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ABSTRACT
This paper introduces Seeker, a system that allows users to adap-

tively refine search rankings in real time, through a series of feed-

backs in the form of likes and dislikes. When searching online, users

may not know how to accurately describe their product of choice

in words. An alternative approach is to search an embedding space,

allowing the user to query using a representation of the item (like a

tune for a song, or a picture for an object). However, this approach

requires the user to possess an example representation of their de-

sired item. Additionally, most current search systems do not allow

the user to dynamically adapt the results with further feedback. On

the other hand, users often have a mental picture of the desired

item and are able to answer ordinal questions of the form: “Is this

item similar to what you have in mind?” With this assumption,

our algorithm allows for users to provide sequential feedback on

search results to adapt the search feed. We show that our proposed

approach works well both qualitatively and quantitatively. Unlike

most previous representation-based search systems, we can quan-

tify the quality of our algorithm by evaluating humans-in-the-loop

experiments.

CCS CONCEPTS
• Information systems → Search interfaces; Probabilistic re-
trieval models; Information retrieval diversity; Test collections;

Relevance assessment; • Computing methodologies → Online
learning settings;Active learning settings;Discrete space search;
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1 INTRODUCTION
Search engines and online shopping websites maintain indices with

millions of items. Often, it is difficult for a user to accurately describe

in words what they are looking for [34]. Even if the user is able to

describe their target item effectively, large index and catalog sizes

mean it is difficult to sift through similar items efficiently.

Consider the situation in which a user is searching for a new

movie to watch. They have a mental representation of the char-

acteristics of the movie they would enjoy but are not acquainted

with the genre keywords, latest movies, actors or directors. Being

unfamiliar with current movie jargon, they are unable to accurately

describe their preferred movie with a traditional keyword interface,

nor do they have an example photograph. However, if we show the

same user another movie they have seen and ask them “Is this movie
similar to the one they have in mind? Yes or no?”, people can answer

such ordinal questions with less noise than absolute judgments –

i.e. finding the exact words to describe their choice [30].

The above scenario is not restricted to movies only. In the case

of browsing for a song on a media platform, searching for a news

article on a news website, or a dress on an online platform, the

user may not be able to accurately describe the desired item in a

traditional keyword interface. But users could provide relative judg-

ments based on what they have experienced before. For example,

answers to queries like “Songs similar to Heroes by David Bowie:
Yes or no?” or “News similar to that of the Queen’s involvement with
Brexit: Yes or no?” are easier to provide.

In addition, traditional search engines [21, 29] and the newer rep-

resentation search systems (described in Section 2) are temporally

static. The engines use text or imagery as the query and respond

with a ranked list of results. This ranking is based on an estimate

of relevance to the user in their current context – location, histori-

cal searches etc. They do not provide the user the opportunity to

adapt and fine-tune the resulting page with additional feedback. In

traditional engines, for a given user in a given session, each query

is independent of each other. Figure 1 illustrates the difference

between traditional engines and our setting.

In this paper, we describe our system, Seeker, that dynamically

refines search results based on real-time interactions with the user

(in the form of likes and dislikes) within a single search session.

From a customer perspective, this system adds the feeling of an

"in-store" shopping discovery experience, with a personal curator.
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In our setting, the user scrolls through a page of items and may

"like" or "dislike" any item at any time. The data gathered from

these preferences is used to update the list of results shown in real-

time, thereby iteratively closing in on what they are looking for. To

our knowledge, Seeker is the first interactive and dynamic search

experience which enables the user to seamlessly zoom in, zoom out,
and pivot by scrolling up and down and selecting items to like and

dislike in an adaptive manner.

In this work we make the following contributions:

• Introduce Seeker, an interactive recommendation algorithm

deployed at scale, which adapts to customer inputs in real

time.

• Propose a novel evaluation metric with humans in the loop

that allow us to quantify the quality of our proposed algo-

rithm and evaluate it against othermethods.Most embedding-

based representational search engines in the past have eval-

uated their systems only qualitatively rather than quantita-

tively. In our experiments, we simulate the tasks of searching

for a particular item, and quantifiably measure progress.

The paper is organized as follows. In Section 2, we review related

papers and search engines. In Section 3, we describe how we model

human preferences expressed in likes and dislikes and translate

those preferences into probability distributions over our catalog.

