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Abstract—With the massive growth of Internet video 

streaming, it is critical to accurately measure video quality 

subjectively and objectively, especially HD and UHD video which 

is bandwidth intensive. We summarize the creation of a database 

of 200 clips, with 20 unique sources tested across a variety of 

devices. By classifying the test videos into 2 distinct quality regions 

SD and HD, we show that the high correlation claimed by objective 

video quality metrics is led mostly by videos in the SD quality 

region. We perform detailed correlation analysis and statistical 

hypothesis testing of the HD subjective quality scores, and 

establish that the commonly used ACR methodology of subjective 

testing is unable to capture significant quality differences, leading 

to poor measurement accuracy for both subjective and objective 

metrics even on large-screen display devices.  

Keywords— video quality, subjective testing methodology, 

objective video quality metrics, video streaming 

I. INTRODUCTION  

 By 2021, video is projected to touch 82% of global Internet 
traffic [1]. This introduces very specific challenges to streaming 
service providers, as they move large data chunks across the 
fragmented and unreliable Internet. One particular focus of 
optimization, is the accurate measurement of the end-user 
viewing experience, often referred to as Quality-of-Experience 
(QoE). The delivered video quality is a fundamental building 
block of the end-user experience metric, in addition to reliability 
and consistency metrics.  

 Measuring video quality reliably is a challenging problem. 
The ground truth dataset for video quality consists of the set of 
quality scores assigned by a group of human subjects to a large 
group of videos, as guided by a chosen subjective testing 
methodology [2]. However, as an iterative, in-loop optimization 
process, subjective testing is cumbersome, expensive and does 
not scale. Many objective metrics have been proposed to predict 
video quality, such as [3], [4], [5], [6], [7], [8] based on statistical 
signal processing, human visual system modelling and learning 
algorithms. The efficacy and prediction accuracy of these video 
quality metrics is usually evaluated using correlation 
coefficients (Pearson and Spearman’s Rank) against ground 
truth scores on a test dataset. For maximum discrimination, 
subjective testing sessions typically show randomized videos, 
spanning the full quality range to the human subject. As a result, 
the efficacy of objective video quality metrics is also usually 
measured across the full quality range. In this study, we divide 
the full quality range into logical sections, and investigate the 
prediction accuracy of objective video quality metrics for 
individual quality sections. A very large fraction of the 
burgeoning video traffic is also guaranteed to be High-
Definition (HD) and Ultra-High-Definition (UHD) video [1], 

and therefore measuring and optimizing for video quality in 
these high quality ranges is an imperative for streaming service 
providers. In this study, we lay specific emphasis on the 
measurement accuracy of subjective and objective video quality 
scores in this high quality range.  

 Globally, a healthy mix of devices with different screen sizes 
and form factors is projected to contribute to IP traffic in 2021 
[1], ranging from smartphones (44%), to tablets (6%), PCs 
(19%) and TVs (24%). It is therefore necessary for streaming 
service providers to quantify the viewing experience based on 
the device, and possibly optimize the encoding and delivery 
process accordingly. As display technologies improve with 
OLED, plasma, HDR/WCG capable devices, it is important to 
ensure that the viewing quality experience is superlative and 
matched to customer expectations, while simultaneously 
optimizing for encoding and delivery efficiencies. In this study, 
we analyze the correlation of measured quality between 
different devices, again with special emphasis on the high 
quality range. 

II. RELATED WORK 

For improving video streaming quality, researchers in 

related fields have focused on developing reliable objective 

quality metrics, as well as studying the different influence 

factors and their impact on end-user Quality of Experience. 
 PSNR (Peak Signal to Noise Ratio) has been used as a 
default objective measure of video quality in the past.  However, 
it has been shown that PSNR’s correlation with the human visual 
experience is quite low [3]. Other full-reference metrics, such as 
Structural Similarity Index (SSIM) [4] and Multi-Scale 
Structural Similarity (MS-SSIM) [5], which extract and quantify 
the structural information present in the video have been 
proposed. VIF [8] measures the difference in the fidelity of the 
information conveyed between the reference and distorted 
video. In the context of Internet video streaming using adaptive 
HTTP streaming techniques, such as DASH [18] and HLS [19], 
a metric widely used in recent times is VMAF (Video Multi-
method Assessment Fusion) [6] which focuses on measuring 
compression and scaling artifacts. A number of elementary 
features and corresponding ground truths are used to train a 
Support Vector Regressor (SVR) model. To measure the quality 
of a given video stream, the trained SVR predicts quality score 
for each video frame from elementary metrics and an aggregate 
score is computed. 

