
bility. The proposed model is deployed into production and
demonstrates success in online and offline experiments.

2 PROBLEM FORMULATION
The primary input to our substitute model is a pair of the reference
product and alternative product titles. The model is tasked with
predicting customer feedback that is correlated with functionality
and buyability. Let 𝑢 and 𝑣 be the product titles from the refer-
ence and alternative products, and 𝑦 be the label extracted from
the raw customer signal (the count of received impressions, clicks,
purchases, etc.). Assuming 𝐷 is the set of 𝑛 pairs of reference and
substitute products, 𝐷𝑖𝑣 is the loss function measuring the diver-
gence between the model output and the ground truth label, 𝑓 is
the model that outputs substitute score, and \ is model learnable
parameters, we can define the learning objective as:

𝑙 (\ ;𝐷) = 1
𝑛

∑︁
(𝑢,𝑣,𝑦) ∈𝐷

𝐷𝑖𝑣 (𝑓 (𝑢, 𝑣 |\ ), 𝑦) (1)

In this paper, we study different 𝑦, including click-through rate
(CTR, # click / # impression), conversion rate (CVR, # purchase / #
click), purchase rate (PR, equal to CTR x CVR), and gross merchan-
dise value (GMV, revenue), as well as different 𝐷𝑖𝑣 and 𝑓 .

3 METHODOLOGY
In this section, we first discuss feature selection to mitigate weak
supervision. Then, we demonstrate the best label as the proxy for
buyability and substitutability. Afterward, we present the negative
sampling to address selection bias. Finally, we present the model
design for multilingual understanding with domain adaptation.

3.1 Feature selection
We use the title as the model’s feature to avoid overfitting the noise
in customer preference. We discard size and color because their
coverage is low, and information is usually duplicated in the title.
When the mappings get ingested from retrieval sources, they come
with confidence values measuring the quality of the mappings. We
also drop these values and source information to avoid the cold
start problem. Otherwise, the model cannot process the pairs from
a new resource, and it needs to be re-calibrated every time once
the upstream modules update.

We used the price information in our early iteration since they
improved the offline metric. However, we found that the trained
model filtered more high-priced products even if they were substi-
tutable. It was because customer engagement is worse on average
for the expensive product. For example, cheap products (≤ $20)
have three times higher average purchase rates than expensive
products (≥ $100). So, as a short-term solution, we dropped these
features and left them for future investigation.

3.2 Label engineering
Label engineering aims to find the best proxy labels correlated
with functionality and buyability. For functionality, purchases are
stronger signals because customers need to pay, while clicks can oc-
cur on the non-substitutable product out of the customer’s curiosity.
Hence, we use purchase rate (PR), the ratio between purchase and
impression count, as the training label. Besides, we found that CTR
and CVR have a Pearson correlation lower than 0.20, suggesting
that using any one alone will lead to a suboptimal buyability rank-
ing. Another commonly adopted approach is to view the problem
as a binary classification. Following [11], we can define positive
samples as the recommendations purchased by customers at least
once and negative samples as the ones that are not.

We also discover the long-tail distribution of the purchase rate.
An extremely high purchase rate is likely to be noisy due to insuffi-
cient impressions or data collection errors. Hence, we log-transform
the label and find the resulting distribution smoother while main-
taining the same relative order and achieving better performance.

3.3 Negative sample augmentation
To mitigate the selection bias, we randomly sample pairs of prod-
ucts as negative training samples. Given the broad spectrum of
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our products, the chance that random mappings are relevant is
negligible. In the regression setting, we need to assign a numerical
“purchase rate" for the random mappings. Since random mapping
is expected to have lower quality than serving data, we assign a
negative value for random negative samples. We perform random
sampling before the training instead of for each batch separately,
which is computationally efficient and has similar performance as
mentioned in [9, 20]. We visualize the score distribution on valida-
tion data with and without the negative sampling in the extended
version paper on arXiv. With the correct negative values and ra-
tio setting, the model becomes more robust to random mappings.
Aside from random negative samples, we also have around 60% of
training data with zero purchase rate as the hard negative samples.

