ProductQnA: Answering User Questions on E-Commerce Product Pages

Ashish Kulkarni∗
India Machine Learning, Amazon
kulkashi@amazon.com

Kartik Mehta∗
India Machine Learning, Amazon
kartim@amazon.com

Shweta Garg∗
India Machine Learning, Amazon
shwegarg@amazon.com

Vidit Bansal∗
India Machine Learning, Amazon
bansalv@amazon.com

Nikhil Rasiwasia
India Machine Learning, Amazon
rasiwasi@amazon.com

Srinivasan H Sengamedu
India Machine Learning, Amazon
sengamed@amazon.com

ABSTRACT

Product pages on e-commerce websites often overwhelm their customers with a wealth of data, making discovery of relevant information a challenge. Motivated by this, here, we present a novel framework to answer both factoid and non-factoid user questions on product pages. We propose several question-answer matching models leveraging both deep learned distributional semantics and semantics imposed by a structured resource like a domain specific ontology. The proposed framework supports the use of a combination of these models and we show, through empirical evaluation, that a cascade of these models does much better in meeting the high precision requirements of such a question-answering system. Evaluation on user asked questions shows that the proposed system achieves 66% higher precision1 as compared to IDF-weighted average of word vectors baseline [1].

CCS CONCEPTS

• Information systems → Question answering; • Applied computing → Online shopping.

KEYWORDS

question answering; deep learning; chatbot; e-commerce

1 INTRODUCTION

Online e-commerce systems play a vital role in connecting product sellers and end consumers at scale. However, consumers often struggle to navigate through the millions of products on offer and therefore, the success of these systems relies on their ability to seamlessly support customers in their product discovery and research. This has motivated a lot of work in the areas of product search, recommendation, information extraction, summarization, and recently, automatic question answering [17, 20] and chatbots [22]. In this work, we are concerned with the specific problem of answering customer questions on e-commerce product pages. Product detail pages often contain a wealth of information contributed by both sellers (product title, description, features, etc.) and customers (reviews, community question-answers, etc.). However, in their effort to offer the most comprehensive product information, the amount of data on these pages has grown so much, that for a top selling product, the detail page typically spans over six to eight thousand words, filling up around 15 A4 sheets. Customers also face an increased complexity in product evaluation due to variations (“size” vs. “dimension”) and implicit references to product features (e.g. for title “20.1 MP Point and Shoot Camera Black”, 20.1 MP refers to resolution and Black refers to color attribute). On small form factor devices like mobile, customers might benefit from a system that answers their product-related questions without having to browse through the page.

Building such a question-answering system poses some interesting challenges.

Question intent: In addition to product feature-related questions (like, “size” or “resolution”), customers could ask other factoid questions like “what’s in the box?”, “does this work with canon?” or non-factoid questions like “is this worth the money?” Understanding question intent is key to generating an appropriate response.

Product attribute-value: The system should account for explicit and implicit references to product attributes and their values in both questions and candidate answer lines.

Semantic matching: Customers often use text variations (eg. “anti-shake” to refer to “image stabilization”), thus necessitating semantic matching of question and answer lines.

High precision: Providing incorrect answers would lead to a marred customer experience and add to their frustration.

Lack of training data: Unlike question answering systems for open domain, domain specific systems suffer from scarcity of training data and other resources like structured knowledge bases.

Addressing these challenges for domain specific question answering systems is the primary focus of this work. We believe that building such a system would involve an interplay of different components for identifying question intent, attribute name-value

∗These authors made equal contribution

1Evaluated at fixed coverage, where coverage is the number of questions that receive an answer. We cannot reveal the exact coverage number due to confidentiality
The body of work closest to the proposed framework comes from the field of question answering for e-commerce. Yan et al. [22] recently presented a task-oriented dialog system that leverages an in-domain knowledge base, search logs and community sites to assist users for online shopping. Distinct from them, SuperAgent [3] takes advantage of in-page product descriptions and user-generated content to answer user questions for a product. While we are also concerned with in-page question answering, we present a more generic solution covering aspects of question understanding, question-answer representation and matching and answer generation. We support the efficacy of the proposed framework via a detailed empirical study.