 For optimizing video streaming services, several studies on 
Quality of Experience (QoE) focus on qualifying and 
quantifying the subjective quality impact caused by playback 
device properties and viewing conditions. Redl et al. conducted 



perceptual quality experiments comparing the effects of 
different HDTV devices including PC monitor, LCD TV and 
HD projector [13].  Catellier et al. conducted exploratory 
experiments using five mobile devices in two testing 
environments [14]. Their study also performed a statistical 
analysis to investigate the influence of video resolution, viewing 
device and audio quality on perceived audiovisual quality. 
Furthermore, Li et al. performed subjective experiments using a 
new Acceptance-Annoyance test methodology, aiming to 
quantify the perceptual difference due to user’s device [5]. Their 
study focused on the comparison between Full HD TV and HD 
Tablet devices and also incorporated the service cost as an 
additional factor. All of these studies use videos that span the 
full quality range ranging from very poor to very high quality, 
and do not investigate the problem of accuracy over individual 
regions of the quality spectrum. 

III. SUBJECTIVE EXPERIMENT CONFIGURATION 

 We conducted comprehensive subjective quality tests using 
a careful selection of videos that are representative of the videos 
present in the catalog of a top streaming service provider.  Using 
the ITU-T P.913 Recommendation for assessment of Internet 
video [11], we conducted an Absolute Category Rating (ACR) 
test, on an 11-point scale. This experiment was representative of 
the streaming customer’s viewing experience, with no double 
stimulus or side-by-side comparisons.  

A. Test Sequences 

Twenty full HD SRC test sequences were chosen from the 

catalog of a top streaming service provider, based on popularity 

and diversity of content. The diversity of chosen content can be 

represented by measurements of spatial and temporal 

information [23]. If the luma pixel values of the nth frame is 

represented as Fn, the Spatial Information (SI) and Temporal 

Information (TI) are defined as 
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where Sobel (Fn) is the Sobel-filtered frame and diff (Fn – Fn-1) 

represents the pixel-wise difference of the frame from the 

previous frame. As shown in Fig 1, the source sequences span 

a wide range of the complexity space.  

 

These were then encoded into 10 quality levels, with 

progressively increasing average bitrates and resolutions, 

encoded using the x265 v2.7 HEVC encoder [21]. The specific 

quality parameter used for encoding was CRF (Constant Rate 

Factor) that aims to achieve “uniform quality”. CRF coupled 

with parameters defining Video Buffering Verifier (or decoding 

buffer) constraints were used to encode these video sources. We 

note that this creates a spread of bitrates for each quality level, 

and the mean bitrates for each of these quality levels are as 

noted below in TABLE I. 

 

These 10 quality levels were further classified into 2 quality 

regions. The first quality region (“SD”) consisted of 6 quality 

levels, encoded at 4 different frame sizes, where the frame sizes 

were lower than 1280x720 (both width and height lesser than 

1280 and 720 respectively). 

 

Fig 1: Spatial intensity plotted against temporal intensity for the 20 sources used 

in the subjective test. 

 

The second quality region (“HD”) consisted of videos encoded 

at 2 different frame sizes, with width or height greater than or 

equal to 1280 and 720 respectively, and less than or equal to 

1920 and 1080 respectively. We avoid prescribing exact frame 

sizes for each quality level, since this is decided based on the 

frame size of the SRC video and its display aspect ratio. In all, 

there were 200 PVS and 20 SRC sequences. 