In Section 4, we present our adaptive algorithm for making real

time recommendations. In Section 5, we evaluate Seeker’s results.

In Section 6, we discuss directions for future research. In Section 7,

we summarize our work.

2 RELATEDWORK
Over the last few years, there has been a growing trend of exploring

new interfaces beyond traditional keyword search, and in partic-

ular, visual-based search [8]. In [10], users query relevant items

by uploading real world photographs of clothing. The engine then

displays results that are visually similar to the query photograph.

Pinterest built a system which allowed users to hover over pins and

find visually similar items in the catalog [17]. An advantage of these

systems is that they help people find things using an understanding

they might not be able to put into words.

Many lines of research focused on learning the relative similar-

ities of images. They accomplish this by mapping each image to

a numerical vector, so they can capture the visual similarities in

Euclidean space [3, 19, 22, 38, 41]. Using the similar approach but

in a scalable manner, companies have also rolled out their visual

search platforms, from Google Goggles, Google Similar Images, and

Amazon Flow to Microsoft (Bing) [13], Pinterest [18], eBay [39],

and Alibaba [40].

All these methods, however, require the user to provide a pho-

tograph of the targeted item. They fail when users do not have an

actual visual representation of the desired item, but instead a mental

picture of it. The users themselves may not know how to properly

describe their mental visualization in words. Our algorithm ad-

dresses this issue, as Seeker is able to work with any embedding

representation, including visual, textual and audio.

Moreover, Seeker dynamically adjusts the search results based on

interactive user feedback; all mentioned projects do not allow users

to fine-tune their current-session search with additional feedback.

While we use proprietary embeddings in the examples of this paper,

the underlying engine can operate upon features derived from other

domains (or combinations of domains) as well – customer behavior,

language understanding, audio, etc.

3 PROBLEM FORMULATION
3.1 The Setting
Figure 1 illustrates how Seeker is different from traditional search.

The user starts with a ranked list of results and provides feedback

in the form of likes or dislikes; the search engine then generates a

new set of ranked results, updating the page in real-time. In this

section, we define the notation to formally describe the above search

process.

Figure 1: The top figure describes a traditional search engine:
A user submits a query to the engine and is presented with a
ranked list of items.Our system (bottomfigure) dynamically
incorporates feedback on results in real-time, generating a
new ranked list with each like or dislike.

Assume that we have a catalog of N items, out of whichM ≪ N
can be displayed. We model user feedback as a sequence of likes

and dislikes over discretized timesteps t0, t1, · · · , tk . The user starts
with an initial ranking of items at timestep t0. This initial t0 ranking
can be thought of as Seeker’s prior belief on what the user desires,

can be generated from a traditional search or recommendation

engine, and may incorporate diversity or business requirements.

The user interacts with the page by liking or disliking items.

At each timestep, tk , Seeker produces a new ranked list of results,

based on the feedback from t0, · · · , tk−1. It does so by constructing

a discrete probability distribution over the catalog of N items at

each timestep. The probability distribution represents the likelihood

of an item being the user’s desired item.

We featurize each catalog item i by embedding it into a vector

space xi ∈ R
d
. Seeker requires a high correlation between human



perception of similarity and distance metric in the embedded vector

space. Based on the properties of the items displayed, embedding

strategies described in [9, 20, 25, 31] have been shown to correlate

with human perception.

Seeker can be divided into three major components, as seen in

Figure 2. Section 3.2 describes how we convert likes and dislikes to

preference pairs and probability distributions. Section 4.1 details

how we use preference pairs to estimate a target’s likelihood. Sec-

tion 4.4 shows how we use probabilistic sampling to recommend

items to users at each timestep.

Figure 2: Logical components of Seeker

3.2 Pairwise Comparison
Let aki ∈ Rd for i = 1, ...,p be the vector representations of the

liked items, and bkj ∈ Rd for j = 1, ...,q the vector representations

of the disliked items. We will drop the superscript when the context

is clear. LetA := {a1, ...,ap } and B := {b1, ...,bq } be the non-empty

subsets of {x1, ...,xN }. We define si j as the preference pair which
consists of a liked item ai and a disliked item bj from sets A and B
respectively. We create pq preference pairs from all cross-pairings

between the p likes and q dislikes.

