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Abstract—Speech Recognition has seen a dramatic shift to-
wards adopting Large Language Models (LLMs). This shift
is partly driven by good scalability properties demonstrated
by LLMs, ability to leverage large amounts of labelled, unla-
belled speech and text data, streaming capabilities with auto-
regressive framework and multi-tasking with instruction fol-
lowing characteristics of LLMs. However, simple next-token
prediction objective, typically employed with LLMs, have certain
limitations in performance and challenges with hallucinations.
In this paper, we propose application of Group Relative Policy
Optimization (GRPO) to enable reinforcement learning from
human feedback for automatic speech recognition (ASR). We
design simple rule based reward functions to guide the policy
updates. We demonstrate significant improvements in word error
rate (upto 18.4% relative), reduction in hallucinations, increased
robustness on out-of-domain datasets and effectiveness in domain
adaptation.

Index Terms—Speech Recognition, ASR, GRPO, LLM

I. INTRODUCTION

Recently, significant strides have been made in Automatic
Speech Recognition by adoption of large language models
based on causal, decoder-only, transformer architectures. This
is mainly driven by remarkable scaling properties of the LLMs
with the ability to leverage large amounts of supervised, un-
supervised speech and text data, streaming friendly properties
due to causality imposed on transformers, and its simplicity
in terms of less components which enables to treat the models
as a black-box.

Typical auto-regressive LLM models the probability of the
next token given a sequence of tokens. This paradigm can
be extended to include speech modality by modeling the
probability of next text token conditioned on a sequence
of audio representations or audio tokens. [1] proposed to
use acoustic tokens derived from K-means quantized Hu-
BERT embeddings to model speech continuation with LLMs.
VoxtLM [2], SpeechGPT [3] used such discrete audio units in
application to ASR in a multi-task framework. Several studies
[4]–[10] demonstrated strong ASR performance with directly
feeding continuous speech embeddings to LLM. Conformer
derived embeddings [4], [6], [10], HuBERT embeddings [11],
Whisper encoder [5], [7]–[9], WavLM [5] are popular speech
representations employed. While some studies have explored
fixed conformer embeddings [6] with learnable speech pro-
jection layers, others choose to update conformer parameters
during LLM training [7], [11]. [6], [8], [10] utilized low rank
adapters (LoRA) for fine-tuning the LLM. Some prior studies

[7] have adopted 2 stage training, which comprises freezing
LLM while updating the audio encoder in the first stage.
Second stage involves fixing the audio encoder and fine-tuning
the LLM. [11] proposed a deep fusion mechanism based on
gated cross attention modules operating on HuBERT features.
The HuBERT model parameters were also updated during the
LLM training. [9] conducted detailed study on three speech
to LLM interface modules, including simple linear projection,
multi-head cross-attention and Q-Former modules and found
the latter to be better for ASR.

While the LLM based ASR has made significant strides in
improving recognition rate, they often suffer with hallucina-
tions [12], [13]. Hallucinations are characterized with high
insertion rates and arise when the model deviate from in-
put stimuli (speech signal), prioritizing distributional patterns
resulting in semantically and phonetically unrelated outputs.
Such hallucinations can have dangerous impacts, including
deception, on applications in domain where high precision
is critical. [12] conducted a detailed study characterizing
the LLM hallucinations in the context of ASR. They find
that low WER can often conceal big hallucinations, and the
hallucinations can result from common audio signal perturba-
tions including noise, pitch shift, temporal shifts. Further [13]
finds that noise in human annotations, labeling, can lead to
hallucinations.

One plausible way to further optimize speech recogni-
tion and increase its robustness to hallucinations is with
re-inforcement learning (RL). Several studies have explored
re-inforcement learning techniques in application to speech
recognition. Early applications of re-inforcement learning at-
tempted to correct errors in isolated word recognition [14]. A
confidence based RL scheme based on incremental conditional
entropy maximization was proposed in [15] demonstrating
reduction in WER up-to 18%. Policy gradient based approach
was explored in [16] which allows to directly optimize the
edit-distance resulting in up-to 6% improvement in character
error rate (CER). [17] applied re-inforcement learning in a
hypothesis selection framework over the n-best model output.
Authors in [18], proposed re-inforcement framework for fusing
multiple modalities, i.e., speech and video for improving auto-
regressive audio visual speech recognition.