 

B. Viewing Devices and Test Environment 

 

The tests were conducted in a laboratory area with low 

ambient lighting (just enough to fill out scoring sheets), with 

non-reflecting black or grey surfaces. We used 3 viewing 

devices to conduct our subjective tests. The first device was a 

UHD-TV, a 65 inch OLED commercial TV set, with 

3840x2160 resolution. 3 subjects were seated at a distance of 

2H, with a viewing angle less than 45degree to the central 

screen axis. The second device was a PC monitor, 23 inch 

commercial monitor, with 1920x1080 resolution. 2 subjects 

were seated at a distance of 2H, with a viewing angle less than 

30degree to the central screen axis. 

 
TABLE I.  DESCRIPTION OF PVS 

 

 

0

10

20

30

40

50

60

70

0 20 40 60 80 100

T
e

m
p

o
ra

l 
In

te
n

si
ty

Spatial Intensity

Quality 

Level 

Index 

Quality 

Region 

Mean Bitrate 

(kbps) 

1 SD 54 kbps 

2 SD 75 kbps 

3 SD 128 kbps 

4 SD 252 kbps 

5 SD 520 kbps 

6 SD 700 kbps 

7 HD 1120 kbps 

8 HD 1961 kbps 

9 HD 2415 kbps 

10 HD 4950 kbps 



 

The third device was a 9.7 inch tablet with an AMOLED screen, 

with a resolution of 2048x1536. Viewers, one per tablet, were 

seated in front of the device, which was mounted at an angle of 

80degree to the desk plane. 

C. Subjects and Training 

 For each viewing device, 10 sessions were conducted with 
24 subjects. All the subjects were tested for visual acuity 
(normal or corrected to normal) and color perception. The 
subjects were asked to rate the quality of video, considering 
themselves paying subscribers of an Internet streaming service. 
The 11-point numerical scale was described to them as shown in 
TABLE III. The scores were explained clearly to people, and they 
were given time to practice and internalize the scoring 
procedure. Different subjects watched the videos in at least 6 
different ordering sequences. Outlier analysis and screening of 
observers was performed in accordance with the rules specified 
in [10]. 

TABLE III.  DESCRIPTION OF SCORING SCALE USED FOR 

SUBJECTIVE EXPERIMENTS 

 

Score Quality Description 

10 Perfect  

9 
Showing slight artefacts 

somewhere 

8 everywhere 

7 
Showing artefacts 

somewhere 

6 everywhere 

5 
Clearly showing artefacts 

somewhere 

4 everywhere 

3 
Showing annoying artefacts 

somewhere 

2 everywhere 

1 
Severely affected by artefacts 

somewhere 

0 everywhere 

 

IV. CORRELATION WITH OBJECTIVE METRICS 

In this section, we discuss the correlation of MOS scores on 
each device with objective video quality metrics and with each 
other, using Pearson Linear Correlation (PLCC) and Spearman 
Rank Order Correlation (SROCC) metrics. The objective quality 
metrics chosen were VMAF, PSNR, SSIM, MS-SSIM and VIF. 
All the metrics were computed at the original source resolution, 
after bicubic upscaling of the encoded PVS representations back 
to source resolution. TABLE IV shows that the overall MOS 
scores across devices are well-correlated, with slightly higher 

agreement between the HD monitor and UHD TV, than with the 
tablet device. This is reasonable since the viewing experience of 
the tablet device is very different from that of the HD monitor 
and UHD TV. 