The intuition behind preference pairs follows from our assump-

tion that the user has some ideal item t (referred to as the target)

in their mind that they wish to find. Then si j ∈ S represents the

preference that the user thinks item i is more similar to their desired

item t than item j, i.e they prefer i over j given t:

| |xi − xt | |
2 < | |x j − xt | |

2. (3.1)

Equation 3.1 resolves to item t being spatially closer to item i
than it is to item j. In this paper we use the Euclidean distance to

measure vector similarity, but Seeker is agnostic to the metric used.

We use preference pairs to model the probability of a catalog item

being the hidden target item t , featurized as xt . If we were to present
a user with item xi and item x j , what is the probability that they

chose i over j? Questions of this form are known as triplets in the

Machine Learning literature [15, 27]. Equation 3.2 mathematically

models our question:

P
(
si j |t , i, j

)
=

1

1 + exp
{
− α

(
| |x j − xt | |2 − ||xi − xt | |2

)} , (3.2)

where α ≥ 0.

Intuitively, the answer to the above triplet question should de-

pend on how similar items xi and x j are to xt . As similarity and

distance are equivalent in our world, the probability of preferring

i over j becomes a function of how close xi and x j are to xt . Ac-
cording to this model (and Equation 3.2), if items xi and x j are

equidistant from the target xt , then they are equally preferred, and

the probability of choosing i over j is 0.5. If xi is the target xt while
x j is infinitely far away, the probability of choosing i becomes 1.

For items in the middle we get a smooth noise model that accounts

for the stochasticity in human decisions.

Our model includes a preference hyperparameter α , which rep-

resents our confidence in the vector space representation:

• When α = 0, then P
(
Si j |t

)
= 0.5 for all combinations of

targets, likes and dislikes. This means our embeddings have

no correlation with human judgment of similarity, and pre-

ferring i over j is as good as a fair coin flip.

• When α = ∞, then P
(
Si j |t

)
= 1. This removes randomness

from the decision process, perfectly aligns our representation

of human judgment with the metric distance, and determin-

istically picks the closer item.

We use α = 1 for the results discussed in Section 5.

4 ITEM RANKING
In this section we describe how we go from preference pairs and a

noise model to a ranked list of items to be displayed to the user.

4.1 Target Estimation
To keep our notation consistent, we always assume that the user

prefers item xi to x j when we write si j ∈ S . We make the further

assumption that each preference pair is independent from each

other. This is a simplifying assumption which serves as a good

baseline [6, 12]. In Section 6.1, we investigate ways to drop the

independence assumption. Equation 4.1 represents the joint distri-

bution likelihood of observing preferences S , given target item t
and likes and dislikes sets A and B:

P(S |t ,A,B) =
∏
si j ∈S

P
(
si j |t , i, j

)
, (4.1)

where P(si j |t , i, j) is defined as in Equation 3.2. The log-likelihood

becomes:

logP(S |t ,A,B) =
∑
si j ∈S

logP
(
si j |t , i, j

)
. (4.2)

We do not know a priori what is the hidden target t . Our goal is
to find t or approximate it. We note that t may not be present in

our catalog, and in this case our goal is to find an item as similar to

t as possible. In order to build a probability distribution over our

catalog, we borrow ideas from [33]. We use the same noise model,

but apply it to recommend items to the user, instead of learning a

metric space. For each catalog item, we compute the log-likelihood

mass of that item being the target, given the user’s likes and dislikes,

as shown in Algorithm 1.

Algorithm 1 Catalog items log-likelihood computation

scores = [ ]

for all items t = 1, · · · ,N do
score = 0

for all si j ∈ S do
score += logP

(
t |si j

)
scores.append(score)



4.2 Posterior Construction
Instead of presenting items according to their likelihood of being

the target, we allow for the inclusion of priors into our model.

Let P(i) be the prior probability of item i being the actual desired
target. One can compute such priors using traditional search en-

gines, and personalize them using the user’s browsing or purchase

history [34].

Given priors P(i), the posterior probability of an item being the

target is:

P(t |S) ∝ P
(
S |t

)
P(t), (4.3)

and the log-posterior becomes:

logP(t |S) ∝ logP
(
S |t

)
+ logP(t)

=
∑
si j ∈S

logP
(
si j |t , i, j

)
+ logP(t). (4.4)

At each time step the user provides feedback causing the size of

S to grow. Therefore the log likelihood will eventually dominate

the posterior density score. In the early stages when we have fewer

likes and dislikes, our posterior belief on the target is dominated by

a well founded prior. This prevents us from having to wait a long

time before showing meaningful results.