Contribution of question answering and reading comprehension datasets, notably, TREC [18] and recently, SQUAD [13] and MS MARCO [11] has led to a lot of work in the area of open-domain question answering of factoid questions from a given document collection. Some of the earlier systems [14] made use of text and entity-level surface patterns as clues to right answers. Realizing that these approaches suffered from low recall and did not capture long-distance dependencies, some of the subsequent research extended these with other statistical signals from the corpus [15] or more complex patterns based on deep linguistics [12]. Other approaches based on hand-crafted syntactic features [8] have also been explored. Although we are also concerned with answering user questions from a given passage of text, the domain of interest is limited (to e-commerce products, for instance), making it difficult to leverage existing language resources and knowledge bases in the open domain.

With deep learning gaining in popularity, there’s a recent body of work in question answering that leverages dense representation of sentences composed from neural word embeddings [10]. Several sentence embedding approaches have emerged based on simple word vector averaging [21] or those leveraging the structure and sequence of words in a sentence using RNN, LSTM or CNN-based [6] architectures. When applied to the question answering task, some of the existing work is based on the semantic similarity of a question and a potential answer in a jointly learned embedding space [9], while others employ a classification or learning-to-rank approach over joint question-answer feature vectors [19]. While the proposed embedding models are inspired from some of the aforementioned approaches, we differ from them in that we complement the distributional semantics learned from these models with the structured semantics imposed by an ontology and combine these in a generic question answering framework. We show that a question answer matching model based on a combination of these features achieves much better results on an in-domain question answering task.

3 PRODUCTQNA FRAMEWORK

Figure 1 gives an overview of proposed ProductQnA (PQnA) framework. We are given a question \(q \) and a pool of candidate answer lines \(\mathcal{A} = \{a_1, \ldots, a_n\} \). We then pose question answering as a ranking problem, where, the candidate answer lines are ranked based on their relevance to the question \(q \) and top-k answers \(a'_1, \ldots, a'_k \) (\(a'_i \in \mathcal{A} \)) are selected for final answer generation if their relevance \(s(a'_i) \) exceeds some threshold \(t \). It is possible that none of the answer lines get selected if they all fail to meet the threshold.

We describe the ranking (or question-answer matching) models in more detail in the following sections. The matching models in the proposed question-answering framework (refer to Figure 1) are further aided by several other components which we also describe in detail below.

3.1 Ontology

An ontology describes the entity types in a domain and their interrelationships. We built an ontology for a large product category, where the entity types comprise products (camera, lens, tripod etc.), their attributes (dimension, resolution, etc.) and attribute values (20.1 MP, Black etc.) and the relationships capture their semantic relatedness, for instance, baby_monitor \(\text{isa} \) camera, security_camera \(\text{hasA} \)
night_vision, resolution → resolution_value. We bootstrap the ontology from existing in-domain knowledge bases and gazetteers (list of colors, brands etc.) and further augment it with entities extracted from semi-structured and unstructured corpus of product pages. Product attributes and their values often appear as feature bullets displayed in a tabular fashion on product pages. We exploit such structure on product pages to extract these attributes and their values. We also extract frequently occurring noun phrases, from the unstructured text, which are manually audited and merged into the ontology using Protégé\(^2\). The ontology that we thus curated, consists of 570 entity types spanning product categories like digital cameras, security cameras, lenses, tripods, bags and cases, batteries, films and others.

3.2 Question-Answer Annotators

An annotator extracts semantics from text by identifying entity mentions (like, anti-shake or 20.1 MP) in raw text and linking them to their canonical entities (image_stabilization and resolution_value, respectively) in an ontology. We annotate user questions and candidate answer lines to generate annotations, which are triples \((e, s_{\text{begin}}, s_{\text{end}})\), where, \(e\) is an entity in the ontology and \(s_{\text{begin}}\) and \(s_{\text{end}}\) define the span of the entity mention in the raw text line. We use three types of annotators:

- **Regular expression-based:** Attribute values (e.g. 20.1 MP or 10 GB) often have a well defined signature and could be extracted using a regular expression annotator.
- **Gazetteer-based:** Lists of certain attribute values like color, camera brand etc. are often readily available. We leverage these to define gazetteer-based annotators for attributes color_value, camera_brand_value and others.
- **Machine learning models:** In order to capture semantic variations ("how long does this battery last?" is a reference to battery_life), we manually label annotations for a subset of user questions, \(Q_{\text{labeled}}\) and use a k-NN classifier to annotate an unseen user question \(q\). As distance metric, we use the Jaccard similarity between \(q\) and the questions in \(Q_{\text{labeled}}\).