In the context of LLMs, recent strides have been made in re-
inforcement learning from human feedback (RLHF). OpenAI
in [19] introduced a family of RL algorithms based on policy
gradient methods named proximal policy optimization (PPO).



PPO paved a path towards a stabile, feasible and efficient way
to enable RLHF for LLMs. Recently, [20] proposed Group
Relative Policy Optimization (GRPO) for preference optimiza-
tion of LLMs. GRPO simplifies PPO by dropping the critic
model and instead employs average of rewards for advantage
estimation. In its first application [20], the GRPO provided ac-
curacy gains on math benchmarks. Subsequently, the algorithm
provided a framework for building reasoning capabilities for
LLMs [21]. Dynamic sampling policy optimization (DAPO)
further tweaked the GRPO to enhance training effectiveness
by introducing practical tricks including decoupled clip, token-
level policy gradient loss and dynamic sampling [22]. [23]
proposed a variant of GRPO named Dr. GRPO improving the
token efficiency by making the optimization unbiased.

However, there have been few attempts at applying RLHF
for LLMs operating on speech. [24] first proposed application
of DPO to enhance speech continuation on spoken language
models by introducing AI experts for generating automated
preference data. Qwen2-Audio [25] applied DPO with human
preferences to optimize speech understanding. Qwen2.5-Omni
[26] applied DPO to enhance speech generation. Omni-R1
[27] further extended Qwen2.5-Omni model’s capabilities by
applying GRPO. [28] applied GRPO to improve on emotion
recognition and reasoning capabilities that enables the model
to better analyze visual and audio modalities. [29]–[31] fine-
tuned Qwen2.5-Omni on audio QA datasets using GRPO to
achieve state-of-the-art performance on MMAU and MMAR
benchmarks. [32] applied GRPO for improving text-to-speech
system by designing rewards to optimize the TTS-WER and
speaker similarity of the synthesized speech.

In this study, we propose application of GRPO towards
LLM based ASR as an additional stage of fine-tuning towards
optimizing the overall performance and improve robustness of
the system to hallucinations in application to out-of-domain,
unseen acoustic conditions. To the best of our knowledge,
this is the first attempt at application of RLHF to LLMs to
improve speech recognition. We design and explore various
reward functions and present our findings and strategies to
improve speech recognition with re-inforcement learning. The
rest of the paper is organized as follows: Section II presents
the proposed LLM based ASR system. Section III provides the
description of our experimental setup and datasets employed in
our study. Section IV presents the experimental results and the
discussions. Finally, the study and its findings are concluded
in Section V.

II. PROPOSED TECHNIQUE

A. Auto-regressive LLM based Speech Recognition

Auto-regressive, causal, decoder only LLMs model the
probability of the next token given a sequence of tokens:

PLM (X) =

T∏
t=1

P (xt|xt−1, . . . , x1) (1)

where xt ∈ Vtxt is a text token belonging to text vocabulary
Vtxt. Such a model can be adopted to the task of speech
recognition using next token paradigm by modeling:

PASR(X|S) =
T∏

t=1

P (xt|xt−1, . . . , x1, sN , . . . , s1) (2)

where s1, . . . , sN are acoustic units or representations
of length N frames corresponding to their transcriptions
x1, . . . , xT of length T . In this work, st are continuous
vector representations derived from a pre-trained acoustic
encoder. The details of acoustic encoder are described under
section III. A simple linear projection, feed-forward layer
is used as interface in mapping the acoustic representation
to LLM input. The acoustic encoder is frozen during the
training, while both the linear projection and LLM parameters
are updated. In case of ASR, we compute the next-token
prediction loss only on the output transcriptions. The model
is trained in 2 stages. During the first stage, LLM is pre-
trained on large corpus of text using Equation 1. Next,
the LLM is fine-tuned on parallel speech-text supervised
data using Equation 2. The prompt format for ASR in
our setup comprises <User><BOS> Convert speech
to text <S-BOS> s1, s2, . . . , sN <System> <BOS>
x1, x2, . . . , xT <EOS>. During inference, the LLM is
prompted with <User><BOS> Convert speech to
text <S-BOS> s1, s2, . . . , sN <System>. In the above
sequences, <User>, <BOS>, <S-BOS>, <EOS> are
special tokens.