4.3 Items Recommendation
We consider four different ways to display M ≪ N items to the

user:

4.3.1 Pure Exploitation/Noiseless. The simplest approach is to sort

the posteriors and recommend the topM items. Theoretically, this

prevents us from exploring the search space. Practically, this leads

to a poor user experience with limited product diversity.

4.3.2 Pure Exploration/Random. The other extreme solution is to

show random results all the time, completely ignoring the posterior

densities.

4.3.3 Epsilon-greedy. Another approach is to randomize some of

the results while leaving the others untouched, as in Algorithm 2.

We rank items by their posterior densities, and replace each item

with a random item with probability ϵ . See [4] for a detailed study

of ϵ-greedy algorithms.

Algorithm 2 Epsilon-greedy sampling

Input: 0 ≤ ϵ ≤ 1

noiseless = argsort { P(t |S) } in descending order

results = [ ]

for all xi , i ∈ noiseless do
flip ϵ biased coin

if heads then
x ∼ Unif(x1, · · · ,xN )

results = results ∪ x
else

results = results ∪ xi
return results

4.4 Boltzmann Exploration
The fourth method to recommend items involves sampling without

replacement according to the item’s posterior densities. Let дj be a
score associated with item j. A popular way to generate a discrete

distribution over the items is by using the exponential weighing

scheme, known as the softmax or Boltzmann equation:

pj =
eдj∑N
i=1 e

дi
. (4.5)

Here, pj is our belief probability that item j is the true target. Even
thoughд is unconstrained inR, common values areдj = P(x j |S) and
дj = logP(x j |S), the latter resulting in polynomial weighing [16, 32].

Note that if the items were equally spaced, sampling from the

discrete distribution pj is asymptotically equivalent to sampling

from the hidden continuous distribution, as we show in Appendix A.

Sampling without replacement when N is large can prove to be

very slow. When N and d are large, normalizing our posterior den-

sities can lead to precision issues with sampling. We can overcome

this problem by using the Gumbel-Max trick [23], which shows

that adding standard Gumbel noise to дi and taking the max is

equivalent to sampling according to Boltzmann (Equation 4.5):

argmax

j
{дj +Gumbel(0, 1)} ∼

eдj∑N
i=1 e

дi
= pj . (4.6)

We sketch the proof for completeness. Let zi = дi +Gumbel(0, 1).
By the additive property, zi ∼ Gumbel(дi , 1), with probability den-

sity function (PDF):

fi (z) = e−
(
z−дi+e−(z−дi )

)
, (4.7)

and cumulative distribution function (CDF):

Fi (z) := P(zi ≤ z) = e−e
−(z−дi )

. (4.8)

Proof. Define by P(j∗) the probability that zj is the largest

among all zi . We have:

P(j∗) =

∫ +∞
zj=−∞

fj (zj )
∏
i,j
P(zi ≤ zj )dzj

=

∫ +∞
zj=−∞

e−
(
zj−дj+e

−(zj −дj )
) ∏
i,j

e−e
−(zj −дi )

dzj

=

∫ +∞
zj=−∞

e−zj+дj−e
−zj ∑N

i=1 e
дi
dzj (4.9)

=
eдj−e

−zj ∑N
i=1 e

дi∑N
i=1 e

дi

�����+∞
−∞

=
eдj∑N
i=1 e

дi
= pj .

□

Since the added Gumbel noises are independent, showing theM
items with the highest zi scores is equivalent to samplingM items

without replacement from Equation 4.5.

To balance exploration and exploitation, one resorts to anneal-

ing [1], with an appropriately tuned sequence of learning rate

parameters (aka inverse temperature) ηk ≥ 0 for each timestep tk :

pj =
eηk дj∑N
i=1 e

ηk дi
. (4.10)



Note that ηk = 0 recovers the pure exploration mode, and ηk = +∞
recovers the pure exploitation mode. Varying ηk allows us to trade-

off exploitation and exploration.