A union of the outputs from these annotators is then used as the final set of annotations, \(Q_{\text{annot}}\), for a question and \(A_{\text{annot}}\) for a candidate answer.

3.3 Deep Learning based Sentence Embedding

While annotators provide ontology-based semantic features for a sentence, we also use deep learning-based sentence embeddings leveraging distributional semantics of words and their context. The question and answer embeddings thus obtained serve as another input to the question-answer matching models. The embedding architecture (refer Figure 2) is inspired from the Siamese neural network [4]. Given a sentence, tokenized into words, the network takes as input their word embeddings, typically initialized with embeddings pre-trained on large in-domain corpora. These are then composed together in the following layers, using a bag-of-words or word sequence approach, to obtain the final sentence embedding.

For the question-answering task, we project the question and a candidate answer in a shared embedding space and the network parameters are trained to minimize a task-specific loss function.

3.3.1 **Sentence embedding using supervised word averaging:** For a sentence \(s = w_1 \ldots w_n\), where, \(w_j\) is a word in \(s\) and \(w_j \in \mathbb{R}^d\) its embedding, the sentence embedding \(l\) is computed as: \(l = \frac{1}{n} \sum_{i=1}^{n} w_i\). We initialize word embeddings with random weights and learn them as part of supervised training. This simple approach of averaging word vectors has shown to give comparable performance to complex deep learning models such as LSTM for text classification [5] as well as text similarity problems [1, 21].

3.3.2 **Sentence embedding using LSTM:** As against the bag-of-words approach above, LSTM takes the sequence of words into account. It produces a vector \(\tilde{l}_t\) at each word \(w_t\) from its word embedding \(w_t\) and that of its previous context \(w_{t-1}\). In case of bi-LSTM, \(\tilde{l}_t\) is similarly obtained by reversing the order of words in the sentence and taking into account \(w_{t-1}\) and its context \(w_{t-n} \ldots w_{t+1}\). The concatenation of output vector from each direction, \(\tilde{l} = \tilde{l}_n || \tilde{l}_1\) is then used as the final sentence representation.

3.3.3 **Loss functions:** The embedding models discussed above are trained in a supervised manner, where the training data comprises triplets \((q, a_+, a_-)\) of embeddings of question, correct answer and an incorrect answer respectively. The training aims to minimize a task-specific loss function which we discuss next.

Weighted Log loss is defined in [7] as: \(L_\ell = -\log p(q, a_+) - \eta \log (1 - p(q, a_-))\) where, \(p(u, v) = 1/(1 + \exp(-uv))\) and \(0 < \eta \leq 1\) dampens highly representative negative samples in the training data. We use \(\eta = 1\) in the experiments as we have balanced number of negative and positive samples.

Siamese Hinge loss is commonly used for Siamese architectures [9] and is defined as: \(L_s = \max(0, M - \cos(q, a_+) + \cos(q, a_-))\), where \(M\) is the margin.

Triplet Hinge loss: We propose a stricter version of the above loss that additionally penalizes the similarity of \(a_+\) and \(a_-\). Also, inspired from [16], we use different margin for the three components of the loss. In our experiments, this loss function has been found to achieve better results than siamese hinge loss, as we discuss in...
more detail in Section 5.1.

\[L_3 = \max(0, M_1 - \cos(q, a_i)) + \max(0, \cos(q, a_j) - M_2) \]
\[+ \max(0, \cos(a_i, a_j) - M_3) \]

3.4 Question-Answer Matching Model

The question-answer matching model receives as input the question and answer feature representations from the annotators and deep learning-based embedding models and generates a final list of answers. We use the following matching models.

