
Align-SLM: Textless Spoken Language Models with Reinforcement
Learning from AI Feedback

Guan-Ting Lin1,2* Prashanth Gurunath Shivakumar1 Aditya Gourav1

Yile Gu1 Ankur Gandhe1 Hung-yi Lee2 Ivan Bulyko1

1Amazon AGI, USA
2Graduate Institute of Communication Engineering, National Taiwan University, Taiwan

Abstract
While textless Spoken Language Models
(SLMs) have shown potential in end-to-end
speech-to-speech modeling, they still lag
behind text-based Large Language Models
(LLMs) in terms of semantic coherence and rel-
evance. This work introduces the Align-SLM
framework, which leverages preference opti-
mization inspired by Reinforcement Learning
with AI Feedback (RLAIF) to enhance the se-
mantic understanding of SLMs. Our approach
generates multiple speech continuations from
a given prompt and uses semantic metrics to
create preference data for Direct Preference
Optimization (DPO). We evaluate the frame-
work using ZeroSpeech 2021 benchmarks for
lexical and syntactic modeling, the spoken ver-
sion of the StoryCloze dataset for semantic
coherence, and other speech generation met-
rics, including the GPT4-o score and human
evaluation. Experimental results show that our
method achieves state-of-the-art performance
for SLMs on most benchmarks, highlighting
the importance of preference optimization to
improve the semantics of SLMs.

1 Introduction

Significant strides have been made in Large Lan-
guage Models (LLMs) by training decoder-only
transformer models on vast amounts of text data.
In speech processing, Textless NLP (Lakhotia et al.,
2021; Kharitonov et al., 2022b; Nguyen et al.,
2023; Lin et al., 2022) employs discrete speech
units to train Spoken Language Models (SLMs)
through next speech unit prediction. This approach
is particularly promising, as SLMs are end-to-end
speech-to-speech models that bypass the traditional
cascaded pipeline of Automatic Speech Recog-
nition (ASR) and Text-to-Speech (TTS) systems,
enabling joint optimization and real-time human-
computer interaction. Furthermore, SLMs are ap-
plicable to all spoken languages, including those
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without written scripts, as they only require unla-
beled speech data, thus promoting inclusivity in
speech technology.

Despite increasing efforts to develop and
improve SLMs—through text model initializa-
tion (Hassid et al., 2024; Shih et al., 2024), speech
tokenizer design (Lakhotia et al., 2021; Hassid
et al., 2024; Baade et al., 2024), text & speech to-
ken interleaving (Chou et al., 2023; Nguyen et al.,
2024), scaling data and model (Hassid et al., 2024;
Cuervo and Marxer, 2024)— a substantial gap
remains between the understanding capabilities
of text-based LLMs and SLMs. Current SLMs,
when prompted, often produce speech continua-
tions characterized by repetitive phrases, grammat-
ical inaccuracies, and low relevance. Zhang et al.
(2023); Nachmani et al. propose predicting text
during intermediate decoding steps in a chain that
mimics the ASR, LM, and TTS tasks within a sin-
gle model. While these intermediate text steps
improve the semantics of the generated speech,
they still rely on text tokens as conditions to guide
speech generation, and the additional decoding
steps introduce latency, preventing real-time inter-
active SLMs. The question of whether textless
SLMs can generate semantically relevant speech
remains under-explored.

Most research on SLMs has relied exclusively
on next-speech-token prediction. Few studies have
explored alternative optimization objectives. Com-
pared to text subwords, which on average carry
more information, speech tokens are finer-grained
and less compact. We argue that the next-speech-
token prediction task may overlook long-term se-
mantics, as loosely compressed speech units ex-
hibit significant variability along spectral and tem-
poral dimensions. Consequently, SLMs require
a better training objective to effectively capture
long-range semantics.

Our motivation stems from the observation that
SLMs produce inconsistent results, sometimes gen-



erating high-quality speech continuations, while
at other times producing suboptimal ones. Can
we train SLMs to consistently generate better
speech continuations while avoiding failures?
Drawing inspiration from Reinforcement Learn-
ing with Human Feedback (RLHF) for text LLM
alignment (Ouyang et al., 2022; Rafailov et al.,
2024), we propose Align-SLM, the first framework
that enhances the semantics of SLMs through RL.
Starting with a pre-trained SLM (the open-sourced
TWIST (Hassid et al., 2024) model), we gener-
ate multiple speech continuations from a given
speech prompt. The next step is to create prefer-
ence data (prompt, chosen, rejected) for pref-
erence optimization. Since collecting human pref-
erences by listening is costly and time-consuming,
following the concept of Reinforcement Learning
from AI Feedback (RLAIF), we propose an auto-
matic preference data selection strategy with LLM-
guided semantic feedback. After preparing the
preference data, Direct Preference Optimization
(DPO) (Rafailov et al., 2024) is applied to learn
from the feedback. Additionally, we couple the
proposed technique with curriculum learning and
demonstrate further improvements. The proposed
framework is pure speech-to-speech, data effi-
cient, and does not require text injection (Nguyen
et al., 2024; Chou et al., 2023) or text-to-speech
synthesized speech (Zhang et al., 2023).

We evaluate the SLM’s performance using
the sWUGGY and sBLIMP from ZeroSpeech
2021 (Nguyen et al., 2020) for lexical and syntac-
tic modeling, and Spoken-StoryCloze and Topic-
StoryCloze (Hassid et al., 2024) for textual nu-
ances and continuation coherence. Additionally,
we perform generative evaluations for speech con-
tinuation using (i) human listening tests and (ii)
GPT-4 as a proxy for assessing semantic coherence
and relevance. The results show that the proposed
method achieves superior performance in semantic
understanding and speech generation. The contri-
butions can be summarized as follows:

• We propose the first preference optimization
framework for textless SLMs, demonstrating
that preference optimization is crucial for im-
proving the semantics of SLMs.