On the other hand, similarly to the proof above, we have

argmax

j
{ηk дj +Gumbel(0, 1)} = argmax

j
{Gumbel(ηk дj , 1)}

∼
eηk дj∑N
i=1 e

ηk дi
. (4.11)

Note that, by dividing by ηk , we establish:

argmax

j
{ηk дj +Gumbel(0, 1)} ∼ argmax

j

{
дi +

Gumbel(0, 1)

ηk

}
.

(4.12)

Sampling from Gumbel(ηk дj , 1) and taking the maximum, as

in Equation 4.11, is similar to Thompson Sampling in a bandit

setting [26, 35]. The crucial difference (and drawback) is that the

Gumbel method doesn’t take into account the uncertainty of the

reward estimates.

Finding the right schedule for ηk can be very difficult in prac-

tice [36]. In [5], the authors provide an annealing schedule for ηk in

a standard stochastic multi-armed bandit setting, guaranteeing sub-

linear regret. Let nj be the number of times arm j has been played

up to timestep tk−1. For some constantC > 0, they set η =
√
nj/C2

,

and sample according to:

argmax

j

{
дj +

√
C2/nj Gumbel(0, 1)

}
. (4.13)

Equation 4.13 decouples the learning rates of the individual items,

and factors-in the uncertainty of the reward estimates. We now

have a proper way to sample from a Boltzmann, with convergence

guarantees. Even though our setting is not exactly the same as [5],

we borrow parts of their sampling strategy to recommend items to

the user. As detailed in the theoretical justifications of Appendix B,

we recommend setting C2 = 1/8 for дj = P(x j |S).
As a user can repeatedly interact with the same item, we treat

nj as the number of times a user interacts with item j. It starts
with nj = 1 and is incremented with every like or dislike to item

j. Putting it all together, we obtain our final Boltzmann sampling

algorithm (Algorithm 3).

Algorithm 3 Boltzmann sampling for recommending items

Input: M ≤ N , ni∀i ∈ {1, 2, · · · ,N }

for all xi , i = 1, · · · ,N do
γi ∼ Gumbel(0, 1)

zi = дi +
C γi√
ni

results = sort({ zi | i = 1, 2, · · · ,N }) in descending order

return topM results

5 EVALUATION
As our experiments require human judgments, there exist no such

ground truth datasets for validation. Instead we propose an exper-

imental framework with a human in the loop that simulates the

Seeker experience and generates quantifiable metrics. The eval-

uation study serves as a benchmark for future sequential search

algorithms.

5.1 Experimental Setup
Seeker assumes that the user has a mental image of a target item

they cannot easily express in words. When accessing Seeker, the

user is presentedwith a subset ofM items to interact with, using like

or dislike clicks. At any moment, the user can expand the catalog

listing view by clicking on “ExploreMore”. Our experimental setting

mimics this initial user experience.

A single experimental session involves the following: A user

is presented with a target item xt . This target item is an explicit

simulation of the user’s hidden target. At each timestep, we present

the user with a grid of M items. The user’s goal is to find the

target item through a series of feedbacks. At each timestep, they

may like, dislike, or remove a previously liked/disliked item. Upon

receiving user feedback, we recommend M new items to view in

the next timestep. The session goes on for K timesteps. If the user

can find the target within the M items, they may stop playing.

Otherwise, they try to get as close to the target item as possible

based on their perception of similarity. For our experiments, we set

M = 12, K = 15, d = 2048, N = 2228, дj = logP(x j |S), and used an

uninformative prior.

We enlisted volunteers to participate in the experiment defined

above, and collected 358 (roughly 90 per sampling algorithm) unique

sessions. The target and exploration algorithm for each session was

selected uniformly at random. Users were instructed to like and

dislike items assuming that they wanted to purchase the target item.

Users had no prior knowledge of the selected catalog or algorithm.

At each timestep, we invoke Seeker to generate a posterior distribu-

tion over the catalog, according to Equation 4.4. This distribution

enforces a natural ranking on the items. We monitor the normalized

rank of the target item at each timestep. The normalized rank ρ
is defined as the rank of the target item divided by the size of the

catalog. A target xt with a normalized rank of ρ = 0.1 means it has

a final rank of

⌈
0.1 ∗ N

⌉
.