Similarity-based ranking model: Given the question embedding \(q \) and answer embeddings \([a_1, \ldots, a_n] \), the similarity-based ranking model \(f_{deep} \) ranks the answers based on their cosine similarity \(\cos(q, a_i) \) to the question in the shared embedding space. A ranked list of answers, with similarity score exceeding a threshold \(t \), is generated as the output.

Annotation-based classification model: Let \(Qannot \) and \(Aannot \) be the set of annotations for a question and a candidate answer respectively. The annotation-based classification model \(f_{annot} \) is a binary classifier that returns 1 if any entity \(e_q \in Qannot \) subsumes an entity \(e_a \in Aannot \) and 0 otherwise. An entity \(e_i \) is said to subsume an entity \(e_j \) if at least one of these assertions holds true in the ontology: \(e_i = e_j \), \(\text{inA} \Rightarrow e_i \), \(\text{hasA} \Rightarrow e_i \) or \(\text{subA} \Rightarrow e_i \).

Ensemble matching model: One could define an ensemble matching model combining the semantic signals from ontology-based annotations and deep learning-based embedding models. Here, we use a cascade of models, where the candidate answers are first ranked based on \(f_{deep} \) and subsequently filtered by \(f_{annot} \) to generate a final list of top-k answers.

3.5 Question Category Classifier

Customer questions might span multiple categories (refer to Table 1). Identifying these might help in generating an appropriate response to the question. For instance, one could use question category as an additional feature to the matching models or have separate models based on question categories. Also, in order to maintain the high precision requirement, one might choose not to answer certain categories (e.g. other, where, often answer is not available on the page). Certain categories ("greetings", "shipping_delivery", "warranty", "returns_refunds", "used_refurbished") have limited surface forms and can be answered with precurated responses. We term these categories as stock categories and the rest as non-stock categories.

Building such a question classifier poses multiple challenges: (1) class ambiguity (e.g. "how expensive is this camera compared to others" question is ambiguous with price and related_product as candidate classes), (2) spelling mistakes (e.g. "what is price", "what is branded"), (3) complex surface forms (e.g. "does it take picture" is specs, but "does it make sound when it takes picture" is others) and (4) multiple sub-questions. Also, lack of sufficient training data adds to the complexity of this problem. In order to deal with these challenges, we use deep learning-based architecture. Formally, given a question \(q \), we learn a function \(f(q) \) that maps it to one of the question categories \(\{c_1, \ldots, c_k\} \) as in Table 1. While there are several choices to model \(f(q) \) (refer to Section 5.2 for an empirical comparison), we use a CNN model similar to the one used by Yoon et al. [6]. We propose two extensions to this architecture to make the classifier robust to spelling mistakes and generalize to unseen attributes.

Enriching classifier with subword information: We augment our CNN-based question classifier with character n-grams (subwords) [2]. The resulting model \((CNN+Subw) \) is found to be robust to spelling mistakes.

Enriching classifier with \(f_{annot} \): Gathering training data for all specs attributes and their surface forms is a challenging task. \(f_{annot} \) (introduced in Section 3.4) could be used to annotate questions with attribute tags in order to reduce the training data sparsity. For instance, "what is resolution" is annotated as "what is specs_tag".

We then train a multi-channel CNN [6], where we use two different inputs (original question for first channel and annotated question for the other channel). We refer to this model as CNN+Subw+\(f_{annot} \) and present empirical evaluation in section 5.2.

4 SYSTEM ARCHITECTURE

Based on PQnA framework discussed above, we propose a question answering system. Users can ask questions about the product and the system provides instant answers from three different sources - (1) seller provided product data (2) user reviews and (3) community Q&A (CQnA). User questions and all the product detail page data from the three sources are subjected to the proposed PQnA framework to generate the top-3 answers. The question category classifier first classifies the question into one of the question categories. For questions belonging to one of specs, ratings_and_reviews, compatibility, and price, we then rank the sentences for their relevance to the question using the ranking models. As discussed in Section 3.4, we use a cascade of \(f_{deep} \) and \(f_{annot} \) as the ensemble matching model for product data and \(f_{deep} \) alone for user reviews and CQnA data. We use a set of pre-curated answers for questions belonging to greetings, shipping_delivery, warranty, and returns_refunds. Currently, we do not provide an answer to whatis_in_the_box, related_product and other categories. Table 2 shows examples retrieved from the system.