3.4 Models
Given the popularity and flexibility of the gradient boosting deci-
sion tree (GBDT) model in industry [3, 23], we first build GBDT as
the baseline. Then, we propose a transformer-based deep model for
better contextual understanding and multilingual scalability. Trans-
former has achieved great success in the industry recently [19, 22].
In this section, we give a high-level overview of those two models
and how to adapt them to our use case.

3.4.1 GBDT model. To adapt GBDT in our use case, we need to
featurize the text into a fixed-length vector. Firstly, we use word
embedding to embed each word into a low-dimensional vector,
which has proved effective in many areas [1, 14]. Specifically, we
first remove the stop words using the NLTK library and encode
the words with the FastText word embedding [1]. Then, we sum
over each word embedding to get fixed-size embedding. Our early
experiments show that the sum performs better than average. Lastly,
the embeddings from both products are concatenated and fed into
the GBDT model for learning.

3.4.2 Deep learning model. One disadvantage of the GBDT model
is that it completely disregards the word order in the sentence. Be-
sides, since the word embedding is pre-trained on the public corpus
and cannot be fine-tuned in an end-to-end manner [18], making it
difficult to learn with our E-commerce domain-specific data [17].
To solve this issue, we utilize the transformer-based neural net-
work [6] and fine-tune it on our dataset for domain adaptation. In
our case, we adopt the interaction-based model, which achieved
higher accuracy than the representation-based model in our pre-
liminary experiments. Specifically, we use XLMR [5] as the model
backbone, which achieves state-of-the-art performance on cross-
lingual benchmarks such as GLUE [15].

4 EXPERIMENT
In this section, we first describe the dataset and evaluation methods.
Then we compare our proposed method with baselines and conduct
an ablation study in the offline experiment. Lastly, we present the
online impact on a large-scale worldwide E-commerce website.

4.1 Training dataset
We use the historical aggregated traffic feedback data, which record
the count of customer behavior for a specific mapping pair since
inception, including impressions, clicks, purchases, and GMV. We

only keep the recommendation with over 250 impressions to bal-
ance the signal quality and size of the dataset. Since we only use the
aggregated count of customer behavior, no customer identification
information is touched. Furthermore, we exclude the mappings
whose query products occur in the validation data to avoid data
leakage [8]. There are 460k mappings in the training set. It consists
of data from 11 countries: US (English), UK (English), DE (German),
FR (French), JP (Japanese), CA (English), IT (Italian), ES (Spanish),
IN (English), AU (English), and MX (Spanish).

4.2 Evaluation dataset and metrics
We prepare the two datasets to evaluate the two aspects of our
substitute recommendation: functionality and buyability.

Functionality classification dataset contains 215k mappings from
product managers’ audits on traffic data, random negative samples,
and good/bad mappings from traffic data based on customer signal.
It is a binary classification dataset where the mappings are classified
as substitutable or non-substitutable. Substitutable products are
defined as the products which the customer can choose without
critical compromises. The ratio between positive (substitutable) and
negative (non-substitutable) samples is kept to 6:4, which is similar
to the production distribution. The area under the precision-recall
curve (AuPRC) is used as the metric.

Buyability ranking dataset contains 222k mapping in the traf-
fic dataset with more than 500 impressions. A higher impression
threshold is used for a more reliable purchase rate estimation. Nor-
malized discounted cumulative gain (NDCG) over the PR is used
to evaluate the buyability ranking performance. We first calculate
the NDCG for each query product based on the model score and
ground truth purchase rate and then take the average over all query
products to get the final metric.

4.3 Offline experiment
In this section, we validate the proposed design choices by check-
ing the offline metrics. To reduce the search space, we sequentially
search for the best setting of the individual components in our
design and keep it in the following experiments. We conduct the
offline evaluation on the US fold of the data for the first two experi-
ments and all marketplace data for the last multilingual experiment.
For data safety, the performance was reported as the delta over the
baseline, which is marked by an underline and dash. “NA" means
the model cannot handle the corresponding data/language.