• We develop an automated preference data se-
lection strategy by designing effective seman-
tic metrics to score preference data pairs.

• We couple DPO with curriculum learning by

iteratively opting for higher criterion of pref-
erence data to further enhance performance.

• Align-SLM achieves the state-of-the-art per-
formance for end-to-end spoken language
models on Zerospeech and StoryCloze bench-
mark (77.9% on sWUGGY, 61.1% on S-
StoryCloze, and 86.8% on T-StoryCloze) and
achieves superior Meaningfulness Mean opin-
ion scores with human evaluations.

2 Related Work

2.1 Spoken Language Models (SLMs)
Recent advancements in self-supervised represen-
tation learning and acoustic unit discovery convert
continuous speech signals into discrete speech to-
kens (Polyak et al., 2021a). SLMs are end-to-end
language models with discrete speech tokens, en-
abling speech continuation given a speech prompt.
GSLM (Lakhotia et al., 2021) utilizes speech to-
kens to train a decoder-only language model and
synthesize speech waveforms using a unit-based
vocoder. pGSLM (Kharitonov et al., 2022b) in-
jects prosodic tokens to enhance expressiveness.
dGSLM (Nguyen et al., 2023) adopts a dual-tower
model for two-channel spoken dialogue modeling.

Although SLMs can generate words and short-
term phrases, the long-term semantics of the gen-
erated speech are often poor. TWIST (Hassid
et al., 2024) proposes using a text-based LLM
as initialization with large-scale training data to
improve semantics. VoxtLM (Maiti et al., 2024)
leverages both paired and unpaired speech in
addition to text data for joint training of ASR,
TTS, SLM, and Text LM. Another research di-
rection is text token prediction as an intermedi-
ate step like SpeechGPT (Zhang et al., 2023) and
SPECTRON (Nachmani et al.), which perform a
chain of tasks (ASR → LM → TTS) in a single
model. SUTLM (Chou et al., 2023) and SPIRIT-
LM (Nguyen et al., 2024) utilize phrase-level in-
terleaving for speech and text tokens. Concurrent
works like LLaMA-Omni (Fang et al., 2024), Mini-
Omni (Xie and Wu, 2024), and Moshi (Défos-
sez et al., 2024) leverage simultaneous text token
prediction to guide the speech generation. Sylla-
bleLM (Baade et al., 2024) recently propose to
use syllable-level coarse speech tokens to improve
SLM semantics. Compared to prior works focus-
ing on multi-tasking in a single model or using text
tokens to guide speech generation, this is the first
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Figure 1: The illustration of the Align-SLM framework. Firstly, tokenize the speech prompt into speech tokens
using a speech tokenizer. Then, generate and sample multiple speech continuations from the pre-trained SLM. To
create the preference data pairs, the framework uses a unit-based vocoder to synthesize the speech continuations
back to waveforms, an ASR model to transcribe the waveforms to text, and an LLM evaluator to rate the quality of
the semantics. These preference data pairs are then used for direct preference optimization to train the LoRA adapter
in the SLM. This alignment process can be coupled with curriculum learning to further improve performance.

work to improve the long-term semantics of speech-
only SLMs through preference optimization.

2.2 Preference Optimization

Training the language model with next-token pre-
diction is effective for learning human knowledge,
but this objective might be different from the hu-
man preference. RLHF (Christiano et al., 2017;
Ouyang et al., 2022) leverages an external reward
model, combined with proximal policy optimiza-
tion (Schulman et al., 2017), to align LLMs based
on human feedback. DPO (Rafailov et al., 2024)
proposes that LLMs can learn implicit rewards,
allowing them to perform preference optimiza-
tion independently, without the need for an ex-
ternal model. RLAIF (Bai et al., 2022; Lee et al.,
2023) demonstrates that using AI as an alternative
to human feedback can reduce labor costs and is
more scalable, offering performance comparable
to RLHF.

These methods show effectiveness in aligning
an LLM with human preference. However, there
are limited studies on leveraging preference opti-
mization in the speech and audio processing field.
Recently, Zhang et al. (2024); Chen et al. (2024)
adopted preference optimization for the Text-to-
Speech (TTS) model to align the quality of speech
synthesis with human preference, but not for en-
hancing SLMs’ semantics. Liao et al. (2024); Ma-
jumder et al. (2024) leverage preference optimiza-
tion for text-to-audio generation with diffusion
model, but the text-to-audio task is very different

compared to SLM.

3 Align-SLM Framework

The illustration of the proposed framework is
shown in Figure 1.

3.1 Spoken Language Models

The pre-trained SLM used in this work is
TWIST (Hassid et al., 2024), a decoder-only trans-
former model that is trained on the next speech
token prediction task with text model initializa-
tion. We utilize the TWIST model in two sizes
(1.3B and 7B parameters) from the official re-
lease1. Specifically, the speech tokenizer con-
sists of a self-supervised speech model (wen Yang
et al., 2021; Lin et al., 2023) and K-means clus-
tering. In this work, HuBERT (Hsu et al., 2021)
is used and the cluster number K is set to 500.
Notably, when continuous representations are clus-
tered into discrete units, they primarily capture
content information, which can be leveraged for
modeling and understanding (Polyak et al., 2021b;
Lin et al., 2022; Wu et al., 2023). This process first
extracts 25Hz frame-level continuous representa-
tions from the 11-th layer of the HuBERT model,
assigns each frame to its closest cluster index, and
then de-duplicates consecutive identical indices to
shorten the sequence. The unit-based vocoder is a
HifiGAN-based (Kong et al., 2020) model that can
convert the discrete units back into a continuous

1https://github.com/facebookresearch/textlesslib/tree/main/
examples/twist (MIT license)



waveform. We use the model checkpoint from the
textlesslib (Kharitonov et al., 2022a) library.