B. Group Relative Policy Optimization for Speech Recognition

In this study, we propose an additional fine-tuning stage
based on RLHF for further performance optimization and
robustness. RLHF algorithms provide an effective means of
incorporating human preferences to direct LLM generations.
PPO introduced in [19] is a popular policy gradient RL
technique for LLMs. PPO is based on the Actor-Critic model,
where the Actor interacts with the environment collecting re-
wards associated with each action which pertain to quantifying
how good or bad was the action taken. A critic model is
trained alongside to estimate the expected future reward from
the current state. The PPO then computes advantages for each
action taken which describes the quality of the action relative
to the average expected return. More importantly, PPO paved
a path towards a stable, feasible and efficient way to enable
RLHF for LLMs. Group Relative Policy Optimization (GRPO)
introduced in [20], is a variant of PPO, primarily designed
for preference optimization of LLMs. GRPO simplifies PPO
by dropping the critic model and instead employs average of
rewards for advantage estimation.

In the context of ASR, such RL techniques can directly op-
timize the speech recognition output to human transcriptions.
While, technically, both PPO and GRPO can be applicable,
GRPO provides simpler framework to achieve our objectives.
Further, in the case of ASR, the human feedback is derived
directly from groundtruth transcripts, hence, objective, rule-
based rewards can suffice. Thus, GRPO is a better fit without



necessitating the need for training separate reward models. The
reward models themselves often suffer from reward hacking
problem [33]. Moreover studies such as [20], have found
GRPO to yield similar performance gains as PPO.

The GRPO optimizes and max-
imizes the following objective:

LGRPO =
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min[πϑÂi,t,clip(πϑ, 1− ε, 1 + ε])Âi,t]

− βDKL[πθ||πref ]
(3)

where G is the number of generations, oi is the ith generated
output hypothesis, Âi,t is the advantage, given by:

Âi,t =
R(i)− E[R(i)]

σ(R(i))
(4)

where R(i) is the reward for generated output oi, E[R(i)] is
the expected reward across G generations and σ(R(i)) is the
standard deviation. ε is the parameter introduced in PPO [19]
for clipping and stabilizing the training, β is a hyper-parameter
that controls the deviation of the policy from the reference
seed model, DKL[πθ||πref ] is the Kullback-Leibler divergence
between the reference model πref and current policy model
πθ given by:

DKL[πθ||πref ] =
πref (oi,t|oi,<t, s)

πθ(oi,t|oi,<t, s)
−log

πref (oi,t|oi,<t, s)

πθ(oi,t|oi,<t, s)
−1

(5)
and πϑ is given by:

πϑ =
πθ(oi,t|oi,<t, s)

πθold(oi,t|oi,<t, s)
(6)

where πθold is the old policy model as defined in PPO [19].
Additionally, we also take learnings from DAPO [22], Dr.

GRPO [23] and explore its effect in this study. DAPO enforces
three key modifications to the loss, (i) introduces an upper clip-
ping threshold to increase probability of unlikely exploration,
(ii) remove KL-divergence term (β = 0), and (iii) token-
level policy gradient loss computation (versus sample-level) to
account for biases introduced as a function of sample length.
On the other hand, Dr. GRPO proposes two key modifications
to loss towards unbiased optimization, (i) removal of standard
deviation normalization in advantage computation, and (ii)
length normalization of the GRPO loss. These modifications
are geared towards preventing model’s bias towards longer,
incorrect responses.