4.3.1 The choice of objective loss function. We compare function-
ality AuPRC and buyability NDCG under different objectives in
Table 1. The baseline model is GBDT.

First, we observe that using PR as supervision achieves the best
performance in AuPRC, NDCG@CVR, and NDCG@PR. It is rea-
sonable that the CTR model has slightly better performance in CTR
ranking. The CVR model behaves poorly because of its sample size
and high variance (click count is around 100 times smaller than
impression count). The GMV is strongly correlated with seasonal
trends and product prices. Hence, it is noisy and leads to little
learning. Log transformation can further improve the PR model
in functionality classification (AuPRC from +1.76% to +5.62%) and
buyability ranking (NDCG@PR from +1.58% to +2.15%) because it
avoids overfitting the noisy label and focuses more on ranking.
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Objective Δ AuPRC ΔNDCG@CTR ΔNDCG@CVR ΔNDCG@PR

Regression
CTR+MSE - - - -
CVR+MSE -23.3% -4.60% -3.42% -5.88%
PR+MSE +1.76% -1.60% +2.74% +1.58%
GMV+MSE -23.59% -4.60% -3.42% -6.00%
PR+Log+MSE +5.62% -1.26% +3.19% +2.15%

Classification
purchase > 0 + logistic +5.62% -1.78% +2.17% +0.79%
purchase > 0 + hinge loss -3.42% -3.35% -0.68% -2.83%

Table 1: Model performance with different objectives. The baseline model is underlined, and its score is marked by a dash.

Model US All

AuPRC NDCG AuPRC NDCG

Monolingual model
GBDT (US) +3.8% -1.1% NA NA
RoBERTa (US) +0.3% -0.1% NA NA

Multilingual model
XLMR (US) - - - -
XLMR (EN) +0.2% +0.2% +1.1% +0.7%
XLMR (All) +0.6% +0.2% +2.0% +1.3%

Table 2: Monolingual vs. Multilingual model. The baseline is
underlined, and its score is marked by a dash.

Name Δ Revenue Δ PR

No model (V0) - -
Naive GBDT (V1) +10% -12.6%
Robust GBDT (V2) +19% +24.1%
Robust XLMR (V3) +19% -2.5%

Table 3: Online model performance gain for each launch.

Second, it shows that logistic regression (binary cross-entropy)
performs worse than the log-transformed PR model in ranking. The
reason is that PR can preserve more information than a binary label
for the model to identify the high-performing pairs.

4.3.2 Monolingual vs. Multilingual. In this section, we compare
GBDT and Transformer model in different dataset settings. We
focus on the cross-lingual ability of the Transformer. To save space,
only the US and all 11 marketplaces performance are reported in
Table 2.

GBDT model remains a strong baseline in the US but can only
support English. RoBERTa can achieve comparable performance in
the US with a lower AuPRC but higher NDCG score. If only pro-
vided with the monolingual corpus, the multilingual model behaves
similarly to its monolingual counterpart (XLMR (US) vs. RoBERTa).
However, it performs surprisingly well in the non-English market-
place, even without supervision. For example, XLMR (US) achieves
higher AuPRC for JP and DE than the US with only English train

data. It demonstrates its capacity for cross-lingual inference in the
E-commerce domain. We can further improve US performance by
0.6% in AuPRC with data from other marketplaces (both English
and non-English). It validates that the multilingual model can gener-
ate universal embedding for different languages and achieve better
performance by utilizing more data from other languages.

4.4 Online customer impact
We have experimented with three different model variations. We
present the customer impact during the experiments in Table 3, in
which each variation is compared against its predecessor, and we
only compare the marketplace that the new model supports (US
for GBDT model, and 11 marketplaces for Robust XLMR model).
We set the predict score threshold based on the performance on
historical data, and then order the unfiltered substitutes by their
respective scores. Note that “No model" means we only filter and
rank the mappings with the upstream score. For the GBDT model,
we concatenate the other numerical features with sentence embed-
ding as input. The experiment details can be found in our extended
paper on arXiv.