5.2 Experimental Results
Seeker aims at helping the user quickly zoom-in on the desired

target item. A typical metric for such recommender systems is

recall at k [11]. As we have only one target of interest, we measure

how close our recommendations are to target t . We can do that

using the target’s normalized rank. For a given session i , let ρi be
the lowest normalized rank attained by t in all K timesteps. We

define recall @ρ j as the percentage of sessions with ρi ≤ ρ j . For
example, a recall of 0.4 @0.02 means that 40% of sessions achieved

a normalized ranking of ρ = 0.02 or less.

Figure 3 plots recall @ρ for our sampling strategies. We plot ρ up

to 0.1, as the user is unlikely to scroll past higher percentiles. Boltz-

mann exploration achieves the highest recall, dominating all other

strategies. Noiseless and Greedy perform similarly, outperforming

random at lower recalls. Random improves at higher recalls due to

its higher degree of exploration, where the target gets ranked high

by pure chance.



Figure 3: Recall at different normalized rank cutoffs. The
plot measures how often Seeker ranks the target item bet-
ter than a given percentile within K = 15 timesteps.

Figure 4 plots the convergence time of our sampling strategies.

From the user’s perspective, this reflects how long it takes to find a

reasonably close approximation of the target item. We report the

mean number of steps it takes for the rank of the target item to drop

below a given recall cutoff ρ. Boltzmann exploration consistently

outperforms the other strategies. Greedy and Noiseless surpass

Random, but their advantage diminishes at higher rank cutoffs.

Figure 4: Mean number of timesteps (interactions) until tar-
get item is ranked better than a given percentile.

5.3 Discussion
We would like to point out that the experimental setup described

above is not restrictive. Although we do present a window of M
itemswithwhich the user interacts, the user can expand thewindow

size M by explicitly clicking on an “Explore More” option. Once

in the expanded view, scrolling down past the last displayed item

triggers the display of additional items in an infinite scroll mode

covering the whole N catalog items. Since we maintain an explicit

ranking on all items, this mode of experimentation merges naturally

with our algorithm.

Infinite scroll, such as home feeds on social media websites like

Facebook and twitter, may create a better user experience and allow

for the user to browse quickly. But when the target is explicit, such

an infinite scroll feature makes our experimental framework trivial

– the user can just scroll until they find the target. This prevents us

from gaining insight about convergence, which explains why we

limited our study to the windowed-version of the application. We

consider our experimental setup a restrictive experience in terms

of user experience.

Additionally, the catalog contains multiple similar items. This

leads to a large number of identical feature-vector representations,

making it challenging to surface the target item among M = 12

items in justK = 15 timesteps. Hence, it is likely that the Section 5.2

experimental results are pessimistic, as users are constrained from

browsing the search space efficiently. Nevertheless, as the top-most

items get the most visibility, Seeker’s ability to quickly zoom-in to

the item of interest remains crucial.

On occasions, the Seeker interface produces pages with very

similar items ranked closely, leading to lack of exploration. Two

items which look mostly identical are likely to have similar vector

representation and hence may appear adjacent to each other [24].

In a deterministic setting, this would have resulted in a page full

of very similar items, and prevented the user from pivoting to

other parts of the catalog. Although Boltzmann exploration offers

a principled remedy, depending on the use case, one may want

to model additional uncertainty into the user actions in the early

stages of the interactions. As a remedy, we canmodify the posteriors

by adding noise, using submodular functions [7], or determinental

point processes [2].

The constantC in Algorithm 3 is borrowed from the work in [5]

which uses the non-contextual stochastic multi-armed bandit set-

ting. Under their setting C is a reasonable estimate to bound vari-

ance. However, items in our search space have features that are

shared and correlated. Our sampling strategy currently does not

take into account this covariance properly when making recom-

mendations. We leave augmenting our sampling algorithm with a

new variance bound for future work.

6 FUTUREWORK
We are considering improving this work on multiple fronts.

6.1 Bipartite Preference Model
When constructing the preferences from user feedback in Sec-

tion 3.2, we treat the likes and dislikes independently, valuing them

equally. However, intuitively, if we put more emphasis on likes, we

may be able to find the target faster. Likes are less ambiguous than

dislikes: likes have a clearer implication when treated in isolation,

while dislikes usually require context to be a useful learning signal.

In fact, we empirically observe that the likes are more clustered

with one another than the dislikes to themselves.

We can mathematically model the emphasis of likes over dis-

likes by assuming the likes are independent of each other but the

dislikes are conditioned on the likes. Conditional dependencies can

be expressed in the form of a bipartite graph as shown in Figure 5.