3.2 Automatic Preference Data Selection

To prepare the preference data pair (prompt, cho-
sen, rejected), given the speech prompt x, the nu-
cleus sampling (Holtzman et al., 2020) is used to
generate N different continuations y1, y2, ..., yN .
Ideally, humans can listen to the samples and select
the desirable and semantically correct one as the
chosen continuation yc, and the semantically incor-
rect one as the rejected continuation yr. However,
it is costly and time-consuming for human annota-
tors to listen to the samples. Following the idea of
RLAIF (Bai et al., 2022; Lee et al., 2023) to sim-
ulate human feedback, we propose an automatic
preference data selection strategy to create prefer-
ence data pairs. Since the focus is the semantics
of SLMs, which is the content information in the
speech, we first use Whisper-large-v2 (Radford
et al., 2023) to transcribe the speech into text, then
measure the semantics of the transcribed text. In
this work, we explore the two types of AI feed-
back from a text LLM. The text LLM is the open-
sourced Mistral 7B (instruct-v02)2.

3.2.1 Continuation Likelihood: Perplexity
Perplexity (PPL) is a common metric to measure
the likelihood of a sentence given a pre-trained lan-
guage model. In this work, PPL is calculated on
the generated transcribed text conditioned on the
ground truth text prompt. PPL is used in previous
SLM works to evaluate the generation (Lakhotia
et al., 2021; Hassid et al., 2024). However, Lakho-
tia et al. (2021) found out that SLMs sometimes
generate repeated phrases without clear meaning,
and the PPL would be extremely low with naively
repeated phrases. To measure this, the auto-BLEU
score (a) calculates the n-gram counting within
the sentence. Given text sentence t and the set of
n-gram NG(t), auto-BLEU score of sentence t is

at =
∑

s∈NG(t) 1[s∈(NG(t)\s)]
|NG(t)| . 2-gram is used for

auto-BLEU calculation (Lakhotia et al., 2021).
For the PPL of N continuations (PPLN ), we

first filter out the auto-BLEU ai higher than δ, then
select the lowest PPL sample as yc. The threshold
of the auto-BLEU score is selected by the score
distribution between ground truth continuation and
the generated result (Please see the Appendix H

2https://huggingface.co/mistralai/Mistral-7B-Instruct-
v0.2

for details). The yr is the continuation with the
highest PPL. The (yc, yr) is created as below:

yi =

{
yc if PPLi = min(PPLN ) ∩ ai ≤ δ

yr if PPLi = max(PPLN )
(1)

3.2.2 LLM Evaluation: Mistral Score
Instruction-tuned LLMs can follow instructions
and understand semantics well (Chung et al., 2024).
We propose using an LLM to judge the quality of
the speech continuation, which evaluates the en-
tire input and predicts the score. The prompt (see
the Appendix for more details) is utilized to in-
struct the model to provide a score between 1 to
5 (1 denoting bad and 5 denoting good) based on
the likelihood and meaningfulness of continuation
given text prompt. Since we use the Mistral model
for LLM evaluation, we call this “Mistral score",
denoted as s. To let the model learn to distinguish
the preferred and unpreferred continuations, a cer-
tain threshold is set for the Mistral score to ensure
the difference in quality. sc is the threshold of the
chosen sample, and sr is the threshold of the re-
jected sample. sc should be larger than sr. The
auto-BLEU threshold is also used to recognize the
naively repeated samples as rejected. We select the
(yc, yr) as below:

yi =

{
yc if si ≥ sc ∩ ai ≤ δ

yr if si ≤ sr ∪ ai > δ
(2)

The sc and sr values are selected based on a prelim-
inary analysis of the SLM’s score distribution. For
more details on the distribution of Mistral scores,
please see Appendix I. We provide an example to
illustrate the preference data selection in the Ap-
pendix C section.

3.3 Direct Preference Optimization for SLMs

In our framework, training with online metrics cal-
culation is computationally infeasible due to the
chain of models involved (vocoder, ASR, and LLM
evaluator) and the computational complexity as-
sociated with sampling the SLM multiple times.
Instead of calculating the reward online like RLHF,
we adopt DPO, a simplified version of RLHF with
implicit reward modeling, for preference optimiza-
tion. The preference data pairs can be prepared
offline, making the training more efficient. Addi-
tionally, DPO training is stable, simple, and does
not require training an external reward model. The



Evaluation Metrics Pre-trained Fine-tuned (Diff) Align-SLM w/PPL (Diff) Align-SLM w/Mistral score (Diff)

Proxy Metric
auto-BLEU ↓ 2.80 2.43 (-0.37) 2.58 (-0.22) 2.20 (-0.60)

PPL ↓ 114.9 116.3 (+1.4) 52.1 (-62.8) 100.5 (-14.4)
Mistral score ↑ 1.66 1.70 (+0.04) 1.88 (+0.22) 2.17 (+0.51)

Zerospeech sBLIMP ↑ 56.8 56.9 (+0.1) 58.9 (+2.1) 58.1 (+1.3)
sWUGGY ↑ 71.8 70.9 (-0.9) 71.9 (+0.1) 72.2 (+0.4)

StoryCloze S-StoryCloze ↑ 52.7 53.0 (+0.3) 52.6 (-0.1) 54.3 (+1.6)
T-StoryCloze ↑ 69.7 70.7 (+1.0) 67.7 (-2.0) 74.2 (+4.5)

Continuation GPT4-o ↑ 1.82 1.83 (+0.01) 1.85 (+0.03) 2.06 (+0.24)
MOSnet ↑ 3.99 4.08 (+0.09) 4.00 (+0.01) 3.98 (-0.01)

Table 1: Comparison of pre-trained model, fine-tuned model with next token prediction, Align-SLM with PPL,
and Align-SLM with Mistral score on Zerospeech, StoryCloze, and speech continuation task using Librispeech
test-clean. “Diff" means the value difference compared to the Pre-trained model. The number in darkgreen indicates
improvement over pre-trained models’ performance, while red color stands for performance degradation.