TABLE IV: CORRELATION ANALYSIS OF MOS ACROSS DEVICES 

 
 PLCC SROCC 

 Tablet Monitor UHD

-TV 

Tablet Monitor UHD 

-TV 

Tablet 1.000 0.945 0.952 1.000 0.898 0.912 

Monit-

or 

0.945 1.000 0.971 0.898 1.000 0.946 

UHD-

TV 

0.952 0.971 1.000 0.912 0.946 1.000 

 

Among objective metrics, VMAF has the highest correlation 
with MOS scores for all devices, followed by VIF, SSIM, MS-
SSIM and PSNR, as shown in TABLE II. The 95% confidence 
interval for Pearson correlation between MOS and VMAF for 
the HD monitor, calculated using the Fisher’s z-transformation 
as a function of the sample size (n=200) is +/- 0.0071. Also, 
there is a strong linear relationship between MOS and VMAF – 
the adjusted R-square values (or explained variance) for the 
Tablet, HD-Monitor and UHD-TV are 0.8365, 0.8362 and 
0.8182 respectively. The resolving power of VMAF for these 
devices, as calculated at the 95% and 75% confidence level are 
28.209 and 7.62 for the tablet device, 22.79 and 6.62 for the 
monitor and 22.468 and 6.38 for the UHD-TV respectively, 
indicating the required delta at which viewers are statistically 
likely to notice a quality difference. As with the correlation 
metrics, there is higher agreement between the monitor and 
UHD-TV, than with the tablet device. The scatter plot showing 
the relationship between MOS and VMAF for all devices is 
shown in Error! Reference source not found.2. 

V. ANALYSIS BASED ON QUALITY REGIONS 

The results shown in TABLE II above appear to be consistent 
with previous analysis performed on the correlation of objective 
metrics with Mean Opinion Scores [20]. Our objective was to 
understand and measure the effectiveness of objective metrics 
depending on the underlying “quality region” they fall under. 
This is indirectly inspired by insights such as the thresholding 
effect of consumer satisfaction, and other subjective testing 
methodologies, such as Acceptance-Annoyance (AccAnn) 
proposed in [16], where subjects characterized video quality into 
acceptable/annoying. The “quality regions” that we divided out 
videos into, were “SD” and “HD”, based on frame size, as 
explained in Section 3. The reasoning behind this division was 
partly psychological, since viewers have a higher degree of 
satisfaction in video quality when the video is confirmed to be 
HD (such as a screen indicator). 

 
TABLE II.  CORRELATION ANALYSIS OF MOS (FULL DATASET) WITH OBJECTIVE METRICS 

 Pearson’s Correlation Coefficient Spearman’s Rank Correlation Coefficient 
 

VMAF PSNR SSIM MS-SSIM VIF VMAF PSNR SSIM MS-SSIM VIF 

Tablet 0.9048 0.7773 0.8209 0.8127 0.8639 0.8563 0.6924 0.8118 0.7745 0.8358 

Monitor 0.9145 0.7788 0.8346 0.8293 0.8815 0.8813 0.7005 0.8396 0.7991 0.8533 

UHD-TV 0.9045 0.7652 0.8151 0.8099 0.8650 0.8875 0.6960 0.8326 0.7857 0.8599 

 



 

Fig 2: Scatter plot between MOS and VMAF (full quality region) 

 

While our subjective viewing experiment did not include any 
explicit notifications of resolution, we confirm this hypotheses 
in TABLE V, which shows the results of a T-test between the 
Gaussian distributions centered at the MOS values with a known 
standard deviation. A value of ‘0’ indicates that the highest SD 
quality level was statistically inferior (worse video quality) than 
the lowest HD quality level, a value of ‘1’ indicates that the 
highest SD quality level was statistically superior to the lowest 
HD quality level, and a value of ‘_’ indicates the 2 quality levels 
were statistically equivalent. Each sub-entry corresponds to the 
20 reference videos used in the study. 

TABLE V shows that the increase in MOS scores between the 

highest quality SD video and the lowest quality HD video are 

consistently and statistically significant for the UHD-TV and 

HD monitor at the 95% confidence level, and less so for the 

tablet device. We also note the appreciable and consistent 

increase in bitrate between these two quality levels as described 

in TABLE I. For simplicity of analysis, we use the same 

definition of SD and HD quality regions for all devices. 