C. Rule-based Rewards for Speech Recognition

Given that the human feedback for speech recognition is
via ground-truth human transcriptions, we propose to use
simple rule-based rewards. This simplifies the setup, reduces
computational complexity and helps avoid reward hacking
problem [33]. In this study, we explore the following rewards:
Word Error Rate (WER): Negated word-error-rate can serve
as a potential reward and helps optimize directly to the target
metric. WER is a normalized version of the edit-distance,

hence can reinforce the model without any biases towards the
length of the audio.

Ri = −WER = −Sub+Del + Ins

N
(7)

where Sub, Del, Ins are substitutions, deletions and insertions
respectively, derived from dynamic alignment, N is the total
words in the reference.
Exact Match (EM): Several studies [22] recommend simpler
rewards such as exact match which is proven to be an effective
approach for invoking reasoning capabilities.

R(ref, hyp) =

{
1 if ref = hyp

0 otherwise
(8)

In context of ASR, exact match is invariant of the sample
length as well as the number of errors.
Total Errors (ED): Number of incorrect recognition can be
used as a reward. This is equivalent to un-normalized edit
distance over word sequence between reference and generated
candidates.

Ri = −(Sub+Del + Ins) (9)

This enables the optimization to concentrate towards samples
that are drastically different to reference.

III. DATA AND EXPERIMENTAL SETUP

A. Experimental Setup

In this work we employ two LLM models based on Llama3
architecture [40], (i) smaller, 2B parameter model, and (ii)
larger, 8B parameter model. The 2B model comprises 24
layers, 16 attention heads, hidden dimension of 2048 and
feed-forward dimension of 8192. The 8B model comprises
of 32 layers, 32 attention heads, hidden dimension of 4096
and feed-forward dimension of 16384. The 8B model employs
weight tying between the embedding and output layers. Both
the LLMs use 8 query groups, SwiGLU activation and has a
vocabulary size of 187178.

For consuming speech, our setup employs a speech encoder
module based on [41]. The encoder is primarily based on
the conformer architecture with 2B parameters. The encoder
has a frame rate of 40ms and a hidden dimension of 2048,
more details are available in [41]. A weighted combinations
of multiple layers are used to encode speech signals onto
4096 dimensional embeddings. A linear projection layer is
used to map the 4096 dimension embedding to the embedding
dimension of the LLMs.

TABLE I
SPEECH DATASETS STATISTICS

Datasets Hours

Fleurs [34] 987 hrs
Multi-lingual Librispeech [35] 50k hrs
Voxpopuli [36] 1791 hrs
People Speech [37] 30k hrs
Common Voice [38] 2k hrs
Covost2 [39] 3.5k hrs



TABLE II
EXPERIMENTAL RESULTS: WORD-ERROR-RATE METRIC (ACRONYMS IN PARENTHESIS, WER, EM, ED, CORRESPOND TO REWARD FUNCTIONS)

SFT: SUPERVISED FINE-TUNING; GRPO: GROUP RELATIVE POLICY OPTIMIZATION; DAPO: DYNAMIC SAMPLING POLICY OPTIMIZATION

Datasets People-
Speech

Multilingual Librispeech Voxpopuli

Language En En Fr It De Es Overall En Fr It De Es Overall

2B SFT 23.5 4.83 5.35 10.5 6.06 3.46 5.48 7.92 9.39 15.83 10.95 7.64 10.12
+ GRPO (WER) 21.53 4.85 5.22 10.7 6.15 3.43 5.49 7.82 8.5 14.93 9.89 7.24 9.47

+ β = 0 21.3 4.92 5.37 11.32 6.15 3.4 5.59 7.96 8.56 14.53 8.96 7.14 9.24
+ GRPO (ED) 21.48 5.19 5.39 10.7 6.05 3.66 5.64 7.87 8.55 14.91 9.86 7.38 9.51
+ GRPO (EM) 22.29 4.93 5.48 11.06 6.2 3.47 5.62 7.88 8.61 15.98 10.18 7.32 9.76
+ DAPO (EM) 21.71 4.79 5.24 11.54 6.13 3.24 5.51 7.98 8.53 15.14 9.81 7.43 9.57
+ DAPO (WER) 21.30 5.04 5.2 10.64 6.21 3.32 5.53 7.8 8.57 14.42 9.39 7.27 9.30
+ DR-GRPO (EM) 22.24 4.91 5.27 11.02 6.08 3.63 5.56 7.87 8.48 15.16 10.58 7.49 9.70