DPO training objective is

LDPO =− E(x,yc,yr)∼D

[
log σ

(
β log

πθ(yc|x)
πref (yc|x)

−β log
πθ(yr|x)
πref (yr|x)

)]
(3)

where πref is the reference model with the pre-
trained model’s parameters, which is kept frozen.
πθ is the policy model trained with LoRA (Hu
et al., 2022) adapter, while the parameters of the
backbone pre-trained model are fixed. β controls
the deviation from the reference model πref .

3.4 Coupling with Curriculum Learning
Curriculum Learning (CL) is a machine learning
approach where models are trained by gradually
increasing the complexity of tasks, allowing them
to learn simpler concepts first before tackling more
difficult ones (Bengio et al., 2009). In this work,
we propose to couple DPO with curriculum learn-
ing to iteratively improve automated preference
data selection. We iteratively raise the difficulty in
discerning the preference data by tuning the thresh-
olds sc and sr in Equation 2. Specifically for the
Mistral score, we raise the sc from 3 to 4 for chosen
samples and sr from 1 to 2 for rejected samples.
With Curriculum learning, we expect the model to
iteratively improve, given better feedback data.

4 Experiments

4.1 Dataset
We use LibriSpeech (Panayotov et al., 2015) as
our primary dataset. We use the official training,
dev-clean, and test-clean set. To further expand our
dataset size, we leverage the English subset of the
Multilingual Librispeech (MLS) (Pratap et al.,

2020) as an additional training set, which is around
3 times larger than the Librispeech training set. We
use a subset of the MLS data comprising 673K ut-
terances in this work for data scaling, denoted as
mls. We apply the following data pre-processing
steps to create the final training data:
1) Speech prompt segment selection using word
alignment: Since our task involves speech continu-
ation, the speech prompt should contain a sufficient
amount of contextual information. We filter out
samples shorter than 6 seconds. Unlike previous
works that directly split the first 3 seconds as the
prompt (Lakhotia et al., 2021; Hassid et al., 2024),
we use forced alignment to select the closest word
boundary around 3 seconds. This avoids cutting
off spoken words in the middle, which could cause
ASR errors in the speech continuations generated
by the model. This potentially leads to poor per-
plexity or LLM evaluation scores.
2) Filtering out unsuitable chosen/rejected pairs:
We apply a second layer of filtering over Mistral
score annotations of ASR transcripts by threshold-
ing chosen and rejection scores to ensure separa-
bility. Some samples fail to create preference data
pairs due to these thresholds. When multiple con-
tinuations have the same lowest or highest score,
we on-the-fly randomly choose among them. The
number of preference data samples for different
setups is listed in Table 6 in the Appendix.

4.2 Objective Evaluation

4.2.1 Zerospeech 2021 Benchmark
sWUGGY and sBLIMP metrics evaluate SLMs’
lexical and syntactic modeling on pure speech in-
put (Nguyen et al., 2020). sWUGGY tests if mod-
els prefer real words over phonetically similar non-
words. We typically use the "in-vocab" split for
reporting results, following the standard practice



# Method Zerospeech StoryCloze Speech Continuation

sBLIMP↑ sWUGGY↑ S-StoryCloze↑ T-StoryCloze↑ Mistral↑ GPT4-o↑ MOSnet↑
<1B
1 GSLM (Lakhotia et al., 2021) 54.2 64.8 53.3 66.6 ∅ ∅ ∅
2 AudioLM (Borsos et al., 2023) 64.7 71.5 ∅ ∅ ∅ ∅ ∅
3 Cuervo and Marxer (2024) 61.3 ∅ 56.7 78.0 ∅ ∅ ∅
4 SyllableLM (Baade et al., 2024) 63.7 72.2 ∅ 75.4 ∅ ∅ ∅
1.3B
5 VoxtLM (Maiti et al., 2024) 57.1 66.1 ∅ ∅ ∅ ∅ ∅
6 TWIST (Hassid et al., 2024) 57.0 72.7 52.4 70.6 ∅ ∅ ∅
7 Pre-trained TWIST* 56.8 71.8 52.7 69.7 1.66 1.82 3.99
8 Align-SLM 58.1 72.2 54.3 74.2 2.17 2.06 3.98
9 Align-SLM + CL 58.2 72.2 53.9 76.1 2.35 2.29 4.05
10 Align-SLM-mls 59.0 72.7 54.0 76.7 2.37 2.34 4.00
11 Align-SLM-mls + CL 59.8 72.7 55.0 80.0 2.50 2.43 3.94
7B
12 Moshi (Défossez et al., 2024) 58.8 72.6 60.8 83.0 ∅ ∅ ∅
13 SPIRIT-LM (Nguyen et al., 2024) 58.3 69.0 61.0 82.9 ∅ ∅ ∅
14 TWIST (Hassid et al., 2024) 59.0 73.9 55.3 74.1 ∅ ∅ ∅
15 Pre-trained TWIST* 58.8 73.5 55.1 75.4 2.03 2.70 3.80
16 Align-SLM 61.1 75.3 59.1 83.8 2.89 3.50 4.08
17 Align-SLM + CL 61.4 75.5 58.2 85.6 3.22 3.56 4.09
18 Align-SLM-mls 62.2 77.5 58.6 85.6 2.92 3.46 4.02
19 Align-SLM-mls + CL 62.3 77.9 61.1 86.8 3.11 3.50 3.99
Cascade Topline and Human Performance
20 ASR+LLM (Nguyen et al., 2024) 71.6 79.2 75.7 94.8 ∅ ∅ ∅
21 Human (Hassid et al., 2024) ∅ ∅ 79.2 90.2 ∅ ∅ ∅
22 Ground Truth Continuation ∅ ∅ ∅ ∅ 2.89 4.25 4.02