 
A. Correlation with objective metrics in SD quality region 

In this section, we segregate the MOS scores that fall in the SD 
region (6 points per SRC clip, total 120 test videos). The 
correlation values for all PVS that fall in SD region are shown 
in TABLE VI, and we note that the SD correlation scores are 
slightly lower than, but still very close to the PLCC and SROCC 
values for the full set of test videos in TABLE II. The 95% 
confidence interval for Pearson correlation between MOS and 
VMAF for the HD monitor on SD videos, calculated using the 
Fisher’s z-transformation as a function of the sample size 
(n=120) is +/- 0.018. The strength of the linear relationship 
between MOS and VMAF, explained by adjusted R-square 
values (or explained variance) for Tablet, HD-Monitor and 
UHD-TV are 0.781, 0.7976 and 0.7867 respectively. Again, this 
is slightly lower than, but still very close to the R-square values 
for the overall set of MOS scores.  

B. Correlation with objective metrics in HD quality region 

In this section, we analyze the correlation of MOS scores that 
fall in the HD region (4 points per clip, total 80 test videos). The 

correlation scores between MOS and all objective metrics for all 
PVS that fall in the HD region are shown in TABLE VII, and are 
significantly lower than the overall MOS scores in TABLE II as 
well as the MOS scores for SD test videos in TABLE VI. 

TABLE V.  RESULTS OF T-TEST ON SUBJECTIVE SCORES BETWEEN 

THE HIGHEST SD QUALITY LEVEL AND THE LOWEST HD QUALITY 

LEVEL. EACH SUB-ENTRY CORRESPONDS TO 20 SRC VIDEOS. 

 

 Lowest HD Quality Level 

Tablet HD-Monitor UHD-TV 

Highest SD 

Quality 

Level 

_00000_ _01 

10_001_000 

0000_00000 

_00000000_ 

0000000000 

0000_00000 

 

The 95% confidence interval for Pearson correlation between 
MOS and VMAF for the HD monitor on HD videos, based on 
sample size (n=80) is +/- 0.093. The adjusted R-square values 
are also very low, at 0.067, 0.1792 and 0.17 respectively for the 
tablet, monitor and UHD-TV. Fig 3 shows the scatter plot for 
HD videos between VMAF and MOS, and we can see that the 
linear relationship is a lot weaker than for the overall set of 
scores. The plot also suggests a heteroscedastic relation between 
VMAF and MOS. Box-Cox transformation of the VMAF values 
did not yield any meaningful increases in correlation metrics. 

 

Fig 3: Scatter plot between MOS and VMAF (HD quality region) 

To better understand the phenomenon of poor correlation 
exhibited by MOS and all objective quality metrics, we further 
examine the statistical distribution of the MOS scores in the HD 
region itself. Our objective is to understand if the poor 
correlation is a result of inaccurate modeling of the objective 
metric, or whether this is caused due to insufficiencies in the 
ground truths for HD subjective quality scores. The 4 HD quality 
levels include 2 levels of 720p resolution encoded using variable 
bitrate encoding (with average bitrates over 20 clips of 1.1 Mbps 
and 1.9 Mbps), and 2 levels of 1080p resolution (with average 
bitrates over 20 clips of 2.4 Mbps and 4.8 Mbps). Our objective 
was to evaluate whether subjects are able to adequately 
distinguish between all 4 HD quality levels with a significant 
bitrate span between 1.1 Mbps and 4.8 Mbps with any degree of 
predictability for 20 different sources. To this end, TABLE IX 
shows the results of the t-test for significance, comparing the 
statistical significance between the two 720p quality levels and 
the two 1080p quality levels. 
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A value of ‘0’ indicates that the row (720p quality levels) is 
statistically inferior (worse video quality) to the column (1080p 
quality levels), a value of ‘1’ indicates that the row (720p quality 
levels) is statistically superior to the column (1080p quality 
levels), and a value of ‘_’ indicates that the 1080p and 720p 
quality levels are statistically equivalent. Each sub-entry 
corresponds to the 20 reference videos used in the study.  