The naive GBDT model increased the revenue by 10% because
of larger coverage. However, it suffered from selection bias and
lowered the purchase rate by 12.6%. Besides, the Naive GBDTmodel
is only evaluated on the serving data. Hence the model selection is
suboptimal. With negative sampling and replacing CTR with PR,
the Robust GBDT model significantly outperformed Naive GBDT
with 19% incremental revenue and 24.1% purchase rate increase.
Robust XLMR further drove 19% additional revenue with only 2.5%
purchase rate decrease. The improvement is mainly driven by the
non-US marketplaces. They had no dedicated model support before,
and it obtained 22.3% higher PR and 0.6% higher revenue.

5 CONCLUSION AND FUTUREWORK
The paper explores the substitute recommendation’s goal as opti-
mizing buyability and functionality. The issues of inaccurate super-
vision, selection bias, and domain gap in the E-commerce corpus
are identified and provided with the techniques to solve them. The
proposed method is demonstrated to be effective in both offline and
online experiments. In future work, we will build a clean human-
labeled dataset with functionality, buyability, and complementary
data and learn a multi-task model jointly.



A Transformer-Based Substitute Recommendation Model Incorporating Weakly Supervised Customer Behavior DataConference acronym ’XX, June 03–05, 2018, Woodstock, NY

6 BIOGRAPHY
PresenterWenting Yewas an applied scientist at Amazon. He earned
a Master of Computational Data Science degree from Carnegie Mel-
lon University. His research interest includes information retrieval
and natural language processing. He has published papers in var-
ious conferences and served as committee members in COLING,
ACL, and SIGIR. He is currently a senior machine learning engineer
in Bytedance.

Amazon.com, Inc is an American multinational technology com-
pany focusing on e-commerce, cloud computing, online advertising,
digital streaming, and artificial intelligence.

REFERENCES
[1] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017.

Enriching word vectors with subword information. Transactions of the Association
for Computational Linguistics 5 (2017), 135–146.

[2] Jingjun Cao, Zhengli Wu, Wenting Ye, and Haohan Wang. 2017. Learning func-
tional embedding of genes governed by pair-wised labels. In 2017 2nd IEEE
International Conference on Computational Intelligence and Applications (ICCIA).
397–401. https://doi.org/10.1109/CIAPP.2017.8167247

[3] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. 785–794.

[4] Tong Chen, Hongzhi Yin, Guanhua Ye, Zi Huang, Yang Wang, and Meng Wang.
2020. Try this instead: Personalized and interpretable substitute recommendation.
In Proceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval. 891–900.

[5] Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guil-
laume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer,
and Veselin Stoyanov. 2019. Unsupervised cross-lingual representation learning
at scale. arXiv preprint arXiv:1911.02116 (2019).

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[7] Hyunwoo Hwangbo, Yang Sok Kim, and Kyung Jin Cha. 2018. Recommendation
system development for fashion retail e-commerce. Electronic Commerce Research
and Applications 28 (2018), 94–101.

[8] Shachar Kaufman, Saharon Rosset, Claudia Perlich, and Ori Stitelman. 2012.
Leakage in data mining: Formulation, detection, and avoidance. ACMTransactions
on Knowledge Discovery from Data (TKDD) 6, 4 (2012), 1–21.

[9] Sen Li, Fuyu Lv, Taiwei Jin, Guli Lin, Keping Yang, Xiaoyi Zeng, Xiao-Ming Wu,
and Qianli Ma. 2021. Embedding-based Product Retrieval in Taobao Search. arXiv
preprint arXiv:2106.09297 (2021).

[10] Weiwen Liu, Yin Zhang, JianlingWang, Yun He, James Caverlee, Patrick PK Chan,
Daniel S Yeung, and Pheng-Ann Heng. 2021. Item relationship graph neural
networks for e-commerce. IEEE Transactions on Neural Networks and Learning
Systems (2021).