Table 2: Performance on Zerospeech, StoryCloze, and Speech Continuation task. The methods marked with
underline indicate they are trained with paired speech and text tokens, not the speech-only model. “Pre-trained
TWIST*" uses open-sourced TWIST model checkpoint but we use bf16 precision for inference, so the performance
is slightly different compared to published “TWIST" results. “ASR+LLM" is using Whisper (Radford et al., 2023)
as ASR model with Llama 2 model (Touvron et al., 2023), reported by Nguyen et al. (2024).

established by Lakhotia et al. (2021). sBLIMP as-
sesses grammaticality judgments between correct
and incorrect sentences. Both metrics compare ge-
ometric means of sequence probabilities assigned
to paired utterances.

4.2.2 Spoken StoryCloze Benchmark

StoryCloze benchmarks (Mostafazadeh et al.,
2017) evaluate the model’s ability to identify the
more plausible ending among two scenarios given
a short story as a prompt. This requires a degree
of high-level semantic understanding and com-
mon sense. We utilize the spoken version of the
original StoryCloze (S-StoryCloze) as well as the
topic-based StoryCloze (T-StoryCloze) created by
Hassid et al. (2024). T-StoryCloze uses simpler
negative samples that are randomly drawn while
S-StoryCloze uses adversarially curated negative
samples. The random baseline performance for the
above tasks is 50%. We name the spoken version
of StoryCloze as “StoryCloze" for simplicity, but
note that this is different from the text StoryCloze.

4.2.3 Generative Speech Continuation
GPT4-o score: GPT4-o (OpenAI, 2023) has
shown remarkable text understanding performance
and can serve as alternative human evaluators (Chi-
ang and Lee, 2023a; Liu et al., 2023; Chiang and
Lee, 2023b), showing high correlation with human
judgments. We leverage GPT4-o as a proxy for
human evaluations. Following llm evaluation (Chi-
ang and Lee, 2023a), the instruction first analyzes
the sentence and then provides the score from 1
to 5, to judge the semantic coherence, meaning-
fulness, and grammatical correctness of the ASR
transcribed continuation given a prompt (1 denot-
ing bad and 5 denoting good). The instruction
prompt is shown in Appendix G.
MOSnet score: To measure the audio quality, we
utilize the MOSnet (Cooper et al., 2022) to predict
the Mean Opinion Score (MOS) of audio quality.
Specifically, MOSnet is based on self-supervised
wav2vec 2.0 (Baevski et al., 2020), fine-tuned on
MOS prediction task3. The model has shown a
high correlation with human MOS scores and good
generalization ability for unseen data.

3https://github.com/nii-yamagishilab/mos-finetune-ssl



Method MMOS↑
Target Re-synthesized 3.50 ± 0.07
Pre-trained TWIST 7B 3.48 ± 0.07
Align-SLM 7B + CL 3.73 ± 0.06

Table 3: Meaningfulness MOS score. We report the
MMOS score as the mean ± 95% confidence interval
of the standard deviation. “Target Re-synthesized" uses
the speech tokens from the original continuation and
re-synthesize back to the waveform.

4.3 Subjective Evaluation
We conducted human listening evaluations to as-
sess the meaningfulness of the generated speech.
We follow Lakhotia et al. (2021); Kharitonov
et al. (2022b) to use the Meaningfulness Mean
Opinion Score (MMOS). Specifically, given a
speech prompt and generated speech continuations,
evaluators listen to audio samples and rate the
meaningfulness in terms of relevance, coherence,
and grammatical correctness. We randomly sample
100 speech prompts from the Librispeech test-clean
set for evaluation. Each sample has 10 evaluators
to provide the rating on a scale between 1 to 5 with
an increment of 1. The human evaluation template
and instruction are shown in Appendix B. Crowd-
MOS (Ribeiro et al., 2011) package is used for
outlier removal (Lakhotia et al., 2021).

4.4 Baselines
We compare Align-SLM with other SLMs on the
Zerospeech and StoryCloze benchmarks. The
most comparable baselines are speech-only SLMs,
including GSLM (Lakhotia et al., 2021), Audi-
oLM (Borsos et al., 2023), TWIST (Hassid et al.,
2024), SyllableLM (Baade et al., 2024), and the
model from Cuervo and Marxer (2024). Among
these, the TWIST model is initialized from a text-
based LLM. Additionally, we compare the perfor-
mance against SLMs leverage text modality (Ta-
ble 2 with underline), specifically VoxtLM (Maiti
et al., 2024) with multi-task training, SPIRIT-
LM (Nguyen et al., 2024) with speech-text inter-
leaving, and Moshi (Défossez et al., 2024), which
leverages text-guided speech generation.