The results in TABLE IX show that for a significant proportion 
of the videos, viewers are unable to statistically distinguish 
between the significant changes that should impact perceived 
quality – such as a change in resolution from 720p to 1080p, and 
a change in bitrate from 1.1 to 4.8 Mbps. Out of 20 videos, we 
see that the subjective scores of 8, 9 and 7 videos (corresponding 
to the tablet, monitor and UHD-TV respectively) do not 
statistically distinguish between the 720p quality levels and the 
1080p quality levels with 95% confidence (indeed, in some 
cases the 720p quality levels are statistically superior than the 
1080p levels). Using TABLE V as contrast, we can conclude that 
human subjects can reliably appreciate a change in resolution 
from “SD” to “HD”, particularly on an HD monitor and UHD-
TV for most content types, however, they can less reliably 
differentiate between 720p and 1080p. 

TABLE IX.  RESULTS OF T-TEST ON SUBJECTIVE SCORES 

BETWEEN 720P AND 1080P QUALITY LEVELS.  

 
 1080p Quality Levels 

Tablet HD-Monitor UHD-TV 

720p 

Quality 

Levels 

_10_1_0000 

0000_00101 

0_0_010_0_ 

000_ _0_ _00 

0_0_100_00 

_0_000000_ 

 

We now use the subjective quality scores on the UHD-TV to 
dive deeper into statistical differentiation within the individual 
HD quality levels, based on the straightforward assumption that 
the UHD-TV is better positioned to display differences in HD 
quality than other devices. TABLE VIII shows that as the quality 
levels increase, the number of titles in which the subjective 
scores are statistically similar to the previous quality level with 
a confidence level of 95%, increases. For instance, the subjective 
scores for Quality Level 4 (1080p 4.8 Mbps average bitrate) are 
higher than Quality Level 3 (1080p 2.4 Mbps average bitrate) 
only for 4 out of the 20 videos, with a confidence of 95%. The 
difference between Quality Level 1 (720p 1.1 Mbps) and 
Quality Level 4 (1080p 4.8 Mbps) appear meaningful (14 out of 
20 videos show statistically higher scores), however even this is 
lower than anticipated, since the display device is a UHD-TV, 

TABLE VI.  CORRELATION ANALYSIS OF MOS (SD REGION) WITH OBJECTIVE METRICS 

 

 
Pearson’s Correlation Coefficient Spearman’s Rank Correlation Coefficient 

 VMAF PSNR SSIM MS-SSIM VIF VMAF PSNR SSIM MS-SSIM VIF 

Tablet 0.8688 0.7637 0.7844 0.7712 0.8242 0.8193 0.7001 0.7468 0.7410 0.7555 

Monitor 0.8931 0.7765 0.8244 0.8142 0.8679 0.8244 0.7051 0.7700 0.7542 0.7752 

UHD-

TV 0.8870 0.7629 0.8071 0.7972 0.8533 0.8260 0.6983 0.7578 0.7423 0.7658 

 

 
TABLE VII.  CORRELATION ANALYSIS OF MOS (HD REGION) WITH OBJECTIVE METRICS 

 

 
Pearson’s Correlation Coefficient Spearman’s Rank Correlation Coefficient 

 VMAF PSNR SSIM MS-SSIM VIF VMAF PSNR SSIM MS-SSIM VIF 

Tablet 0.2599 0.1088 0.1668 0.0588 0.1731 0.3243 0.0723 0.2095 0.1118 0.2294 

Monitor 0.4233 0.0933 0.2719 0.1628 0.3304 0.4417 0.1138 0.2708 0.1797 0.1698 

UHD-

TV 0.4124 0.0876 0.1876 0.0578 0.1807 0.4794 0.0936 0.1967 0.0930 0.2173 

 
TABLE VIII.  RESULTS OF T-TEST BETWEEN 4 HD QUALITY LEVELS ON THE UHD-TV. ENTRIES ABOVE THE MAIN DIAGONAL ARE 

EXACT INVERSES OF THOSE BELOW THE MAIN DIAGONAL. EACH SUB-ENTRY CORRESPONDS TO 20 SRC VIDEOS. 