Using Bayes rule, we can represent Figure 5 as:

P(S |t) =

p∏
i=1
P(ai |t)

q∏
j=1
P(bj |a1, · · · ,ap , t). (6.1)

Here we assume that:

P(ai |t) =
1

exp

{
α1 | |ai − xt | |2

} , (6.2)
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Figure 5: A complete directed bipartite graph between the
sets of likes and dislikes.

and

P(bj |a1, · · · ,ap , t) =

1

1 + exp
{
− α2

(
| |bj − xt | |2 − min

i ∈{1, · · · ,p }
| |ai − xt | |2

)} , (6.3)

with α1,α2 ≥ 0.

We interpret the model in the following way. Equation 6.2 con-

veys that the probability of liking item i is proportional to how

similar i is to target t . Equation 6.3 conveys that the probability of

disliking item j is proportional to its relative distance to the target

as compared to the relative distance between the target and liked

items A. One can quantify the distance between t and A in differ-

ent ways. Here we proposemin to reflect the customer’s gradual

approach towards the target. We leave the evaluation of this model

to future work.

6.2 Incorporating Additional Feedback
So far, the only form of feedback that the user provides is in the

form of likes and dislikes. Consider the situation where the user

provides feedback in the form of a text or utterance. This transitions

us into the guided conversational search paradigm and we could

incorporate some of the strategies described in [14, 28, 37].

Assume we have a technique (like LSTM to create word embed-

dings) to map a spoken feedback into a vector ri ∈ Rd . We want to

incorporate this feedback into the model. Equation 4.3 becomes:

P(t |S, r) ∝ P(S |t , r)P(t |r), (6.4)

where

P(t |r) =
1

1 + exp
{
− β

∑
k
rTk xt

} . (6.5)

To estimate P(S |t , r), we change Equation 3.2 to:

P
(
si j |t , i, j, r

)
=

1

1 + exp
{
− α

(
| |x j − xt | |2 − ||xi − xt | |2 +

∑
k
rTk (xi − x j )

)} . (6.6)

Although we used text/speech as an example, the additional feed-

back embedding r can originate from an arbitrary source. Similarly,

we can incorporate extra feedback into the bipartite preference

model of Section 6.1.

6.3 Personalized Recommendations
Another possible direction is to personalize Seeker. Let c be an

embedding vector for each user. The dataset now comes in the form

of quadruplets (c, t ,a,b), where each user c has a target t and pairs

(a,b) of likes and dislikes.

To personalize, we define a synthetic embedding kernel ϕ(c,x),
where x denotes an item. For example, we can use element-wise

product:

ϕ(c,x) = c ⊙ x . (6.7)

Now, we can substitute this kernel into our modeling formulas,

replacing any item x with personalized embedding ϕ(c,x).

7 CONCLUSION
This paper presents Seeker, an interactive, real-time search system.

Seeker allows users to search for products even when it is difficult

to describe them in words. Unlike embedding-based search engines,

this method does not require a preknown representation of the

desired item. With interactive binary feedback, our system learns to

dynamically refine search results from the user’s preferences in real

time. Our evaluation results show that our Boltzmann exploration

method allows users to find their products more quickly and with

greater regularity compared to alternative exploration strategies.
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A ASYMPTOTIC SAMPLING EQUIVALENCE
Given T as a compact (i.e. closed and bounded) subset of Rd . Let
f : T → R+ be a continuous probability density function. Let the

set Xn = {x1, ...,xn } consist of points xi ’s that are equally spaced

on T in the grid-like manner such that

∑n
i=1 f (xi ) > 0. Consider

the following two ways of sampling over Xn :

(1) Each time, sample x from f onT , and choose xk ∈ Xn if and

only if xk = argminxi ∈Xn
d(x ,xi ), where the metric d(·, ·) is

usually the Euclidean metric. We assume argmin is unique.

(2) Each time, sample each xk ∈ Xn from the discrete distribu-

tion onXn so thatxk is chosenwith probability f (xk )/
n∑
i=1

f (xi ).

Define:

Dn :=
∑

xk ∈Xn

��P(xk | Method 1) − P(xk | Method 2)
��. (A.1)

Prove that lim

n→∞
Dn → 0.