5 Results

5.1 Mistral Score Provides Better Semantic
Feedback Than Perplexity

To determine which preference data selection strat-
egy is beneficial for SLM’s semantics, we first con-

duct preliminary experiments on Align-SLM with
PPL and Mistral score in Table 1 using the TWIST
1.3B model. Additionally, we continually fine-tune
the pre-trained model using the same data, which
serves as the baseline for the next speech token pre-
diction. "Proxy Metric" refers to the metrics used
for preference data selection, while “Zerospeech",
“StoryCloze", and “Speech Continuation" are zero-
shot speech evaluation metrics.

Align-SLM w/PPL successfully improves the
proxy metrics for auto-BLEU and PPL, but the per-
formance on speech continuation is slightly worse
than the pre-trained model. As for the Zerospeech
and StoryCloze benchmark, Align-SLM w/PPL
has marginal improvement on most metrics and
degrades on T-StoryCloze. Particularly, perplexity
feedback shows a much greater improvement on
sBLIMP, which measures grammatical correctness.
This finding suggests that optimizing toward per-
plexity might overly focus on grammar rather than
general semantics and relevance.

On the other hand, Align-SLM w/Mistral score
significantly outperforms the pre-trained model
across metrics. Specifically, the performance on
the Zerospeech and StoryCloze benchmarks im-
prove significantly (+1.6 on S-StoryCloze and +4.5
on T-StoryCloze). The generated continuations
also yield a better GPT4-o score, indicating the gen-
erated content is more relevant and coherent to the
speech prompt. Regarding proxy metrics, the auto-
BLEU and Mistral scores are improved, whereas
the PPL is similar to the pre-trained model.

This finding suggests that LLM evaluations,
such as the Mistral score, provide general semantic
feedback and achieve superior performance across
benchmarks. Furthermore, Align-SLM w/Mistral
score significantly outperforms the fine-tuned base-
line, which only marginally improves performance.
Therefore, in the following experiments for Align-
SLM, we use the Mistral score as the AI feedback.

5.2 Consistently Improves Pre-trained SLMs
Given our findings from Section 5.1, we use the
Mistral score as a “proxy metric" for the rest
of our experiments. In Table 2, we observe
that Align-SLM consistently outperforms the pre-
trained model on the Zerospeech, StoryCloze, and
speech continuation task for both the 1.3B and 7B
models (rows 7 to 8 for 1.3B, row 15 to 16 for 7B).
For instance, on T-StoryCloze, training Align-SLM
with Librispeech data yields relative improvements
of 6.5% and 11.1% for the 1.3B and 7B models,



respectively. Additionally, Table 2 demonstrates
Align-SLM 7B performs better in speech continu-
ation, as reflected by the GPT-4 score improving
from 2.70 to 3.50.

5.3 Improvement of Curriculum Learning

After training the pre-trained model with the first
iteration of Align-SLM, we consider the resulting
model a stronger starting point and generate new
preference data with more stringent preference data
selection criteria. Results in Table 2 indicate that
curriculum learning improves most metrics on the
Zerospeech and StoryCloze benchmarks (rows 8
to 9 for 1.3B, rows 16 to 17 for 7B), particularly
for T-StoryCloze, which requires fine-grained rel-
evance between the speech story prompt and its
continuation. Additionally, we observe improve-
ments in speech continuation; for example, the
GPT4-o score increases from 2.06 to 2.29 for the
1.3B model. We also experimented with further
increasing the number of curriculum learning iter-
ations, which continued to enhance performance
(see the discussion in Appendix E).

5.4 Amount of Preference Data

In the previous experiments, we only use the Lib-
riSpeech training data for DPO training. After
applying filtering as described in Section 4.1, the
number of samples is around 39K and 63K for the
1.3B model and 7B model, respectively. To investi-
gate whether additional data helps the Align-SLM
to learn semantics, we scale up the data around
three times by including a subset of MLS (mls). It
is worth noting that the scale of the MLS subset is
still much smaller than the pre-training data used
in Hassid et al. (2024). Table 2 shows that that with
more data, the model learns significantly better
semantics across model sizes and benchmarks
(row 10 to 11 for 1.3B, row 18 to 19 for 7B). Never-
theless, we observe that adding mls data for the 7B
SLM yields little improvement in GPT4-o score
compared to 1.3B model4.

5.5 Comparison with Baselines

Align-SLM-mls-CL achieves state-of-the-art per-
formance for textless SLMs in T-StoryCloze
(86.8), S-StoryCloze (61.1), and sWUGGY (77.9),

4This can be attributed to the amount of preference data
for the 7B model from Librispeech already being sufficient
(63K for the first iteration and 71K for the second iteration).
In contrast, the 1.3B model only has 39K and 20K preference
data pairs by Librispeech.

even surpassing text-guided approaches (moshi)
and speech-text interleaving methods (SPIRIT-
LM). The performance on T-StoryCloze is close
to human-level accuracy (90.2). However, for
sBLIMP (grammatical correctness), AudioLM and
SyllableLM achieve the best performance, possi-
bly due to their superior design of speech tokens.
Compared to the cascaded topline (ASR+LLM),
end-to-end SLMs still have room for improvement.

5.6 Human Prefer Align-SLM’s Generation
Table 3 presents the MMOS scores from the sub-
jective evaluation. We compare the re-synthesized
speech of the original continuation, the pre-trained
TWIST 7B, and the proposed Align-SLM 7B with
CL. The results show that human evaluators per-
ceive Align-SLM as generating more meaningful
speech continuations than the pre-trained model,
and even surpassing the original continuation. This
can be attributed to the fact that the original contin-
uation, derived from audiobook content, may rely
on the broader context, whereas Align-SLM learns
to generate more relevant and meaningful content
based on the speech prompt.