5 EVALUATION

We use a random sample of 1340 questions (Table 1 shows the distribution) to evaluate the system for coverage (fraction of questions for which we retrieve an answer) and precision (fraction of questions for which top retrieved answer is correct). For comparison, we use IDF-weighted average of word vectors (referred as IDF-vector-average hereinafter) which has been found to be a strong

<table>
<thead>
<tr>
<th>Question Category</th>
<th>Example</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>specs</td>
<td>What is the weight?</td>
<td>34.3%</td>
</tr>
<tr>
<td>compatibility</td>
<td>Will this work with Nikon D300?</td>
<td>10.8%</td>
</tr>
<tr>
<td>ratings_and_reviews</td>
<td>What is the customer rating?</td>
<td>5.8%</td>
</tr>
<tr>
<td>whatis_in_the_box</td>
<td>What comes with camera?</td>
<td>3.6%</td>
</tr>
<tr>
<td>returns_refunds</td>
<td>How can I return this package?</td>
<td>2.3%</td>
</tr>
<tr>
<td>shipping_delivery</td>
<td>Can I get it delivered to India?</td>
<td>1.6%</td>
</tr>
<tr>
<td>related_product</td>
<td>What speaker are people using with the camera</td>
<td>1.6%</td>
</tr>
<tr>
<td>warranty</td>
<td>Does it come with a warranty?</td>
<td>1.4%</td>
</tr>
<tr>
<td>used_refurbished</td>
<td>Is this a new camera or a refurbished one?</td>
<td>1.0%</td>
</tr>
<tr>
<td>greetings</td>
<td>Good evening</td>
<td>0.9%</td>
</tr>
<tr>
<td>price</td>
<td>How much does it cost?</td>
<td>0.7%</td>
</tr>
<tr>
<td>gibberish</td>
<td>abcd</td>
<td>0.4%</td>
</tr>
<tr>
<td>other</td>
<td>How do you access the video footage?</td>
<td>35.6%</td>
</tr>
</tbody>
</table>

Table 1: Question categories and their proportion in data

The labeled set thus generated by combining both the resources, the absolute value due to confidentiality 3
comparative performance (with LSTM model performing slightly
triplet-hinge loss function. While both the model architectures show
improvement for LSTM). This is likely due to the stricter nature of
loss) perform significantly better than logloss. The proposed triplet-

network based loss functions (siamese hinge loss and triplet-hinge

baseline. Siamese

Figure 1: Example of product data frame.

model performance.

Table 3: Comparison of architecture and loss functions. Pre-

Table 4: Comparison of different architectures for Question

better), the supervised word averaging model is 11 times faster than
the LSTM model during evaluation time 4. Due to comparative
performance and better latency, we use the supervised word averaging
model in rest of the evaluation.

5.2 Evaluation of Question Category Classifier

We train the question category classifier on a randomly sampled set
of 7000 questions and use a validation set of 700 questions for tuning
the model hyper-parameters. We evaluate multiple classification
models—logistic regression with bag-of-words features, FastText5,

CNN model in rest of the evaluation.

5.2 Evaluation of Question Category Classifier

We train the question category classifier on a randomly sampled set
of 7000 questions and use a validation set of 700 questions for tuning
the model hyper-parameters. We evaluate multiple classification
models—logistic regression with bag-of-words features, FastText5,

CNN. For the FastText architecture, we choose ngram
size and number of epochs based on cross validation. We use similar
setting as Yoon et al. [6] for CNN model and a single hidden layer
of 128 dimensions for LSTM. We implemented the CNN and LSTM
models in Keras6 and chose best epoch based on performance on
validation set. We use set of 1340 questions (refer to Section 4) and

and multi-class weighted AUC for evaluation and report numbers relative to FastText architecture.

The logistic regression classifier trained with bag-of-word features
leads to a drop of 6.5% in multi-class accuracy (refer to Table
4) signifying the complexity of the problem. The CNN model
achieves 1.2% improvement whereas no significant improvements
are observed using LSTM architecture. CNN with subword embed-
dings achieves 5.5% improvements and leveraging f_{annot} further
improves this to 8.4%.