8B SFT 25.48 4.46 4.87 9.37 5.07 3.08 4.87 7.5 9.21 14.66 10.9 7.05 9.66
+ GRPO (WER) 21.42 4.64 4.7 9.45 5.33 3.02 4.95 7.66 8.6 14.04 8.89 6.64 8.98
+ GRPO (EM) 22.49 4.41 4.86 9.16 5.25 3.03 4.87 7.66 8.42 14.93 9.34 7.03 9.27

For speech recognition, the LLM is first pre-trained on text-
only data with a constant learning rate schedule of 1e-4 using
Adam optimizer. The global batch size is approximately 1M
tokens with max-sequence length set to 2048. Motivation to
pre-train on text is derived from [42]–[44], which have shown
benefits for speech related tasks. Next, the LLM is fine-tuned
using speech data with a cosine learning rate scheduler with
peak learning rate of 5e-6 for 100k steps, with 1000 step
warm-up. The global batch size is set to 128 and sequence
length is capped at 2048 tokens.

GRPO training stage uses the fine-tuned model as the refer-
ence. It comprises generating G <System> responses when
prompted with the <User> sequence to compute the loss in
Equation (3). GRPO is conducted with a fixed learning rate of
1e-6 similar, global batch size of 64 for a maximum of 5000
steps. We experiment with different generation configurations
including β, number of generations, generation strategies,
reward scaling. For all of our experiments, the top k and
min p is set to None, top p = 1.0, repetition penalty = 1.0, β
= 0.04 (when used).

B. Data

The pre-training text data is based on RedPajama [45]. The
speech datasets used in this study is presented in Table I.
We use open-sourced multi-lingual speech datasets comprising
approximately 88,000 hours of training data for supervised
fine-tuning as well as GRPO. The datasets are mixed with
weights representative of their sizes, emphasizing English,
French, Spanish, Italian and German. We maintain held-out
development and evaluation partitions for each of the corpus.
Best model checkpoints are picked based on development par-
tition. We present evaluations on People’s speech, multilingual
librispeech and Voxpopuli datasets to capture diverse range of
variability. We also provide a language level breakdown of
WER for MLS and Voxpopuli evaluations. Additionally, we
use AMI corpus [46], and TEDLium [47] for out-of-domain
evaluations.

IV. RESULTS

Table II presents the experimental results for 2B and
8B models on people’s speech, multi-lingual librispeech and
voxpopuli. We present detailed results with different configu-
rations on the 2B model. The 8B model is used to assess the
effect of scaling on the proposed method. Firstly, comparing
the 2B models, it is evident that the proposed method improves
over the reference SFT model on most languages across
datasets. We observe up-to 8.6% relative on people’s speech,
up-to 5.8% relative on multilingual librispeech (MLS) and up-
to 18.2% relative improvements on Voxpopuli. Assessing the
results with the 8B model, firstly we note the improvements
with the bigger model in comparison to 2B SFT model (with
the exception of people’s speech). Comparisons of the 8B SFT
model with the GRPO, paint a similar picture as 2B, with
up-to 15.7% relative improvements on people’s speech, up-
to 3.5% relative improvement on MLS and 18.4% relative
improvement on Voxpopuli. Degradations, if any, are small,
demonstrating the robustness of the proposed technique across
varying acoustic conditions.

Next, we assess different configurations of the proposed
techniques:
Role of Rewards: We compare the 3 rewards as described
under section II. We found that the WER and the total error
rewards fare better when the absolute WER of the datasets are
high. The exact-match performs relatively poor in high WER
conditions likely due to lower probability of generating outputs
that positively match the reference. However, the exact-match
performs on-par with the WER reward on datasets where the
absolute WER is low. On the other hand, the total errors (ED)
exhibits an opposite trend. Overall, the WER based reward
strikes a better balance across varying WER conditions.
Role of KL Divergence: β regulates the divergence of the
policy model from the reference model. A β of 0 removes any
regulation and essentially removes the KL Divergence term.
In our experiments we do not observe significant divergence
in WER when β = 0.
Role of RL Algorithms: We compare GRPO, DAPO and Dr.