 

 Quality Level 1 Quality Level 2 Quality Level 3 Quality Level 4 

Quality Level 1 (720p)  

1.1 Mbps 

_ _ _ _ _ _ _ _ _ _ 

_ _ _ _ _ _ _ _ _ _ 

0_000_ _000 

00_0_00000 

00_0_0000_ 

_0_ _ _0_ _0_ 

0_0_ _ 00000 

_000000_0_ 

Quality Level 2 (720p)  

1.9 Mbps 

1_111_ _111 

11_1_11111 

_ _ _ _ _ _ _ _ _ _ 

_ _ _ _ _ _ _ _ _ _ 

0_0010_ _0_ 

_01_ _0_00_ 

0_0_ _ 0_ _00 

_0_0000_0_ 

Quality Level 3 (1080p) 

2.4 Mbps 

11_1_1111_ 

_1_ _ _1_ _1_ 

1_1101_ _1_ 

_10_ _1_11_ 

_ _ _ _ _ _ _ _ _ _ 

_ _ _ _ _ _ _ _ _ _ 

_ _ _1_ _ _ _ _0 

_ _ 0_0_0_ _ _  

Quality Level 4 (1080p) 

4.8 Mbps 

1_1_ _11111 

_111111_1_ 

1_1_ _1_ _11 

_1_1111_1_ 

_ _ _0_ _ _ _ _1 

_ _1_1_1_ _ _ 

_ _ _ _ _ _ _ _ _ _ 

_ _ _ _ _ _ _ _ _ _ 

 



we expected that quality differences between these levels would 
be consistent and pronounced. TABLE V, TABLE VIII and TABLE 

IX together demonstrate the underlying problem of poor 
correlation of MOS scores with objective quality metrics. The 
ACR method of subjective testing does not enable subjects to 
accurately distinguish between significant quality changes 
(resolution changes from 720p to 1080p, or bitrate changes 
ranging from 1.1 Mbps to 4.8 Mbps), even on a large screen 
device like the 65 inch UHD-TV. Videos belonging to this 
quality range do not possess obvious artifacts, and hence the 
power of ACR testing to distinguish between significantly 
different quality changes is poor. Note that during the ACR test 
sessions, videos over the full quality range (SD and HD) were 
shown, and there was no subject fatigue due to the similarity of 
video quality.  

This also explains the poor correlation exhibited by MOS 
and objective quality metrics such as VMAF, which are learned 
algorithms, generated from ground truth based on ACR-HR 
(Absolute Category Rating with Hidden Reference), which is 
statistically very similar to ACR.  The bias manifested in the 
ground truth data for this application, is similar to the imbalance 
manifested in machine learning applications due to overlapping 
of scores, which could be fixed using a combination of over-
sampling and data-cleaning methods [22]. In addition, we also 
plan to investigate the use of subjective testing methodologies 
with more discriminative power such as viewing tests with 
expert subjects and/or paired comparison tests to explore 
whether this leads to better ground truth data distributions in the 
high quality range. 

VI. CONCLUSIONS AND FUTURE WORK 

We summarized the creation of a dataset that tested clips 

encoded over a large quality range, on a variety of devices. 

Correlation analysis showed that while subjective and objective 

quality metrics are correlated very well in the lower SD quality 

range, correlation in the HD quality range, in the absence of 

obvious artifacts, is significantly lower. Detailed significance 

testing shows that the subjective scores generated using ACR 

testing do not consistently distinguish between quality levels in 

the HD region, even when significant quality differences are 

expected. This also explains the poor correlation with top-

performing objective metrics like VMAF, since these learning 

metrics have been trained on subjective datasets with a similar 

bias.  Thus, we conclude that existing methodologies for both 

subjective and objective measurement of video quality in the 

HD region are insufficient and need significant improvement, 

in keeping with the leaps in display technologies and device 

resolutions. In future works, we plan to extend our analyses to 

different subjective testing methodologies with higher 

discriminative power in the high quality range, and train 

objective metrics using more discriminative subjective datasets. 

We also plan to extend our tests to more display devices and 

UHD encoded videos as well.  
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