5.7 Impact on Audio Quality
Preference optimization can potentially adversari-
ally exploit the ASR and LLM evaluators, leading
the SLM to generate nonsensical or noisy speech
with artificially high rewards. To address this con-
cern, we evaluate the audio quality of generated
speech using MOSnet (Cooper et al., 2022), which
has shown a high correlation with human judg-
ments. Table 2 presents the MOS scores from
LibriSpeech dev-clean and test-clean sets. Results
indicate that the MOSnet scores for Align-SLM are
comparable to or slightly higher than those of the
pre-trained SLM, suggesting that the training of
Align-SLM preserves audio quality. The proposed
framework requires the generated speech to pass
through the ASR model for speech-to-text conver-
sion, natural and clear speech is essential to avoid
speech recognition errors. Consequently, in some
cases, the MOSnet score for Align-SLM is even
higher than that of the pre-trained SLM.

6 Conclusion

This work introduces Align-SLM, a novel frame-
work that significantly enhances the semantics of
SLM via preference optimization. By utilizing
LLM-guided semantic feedback and direct prefer-
ence optimization, Align-SLM achieves state-of-



the-art performance of SLMs across various bench-
marks and generative tasks, consistently outper-
forming pre-trained SLMs. The framework demon-
strates superior results with the proposed LLM
evaluation feedback and curriculum learning. This
work highlights the critical role of preference op-
timization for SLM and paves the way for better
end-to-end speech-to-speech models.

Limitations and Future Works

Limited to Semantics of SLMs: This work inves-
tigates only the semantic aspect of SLMs, though
other aspects such as speaking styles, paralinguis-
tics, and prosody are also important for spoken
dialogue (Lin et al., 2024b,a). Our Align-SLM
framework can be generalized to these aspects, but
that is beyond the scope of this paper.
Integrating Align-SLM with other SLMs: We in-
tegrated the open-source pre-trained TWIST (Has-
sid et al., 2024) model with Align-SLM, demon-
strating significant performance improvements. As
the SLM community grows rapidly, more powerful
pre-trained SLMs are emerging (Défossez et al.,
2024; Baade et al., 2024; Fang et al., 2024). The
Align-SLM framework is a general framework that
can be extended to integrate with other SLMs.
Language Support: The current model is trained
solely on English speech data. Future work can
extend the Align-SLM framework to multilingual
speech data for more inclusive speech technology.
For unwritten languages, instead of using ASR
models for text transcription, we can use speech
translation models to convert unwritten spoken lan-
guages into high-resource languages (Chen et al.,
2023), similarly obtaining semantic feedback from
the LLM.
Diverse Data and Model Scaling: The dataset
used in this work is much smaller than typical pre-
training datasets, and the model size is relatively
small compared to text-based LLMs. Addition-
ally, the training data is limited to the audiobook
domain. Expanding the training data to include
more diverse domains in future work could lead to
improved model performance.
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Appendix

A Implementation Details

For sampling the speech continuations, we use a
decoding temperature of 0.8, following the original
sampling setup in Hassid et al. (2024). The number
of sampled continuations, N , is set to 5. The hyper-
parameters of the LoRA adapter are set with a rank
of 32 and an alpha value of 8. For training on Lib-
riSpeech, models are trained with a batch size of
512, using a peak learning rate of 1e-6 that linearly
decays over 100k steps with 500 warmup steps.
For mls data, since there are more training samples,
we further increase the training steps to 300k. For
curriculum learning, the peak learning rate is 1e-6
and linearly decays without the warmup step. We
utilize 64 NVIDIA A100 GPUs for training. The
model checkpoint is selected by the highest reward
accuracy on the Librispeech dev-clean set.

B Details of Subjective Evaluation

We used the Amazon Mechanical Turk crowdsourc-
ing platform for subjective evaluations. The eval-
uators, all based in the United States, had HIT
approval rates above 98%, as the speech samples

Prompt: a man was looking in from the corridor behind

# Sampled speech continuation Score

1 He was seen, he stopped before the man. He
said, I have a book you read.

3

2 When they drew near and received their letter,
and looking down, showed them something of
the startling effect of the diamond.

1

3 But every time he reached the open window he
saw the little man pressing in a silk sash.

2

4 When he heard the dog talking to him. Said,
My father, did you hear the dog? Said he, did
you. . .

1

5 And the door opened, and he heard the words.
And there they all began, Boyce said to himself.

3

Table 4: Prompt, sampled continuations, and their MIS-
TRAL scores.

were in American English. Each evaluation task
contained 10 samples, and annotators were paid
0.50 USD per task. On average, each task took
about 2 minutes to complete.

C Preference-based selection illustration

Given the speech prompt “a man was looking in
from the corridor behind", we draw five candidate
continuations from the model and assign each a
Mistral score (higher is better). Table 4 lists the
continuations and their scores. We keep a contin-
uation if si ≥ sc = 3, reject it if si ≤ sr = 1,
and otherwise mark it as filtered (neither accepted
nor explicitly rejected). In this example, continua-
tions (1) and (5) are kept; continuations (2) and (4)
are rejected due to clear irrelevance; and contin-
uation (3) is filtered. Notably, the lowest-scoring
continuations (score 1) tend to be semantically un-
related to the prompt, underscoring the value of the
LLM feedback.

D Speech Continuation Examples

We present some qualitative examples of speech
continuations in Table 5. We observe that the
pre-trained TWIST 7B model occasionally gener-
ates nonsensical speech based on the given speech
prompt. For instance, in the first example, the
TWIST continuation includes the repetitive phrase
"only, easy, only, and" at the end.