TABLE III
EXPERIMENTAL RESULTS: OUT-OF-DOMAIN EVALUATIONS. WER AND ITS BREAKDOWN IN INSERTIONS, DELETIONS AND SUBSTITUTIONS

Datasets TEDLIUM AMI-IHM AMI-SDM
Models Ins / Del / Sub WER Ins / Del / Sub WER Ins / Del / Sub WER

2B SFT 0.5 / 1.7 / 1.6 3.9 38.4 / 10.3 / 7.3 56.0 56.7 / 16.6 / 14.6 87.88
+ GRPO (WER) 0.4 / 1.6 / 1.6 3.7 2.8 / 10.96 / 6.3 20.0 7.4 / 18.1 / 12.1 37.59
+ GRPO (ED) 0.5 / 1.7 / 1.6 3.74 5.6 / 11 / 6.3 22.84 8.9 / 17.6 / 12.1 38.52
+ GRPO (EM) 0.4 / 1.8 / 1.7 3.93 2.7 / 11.1 / 6.3 19.95 7.4 / 18.1 / 12.1 37.59

8B SFT 0.5 / 1.2 / 1.8 3.53 82 / 10.5 / 7.7 100.26 195.4 / 17.4 / 15.3 227.98
+ GRPO (WER) 0.4 / 1.28 / 1.67 3.36 4.6 / 11.6 / 6.0 22.16 9.0 / 20.2 / 10.5 39.69

TABLE IV
EXPERIMENTAL RESULTS IN WER: DOMAIN ADAPTATION.

Datasets AMI-IHM AMI-SDM Multilingual Librispeech Voxpopuli
Language En En En Fr It De Es En Fr It De Es

2B Baseline 56.0 87.88 4.83 5.35 10.5 6.06 3.46 7.92 9.39 15.83 10.95 7.64

AMI-SFT 19.17 44.34 6.91 12.10 14.88 8.39 7.57 9.80 12.48 19.33 12.92 12.21
AMI-GRPO (WER) 15.55 31.98 6.59 10.34 15.80 9.57 5.90 9.10 12.15 19.40 14.51 10.62

GRPO with exact-match reward. The results suggest that both
DAPO and Dr. GRPO outperform traditional GRPO in most
cases.
Role of Generation Strategies: Beam search decoding and
multi-nomial sampling decoding strategies were explored. We
found that beam search often leads to better improvements
on noisy datasets like people speech and the multinomial
sampling offers better improvements on cleaner datasets with
lower WER.
Number of Generations: In our experiments we tested G =
{6, 10}. However, we found the impact to be insignificant and
hence skip the results.

A. Out-of-Domain Performance Evaluations

Translation of reliable performance to unseen acoustic envi-
ronments is critical for any robust ASR system. Particularly, in
case of auto-regressive LLMs, this often leads to hallucinations
especially in noisier acoustic environments, characterized with
reverberations, overlapping speech and background noises.
To assess the performance of the proposed technique, we
conduct evaluations on unseen datasets including TEDLIUM
and AMI meeting corpus. TEDLIUM comprises of TED-
talks with diverse speakers that help us probe on speaker
related challenges including diverse range of accents, fluency.
AMI meeting corpus poses challenges with far-field speech,
overlapped speech and noise. Note, both TEDLIUM and
AMI meeting corpus are not incorporated during SFT and
subsequent GRPO training.