6 SYSTEM ABLATION STUDY

We analyze the effect of different components on system metrics
using the same set of 1340 questions used for evaluating the overall
system. We compute precision ($P@1$) and coverage at different
thresholds and show the precision-coverage plot for each analysis.

3These latency numbers are averaged over scoring 10000 (query, answer) pairs and
were done on the following configuration: Intel(R) Xeon(R) CPU E5-2665 0 2.40GHz 8
core with 148.84 GB memory

5https://github.com/facebookresearch/fastText

6https://keras.io/
We select fixed coverage based on system requirement and report relative precision numbers for each setting\footnote{Exact precision and coverage values are not disclosed due to confidentiality.}

6.1 Effect of Question Category Classification

We evaluate three settings:
- **NoQC**: All questions are treated as belonging to specs category and evaluated using ensemble matching model (refer to Section 3.4).
- **EnhancedQC**: We use canned response for stock categories, ensemble matching model for three categories (specs, price and compatibility categories), and we provide no response for three remaining categories (other, related_product and whats_in_box).
- **StockQC**: For this setting, we use the EnhancedQC classifier with a single difference that all non-stock categories are considered as specs. We use canned response for stock category questions and evaluate all non-stock categories using ensemble matching model.

The motivation for this setting is that stock categories have limited surface forms and it is easier to detect them as compared to detecting non-stock categories which can have large number of surface forms.

Figure 3a shows precision-coverage curve for this analysis\footnote{Coverage does not go till 100\% due to \textit{f_annot} filtering and filtering of question categories for EnhancedQC setting.},\footnote{The NoQC setting has very low precision at low coverage, likely due to poor performance of deep learning model for questions belonging to “other” category.}.

At fixed coverage, StockQC setting achieves 14\% improvement over NoQC setting. Using EnhancedQC setting, this improvement further increases to 19\%. It can be concluded that significant improvement in precision is observed by having a simplified classifier that can detect stock categories and further precision improvements are observed by having an enhanced classifier (EnhancedQC setting).

6.2 Comparison of Matching Models

We study the performance of different matching models (as introduced in Section 3.4) against the IDF-vector-average baseline (refer to Figure 3b).\footnote{\textit{f_deep} has very low precision at low coverage due to errors introduced by incorrect parsing of data (e.g. "From the Manufacturer" answer for "who is the manufacturer?" question gets a score of 1 due to perfect word match after stopwords removal).}

At fixed coverage, StockQC achieves 14\% improvement over NoQC setting. Using EnhancedQC setting, this improvement further increases to 19\%. It can be concluded that significant improvement in precision is observed by having a simplified classifier that can detect stock categories and further precision improvements are achieved by having an enhanced classifier (EnhancedQC setting).

6.3 Comparison of Data Sources

We analyze the contribution of three data sources, product data, user reviews and CQnA, on the system performance. We restrict this analysis to only specs questions and \textit{f_deep} model. For CQnA evaluation, we obtain two similarity scores based on (1) user question and CQnA question similarity and (2) user question and CQnA answer similarity. We take maximum of these two similarity scores for selecting answer from CQnA data. For the evaluation with combined data setting, we use one answer from each source and a question is considered as positively answered if at least one answer is relevant.

The curves for reviews and CQnA data source do not go till coverage of 100\% as reviews and CQnA are not available for newly introduced products. Performance improves drastically (11\% improvement as compared to answer only from product data).

7 CONCLUSION

We presented a novel end-to-end framework for answering questions on e-commerce product pages. Based on this framework, we propose a question answering system, which uses deep learning-based ranking model and ontology-based matching to answer questions from three sources—product data, reviews and CQnA. A CNN-based question intent classifier helps in further improving the precision of the system. Our proposed system, using question classifier and cascade of deep learning-based ranking and annotation-based matching, achieves 66\% higher precision as compared to IDF-vector-average baseline.

REFERENCES

Figure 3: (a) Precision-coverage curve for different question classifier settings as evaluated on all test questions; (b) Precision-coverage curve for different matching models as evaluated on specs questions in test dataset; (c) Precision-coverage curve for different data sources as evaluated on specs questions in test dataset.