[11] Hanqing Lu, Youna Hu, Tong Zhao, Tony Wu, Yiwei Song, and Bing Yin. 2021.
Graph-based Multilingual Product Retrieval in E-Commerce Search. arXiv
preprint arXiv:2105.02978 (2021).

[12] Julian McAuley, Rahul Pandey, and Jure Leskovec. 2015. Inferring networks
of substitutable and complementary products. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining. 785–
794.

[13] Zohreh Ovaisi, Ragib Ahsan, Yifan Zhang, Kathryn Vasilaky, and Elena Zheleva.
2020. Correcting for selection bias in learning-to-rank systems. In Proceedings of
The Web Conference 2020. 1863–1873.

[14] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[15] AlexWang, Amanpreet Singh, JulianMichael, Felix Hill, Omer Levy, and Samuel R
Bowman. 2018. GLUE: A multi-task benchmark and analysis platform for natural
language understanding. arXiv preprint arXiv:1804.07461 (2018).

[16] Haohan Wang, Xiang Liu, Yifeng Tao, Wenting Ye, Qiao Jin, William W Cohen,
and Eric P Xing. 2018. Automatic human-like mining and constructing reliable ge-
netic association database with deep reinforcement learning. In BIOCOMPUTING
2019: Proceedings of the Pacific Symposium. World Scientific, 112–123.

[17] QiongWu, Christopher G Brinton, Zheng Zhang, Andrea Pizzoferrato, Zhenming
Liu, andMihai Cucuringu. 2021. Equity2vec: End-to-end deep learning framework
for cross-sectional asset pricing. In Proceedings of the Second ACM International
Conference on AI in Finance. 1–9.

[18] Qiong Wu, Adam Hare, Sirui Wang, Yuwei Tu, Zhenming Liu, Christopher G
Brinton, and Yanhua Li. 2021. Bats: a spectral biclustering approach to single
document topic modeling and segmentation. ACM Transactions on Intelligent
Systems and Technology (TIST) 12, 5 (2021), 1–29.

[19] QiongWu,Wen-Ling Hsu, Tan Xu, Zhenming Liu, George Ma, Guy Jacobson, and
Shuai Zhao. 2019. Speaking with actions-learning customer journey behavior.
In 2019 IEEE 13th International conference on semantic computing (ICSC). IEEE,
279–286.

[20] Han Zhang, Songlin Wang, Kang Zhang, Zhiling Tang, Yunjiang Jiang, Yun Xiao,
Weipeng Yan, and Wen-Yun Yang. 2020. Towards personalized and semantic
retrieval: An end-to-end solution for e-commerce search via embedding learning.
In Proceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval. 2407–2416.

[21] Shijie Zhang, Hongzhi Yin, Qinyong Wang, Tong Chen, Hongxu Chen, and Quoc
Viet Hung Nguyen. 2019. Inferring Substitutable Products with Deep Network
Embedding.. In IJCAI. 4306–4312.

[22] Shuai Zhao,Wen-LingHsu, GeorgeMa, Tan Xu, Guy Jacobson, and Raif Rustamov.
2020. Characterizing and Learning Representation on Customer Contact Jour-
neys in Cellular Services. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 3252–3260.

[23] Shuai Zhao, Achir Kalra, Chong Wang, Cristian Borcea, and Yi Chen. 2019. Ad
Blocking Whitelist Prediction for Online Publishers. In 2019 IEEE International
Conference on Big Data (Big Data). IEEE, 1711–1716.

https://doi.org/10.1109/CIAPP.2017.8167247

	Abstract
	1 Introduction
	2 Problem formulation
	3 Methodology
	3.1 Feature selection
	3.2 Label engineering
	3.3 Negative sample augmentation
	3.4 Models

	4 Experiment
	4.1 Training dataset
	4.2 Evaluation dataset and metrics
	4.3 Offline experiment
	4.4 Online customer impact

	5 Conclusion and future work
	6 Biography
	References