Table III presents the results on out-of-domain evaluations.
The 2B SFT model, gives a WER of 3.85% on TEDLIUM,
however, performs poorly on AMI, i.e., 55.96% on IHM
and 87.88% on SDM. A deeper inspection of the errors on
AMI corpus in terms of insertions, deletions and substitutions
reveal that insertions dominate the errors hinting towards
hallucinations. After GRPO, we see a dramatic reduction in
insertions which drives significant improvements in WER. It

is also important to note that there is significant reduction
in substitutions after GRPO. In case of the 8B model, we
observe the 8B SFT model scales well on TEDLIUM with
reduction in baseline WER over 2B SFT model. However,
the WER explodes to greater than 100% which is suggestive
of increased hallucinations. It is likely that bigger models
adapt well to in-domain data and as a consequence wors-
ens hallucinations on unseen acoustical environments. After
GRPO, we see drastic reduction in insertions and substitutions
similar to the 2B models. The results highlight that GRPO can
increase the robustness of the LLM and reduce hallucinations.
More importantly the learning extends to unseen datasets and
acoustic conditions.

B. Domain Adaptation

Speech signals are characterized by high variability in
multiple domains including speaker environment, noise, room
characteristics, reverberation, recording conditions, speaker
variability spanning linguistics, accents, fluency, age, and
gender. It is typical to adapt ASR models to unseen domains
to optimize performance. In case of ASR-LLMs, one straight-
forward option is to fine-tune on new domain. We evaluate
the proposed GRPO training as an alternative and assess the
overall robustness. We start from the 2B SFT model trained
on data presented under Table I as the baseline (corresponding
to row 1 in Table II). We train 2 candidate model on AMI
speech corpus as a new domain: (i) SFT adaptation, (ii) GRPO
adaptation to assess effectiveness of SFT versus proposed
method for domain adaptation. The choice of AMI speech
corpus is due to its distinct characteristics in terms of acoustic
environment (supported by results in Table III). The results
are presented under Table IV. Along with results on AMI,
we also provide the results on Multi-lingual librispeech and
Voxpopuli to assess the performance trade-off after adaptation.
From the results, it is clear that the baseline model performs
poorly on the out-of-domain AMI data. After adapting the



baseline on AMI data using typical next-token prediction
SFT, we observe substantial improvements, 66% relative WER
reduction on AMI-IHM and 49% WER reduction on AMI-
SDM subsets. Meanwhile, we also observe degradations on
MLS and Voxpopuli across all languages. Looking at the
results with the proposed GRPO adaptation, we see significant
improvement relative to both the baseline (72% on AMI-IHM
and 63.61% on AMI-SDM) as well as SFT adapted model,
i.e., 18% relative WER reduction on AMI-IHM and 27.9%
on AMI-SDM. Notably, we observe degradations on MLS
and Voxpopuli, however, the degradations are relatively lower
compared to the SFT adapted model. This suggests that the
proposed GRPO is a better tool to use for adapting the model
to a new unseen data or domain.

A highlight of the above results on AMI is that the proposed
GRPO training even without inclusion of AMI datasets, i.e.,
out-of-domain results in Table III, row 2, gives better results
compared to the SFT model adapted on AMI. This concretely
establishes the robustness benefits obtained using proposed
method on out-of-domain datasets.

V. CONCLUSION

In this work, we propose an additional RLHF training stage
for LLM based ASR models using GRPO. We propose 3 sim-
ple rule-based rewards for GRPO to facilitate performance im-
provements and robustness. We carefully design experiments
to evaluate the performance benefits, assess the robustness of
the model to hallucinations, out-of-domain datasets. Further,
we demonstrate the proposed method as an effective tool for
domain adaptation purposes. The experiments demonstrate sig-
nificant WER reductions obtained using the proposed method.
We also show that the resultant model performs drastically
better on out-of-domain datasets that are otherwise prone to
hallucinations. Additional experiments support the viability of
the proposed method as an effective model adaptation tool.
We provide detailed discussions on the role of different hyper-
parameter settings and present strategies and recommendation
for effective usage.

In future, interesting rewards can be designed for specific
applications, for example, improve slot-error-rate in spoken
language understanding applications, or semantic measures
to facilitate better, semantically aligned speech recognition
outputs. This also opens up possibilities in responsible AI
domain in censoring certain ASR outputs. Overall, the pro-
posed method opens up possibilities in aligning and controlling
certain aspects of ASR system.
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