Proof. Partition T into n disjoint regions (J1, ..., Jn ) in the grid-

like manner such that for each i ∈ {1, ...,n} for each x ∈ Ji ,

i = argmin

k ∈{1, ...,n }
d(x ,xk ).

Since the points xi ’s are equally spaced on T , the regions Ji ’s all
have the same measure:m(Ji ) =m =

mT
n , wheremT is the (fixed)

Lebesgue measure of T . So

P(xk | Method 1) = P(x ∈ Jk ) =

∫
Jk

f (x)dx =mf (x∗k ) for all k .

Here the first equation holds by the definition of Ji ’s, and the second
by the Mean Value Theorem (MVT) for some x∗k ∈ Jk . On the other



hand,

1 =

∫
T
f (x)dx =

n∑
i=1

∫
Ji
f (x)dx =

n∑
i=1

mf (x+i ),

where the second equation holds by the additivity of integral, and

the last equation holds by the MVT for some x+i ∈ Ji .

Since f is continuous on the compact subsetT of Rd , there is an
upper boundU such that f (x) < U for all x ∈ T . Moreover by the

Heine - Cantor theorem, f is uniformly continuous on T .
Now fix ϵ > 0, ϵ < 1/2. By uniform continuity of f on T , there

exists δ > 0 such that for all x1,x2 ∈ T with d(x1,x2) < δ , we have
| f (x1) − f (x2)| < Sϵ where

S = min

(
1

2mT (1 +UmT +mT )
, 1,

1

mT

)
.

Because the regions Ji ’s are partitioned in the grid-like manner,

there exists N0 ∈ Z+ such that for all n > N0, the diameter of

each Ji is smaller than δ . This implies d(x+i ,xi ) < δ for all i and
d(x∗k ,xk ) < δ for all k . Hence for all n > N0, we have

| f (x+i )−f (xi )| < Sϵ and | f (x∗k )−f (xk )| < Sϵ for all i,k ∈ {1, ...,n},

which implies:�����m n∑
i=1

f (xi ) − 1

����� =
�����m n∑

i=1
f (xi ) −m

n∑
i=1

f (x+i )

����� < mnSϵ =mT Sϵ .

Therefore for each k ∈ {1, 2, ...,n},

|P(xk | Method 1) − P(xk | Method 2)| =m

�����f (x∗k ) − f (xk )

m
n∑
i=1

f (xi )

�����
=
mT
n

�����f (xk ) + t1 − f (xk )

1 + t2

�����, where |t1 | < Sϵ, |t2 | < mT Sϵ

=
mT

n |1 + t2 |
|(f (xk ) + t1)(1 + t2) − f (xk )|

=
mT

n |1 + t2 |
|t1 + f (xk )t2 + t1t2 |

≤
mT

n |1 + t2 |
(|t1 | + | f (xk )| |t2 | + |t1 | |t2 |)

<
mT

n |1 + t2 |
(1 +UmT +mT Sϵ)Sϵ

<
2mT
n

(1 +UmT +mT )Sϵ . (Because Sϵ < 1,mT Sϵ < 1/2)

This implies that for all n > N0,

Dn < 2mT (1 +UmT +mT )Sϵ ≤ ϵ .

This ends the proof. □

B SETTING PARAMETER C
Given an item, a user can like or dislike it. Our rewards are thus

binary, making the reward distribution 1/2-subgaussian with vari-

ance factor σ 2 = 1/4. We follow [5]’s Theorem 3 computations with

a standard Gumbel noise Gumbel(0, 1) (see Equations 4.7 and 4.8).

We do not introduce extra variable c in the proof of Lemma 3, setting

L =
9C2

log
2

+(T∆
2

i )

∆2

i
. We thus bind the regret RT as:

RT ≤

N∑
i=2

9C2
log

2

+(T∆
2

i )

∆i
+

N∑
i=2

36C2eσ
2/2C2

∆i
+

N∑
i=2

∆i . (B.1)

Here the finite horizonT is the final timestep, and the gap ∆i is the
difference between the mean reward of the optimal item, and the

mean reward of item i .
Although T may potentially be specified, ∆i is unknown. To

obtain a small regret, the authors recommend setting C = σ . But

one can easily see that choosingC = σ/
√
2 leads to an even smaller

regret. We therefor set C2 = σ 2/2 = 1/8.
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