E Number of Iteration for Curriculum
Learning

In this section, we examine how the number of cur-
riculum learning iterations influences performance.
Figure 2 presents the results from the pre-trained
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Speech Prompt Pretrained TWIST Continuation Align-SLM Continuation
He came down to earth lived
among men suffered

for a friend, she would have been glad
of the last word, the pointed word, pos-
sible only, easy, only, and.

died, and yet somehow he felt that he
lived more than they, and he came to
know men of his own who loved him
still.

Then there were three or four
leading men of the community

and the majority of these were hirelings,
hard-headed and stolid.

with them at the table, and they spoke
together about the measures they were
preparing for the day’s work. But one
among them was speaking feelingly.

In the early morning of the next
day may twenty ninth

W. H. Barker, the prisoner before the
magistrate and the charge of the prose-
cution,

we went to our rooms and sat down and
had a long talk over all the present cir-
cumstances of our journey to the place
where we had spent so much time.

Table 5: Continuation examples from Pretrained TWIST 7B model and Align-SLM 7B + CL. The transcribed texts
are shown in the table.

7B model after one to three iterations of Align-
SLM with curriculum learning using Librispeech
data. For the first, second, and third iterations,
(sr, sc) is (1, 3), (2, 4), and (3, 5), respectively.
We observe that increasing the number of cur-
riculum learning iterations gradually improves the
SLM’s performance across all benchmarks. While
the T-StoryCloze performance saturates after the
second iteration, other metrics show their best per-
formance in the third iteration.

F Instruction for the Mistral LLM for
evaluation

The [text_prompt] and [generated_transcription]
are the placeholder for different input. The entire
instruction is shown as following:
Rate the text continuation based on
how likelihood is the text continuation
given the text prompt. You should also
consider whether the meaning of the text
continuation is making sense. Don’t
be too strict. The text prompt is
[text_prompt], and the text continuation
is [generated_transcription].
You must give an overall rating from 1 to
5. The rating guideline is
1: Very Unlikely and Irrelevant;
2: Unlikely and Marginally Relevant;
3: Moderately Likely and Relevant;
4: Likely and Relevant;
5: Very Likely and Highly Relevant.
Output format is: I would rate the score
as [NUMBER]

G Instruction for the GPT4-o for
evaluation

The task is evaluating the relevance
and likelihood of the predicted text
continuation, given the text prompt.
You should also consider whether the
meaning of the text continuation is
making sense. The text prompt is:
[text_prompt], and the text continuation
is :[generated_audio_transcription].

You must give an overall rating from 1
to 5. The rating guideline is as below:
1: The text continuation is very unlikely
and irrelevant to the text prompt.
2: The text continuation is unlikely and
marginally relevant to the text prompt.
3: The text continuation is moderately
likely and relevant to the text prompt.
4: The text continuation is likely and
relevant to the text prompt. 5: The text
continuation is very likely and highly
relevant.
You should take the following steps to
provide the score:
First: briefly analyze the sample with
the above definition.
Second: MUST follow the output format
as: I would rate the score as _

H auto-BLEU Score Distribution

Table 5 presents the auto-BLEU score distribution
on of the TWIST 1.3B model and the target con-
tinuation. We observe that most target continu-
ations have an auto-BLEU score lower than 0.1,



Figure 2: The 7B model undergoes one, two, and up to three iterations of curriculum learning with Align-SLM
using Librispeech data.

while TWIST’s generated continuations show auto-
BLEU scores ranging from 0.1 to 0.3 (or even
higher). This difference suggests that an auto-
BLEU score higher than 0.1 may not indicate a
good continuation. Therefore, we set the auto-
BLEU score threshold (δ) at 0.1 to distinguish the
chosen and rejected continuations.

I Mistral Score Distribution

Given N generated speech continuations, select-
ing an appropriate scoring threshold is crucial for
determining which samples are chosen or rejected.
Thresholds that are too high or too low fail to cre-
ate effective preference data pairs. In this work,
we first analyze the score distribution of the pre-
trained SLMs, as shown in Figures 3 and 4. We
observe that the Mistral score is 2 with more than
a 50% probability for both the 1.3B and 7B pre-
trained SLMs. Therefore, a score of 2 is considered
the norm, a score of 1 represents rejected cases, and
scores of 3 or higher are considered chosen sam-
ples. After the initial Align-SLM DPO training,
the score distribution shifts towards higher scores,
reducing the proportion of low scores. Increasing
the sc and sr values in the second iteration can
further improve the overall ratings.

Dataset Iter 1 Iter 2
1.3B
Librispeech 39,566 20,942
+ mls 131,071 113,243
7B
Librispeech 63,107 71,944
+ mls 234,195 262,929

Table 6: Number of data samples after filtering. Note
that different models have different filtered samples
since the filtering depends on the quality of the gener-
ated speech. The number of samples of original Lib-
rispeech and mls are 247K and 673K, respectively.

J Correlation Between GPT4-o score and
MMOS

We calculate the Pearson’s correlation coefficient
between the GPT4-o score and MMOS score. Pear-
son’s coefficient is 0.51, suggesting that the GP4-o
score correlates well with the human rating. The
finding is aligned with previous works that the
rating from GPT4 can be alternative human evalu-
ators (Chiang and Lee, 2023a; Liu et al., 2023; Lin
and Lee, 2024).



Figure 3: The normalized histogram of Mistral score distribution on Librispeech dev-clean with 7B model.

Figure 4: The normalized histogram of Mistral score distribution on Librispeech dev-clean with 1.3B model.



Figure 5: The log normalized histogram of auto-BLEU score distribution on Librispeech dev-clean with 1.3B
TWIST model.



Figure 6: The template and instruction of the subjective evaluation of the MMOS score.
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