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ABSTRACT

Graph neural networks (GNN) have shown great success in learn-

ing from graph-structured data. They are widely used in various

applications, such as recommendation, fraud detection, and search.

In these domains, the graphs are typically large and heterogeneous,

containing many millions or billions of vertices and edges of dif-

ferent types. To tackle this challenge, we develop DistDGLv2, a

system that extends DistDGL for training GNNs on massive hetero-

geneous graphs in a mini-batch fashion, using distributed hybrid
CPU/GPU training. DistDGLv2 places graph data in distributed

CPU memory and performs mini-batch computation in GPUs. For

ease of use, DistDGLv2 adopts API compatible with Deep Graph

Library (DGL)’s mini-batch training and heterogeneous graph API,

which enables distributed training with almost no code modifica-

tion. To ensure model accuracy, DistDGLv2 follows a synchronous

training approach and allows ego-networks forming mini-batches

to include non-local vertices. To ensure data locality and load bal-

ancing, DistDGLv2 partitions heterogeneous graphs by using a

multi-level partitioning algorithm with min-edge cut and multiple

balancing constraints. DistDGLv2 deploys an asynchronous mini-

batch generation pipeline that makes computation and data access

asynchronous to fully utilize all hardware (CPU, GPU, network,

PCIe). We demonstrate DistDGLv2 on various GNN workloads. Our

results show that DistDGLv2 achieves 2 − 3× speedup over Dist-

DGL and 18× speedup over Euler. It takes only 5 − 10 seconds to

complete an epoch on graphs with hundreds of millions of vertices

on a cluster with 64 GPUs.
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1 INTRODUCTION

Graph Neural Networks (GNNs) have shown success in learn-

ing from graph-structured data and have been applied to many

graph applications in social networks, recommendation, knowl-

edge graphs, etc. In these applications, graphs are usually huge

and heterogeneous, in the order of many millions or even billions

of vertices and edges of different types. Examples include Face-

book’s social network graph, Amazon’s buyer-product graph and

knowledge graphs such as Freebase.

A number of GNN frameworks have been introduced that take

advantage of distributed processing to scale GNN model training to

large graphs. These frameworks differ on the type of training they

perform (full-graph training vs mini-batch training) and on the type

of computing cluster that they are optimized for (CPU-only vs hy-

brid CPU/GPU). So far, few frameworks are designed to handle het-

erogeneous graphs with more than one vertex type and edge type.

Distributed frameworks that perform full-graph training have been

developed for both CPU- and GPU-based clusters [10, 17, 18, 20, 21],

whereas distributed frameworks that perform mini-batch training

are mainly developed/optimized for CPU-based clusters [1, 25–27].

Unfortunately, for large graphs, full-graph training is inferior to

mini-batch training because it requires many epochs to converge

and converges to a lower accuracy (cf., Sec 3.2). This makes ap-

proaches based on distributed mini-batch training the only viable

solution for large graphs. However, before such mini-batch-based

approaches can fully realize their potential in training GNN models

for large graphs, they need to be extended to take advantage of

GPUs’ higher computational capabilities.

It is natural to ask whether GPUs have advantage of training

GNN models on large graphs in a cluster of machines. The main

challenges of GNN training on GPUs lie in two aspects. First, GNN

mini-batch computations have much lower computation density in

GPUs than traditional neural network models, such as CNNs and

Transformers. In addition, GNN mini-batch sampling requires a

https://doi.org/10.1145/3534678.3539177
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large amount of computations in CPUs if the graph data is stored in

CPU. Consequently, for very large graphs, since we cannot store the

entire graph and all of its features in GPU memory, it is critical to

devise efficient strategies for moving data from slower memory (e.g.,

CPU, remote memory, disks) to GPUs during training. The second

challenge is load imbalance among mini-batches. Typically, neural

network models are trained with synchronous stochastic gradient

descent (SGD) to achieve good model accuracy, which requires a

synchronization barrier at the end of every mini-batch iteration. To

ensure good load balance, mini-batches have to contain the same

number of vertices and edges as well as reading the same amount of

data from slower memory. Due to the complex subgraph structures

in natural graphs, it is difficult to generate such balanced mini-

batches. The load balancing problem becomes even more severe on

heterogeneous graphs because vertices of different types may be

associated with different feature sizes.

In this work, we develop DistDGLv2 on top of DGL [23] to

optimize distributed GNN training on heterogeneous graphs for

hybrid CPU/GPU clusters, where it stores the graph structure and

vertex/edge features in CPUmemory and performs mini-batch com-

putation in GPUs. To provide good user experience and to minimize

accuracy differences between development and deployment of a

model, DistDGLv2 provides Python API compatible with DGL’s

mini-batch sampling and heterogeneous graph API. Thus, it re-

quires almost no code modification to DGL’s training scripts to

enable distributed training. To ensure the quality of GNN models,

DistDGLv2 uses synchronized SGD and generates mini-batches

with non-local vertices. It extends the design principles of Dist-

DGL [26], a CPU-only distributed GNN training framework, to

increase data locality and balance computation among trainers on

heterogeneous graphs. To move data efficiently from the CPU mem-

ory to GPUs, it deploys a sophisticated asynchronous mini-batch

sampling pipeline that sample mini-batches ahead of time to over-

lap CPU and GPU computation and data communication and utilize

all hardware resources (CPU, GPU, network, PCIe) simultaneously.

To further speed up the sampling process, we move some of the

mini-batch sampling computations to GPUs.

We conduct comprehensive experiments to evaluate the effi-

ciency of DistDGLv2. Overall, DistDGLv2 achieves 18× speedup

over Euler-GPU and 2 − 3× speedup over DistDGL-GPU, the modi-

fied version of Euler [1] and DistDGL [26] for GPU training, on a

cluster of 32 GPUs. DistDGLv2 achieves up to 15× speedup over dis-

tributed CPU training by DistDGL in a cluster of the same size. This

indicates that GPUs can be effective for GNN mini-batch training

on massive graphs than CPUs. It takes 5 seconds per epoch to train

GraphSage and GAT on a homogeneous graph with 100 million ver-

tices and 13 seconds per epoch to train RGCN on a heterogeneous

graph with 240 million vertices with 64 GPUs.

The main contributions of the work are listed below:

• We design an asynchronous mini-batch sampling pipeline

with extensible Python samplingAPI and speed up distributed

GNN training on hybrid CPU/GPU by a factor of 2− 3× over

DistDGL-GPU without changing the training algorithm.

• DistDGLv2 is a distributed GNN framework that explicitly

supports distributed heterogeneous graphs with very diverse

vertex/edge features.

Figure 1: The model accuracy of GraphSage with different

hidden sizes on datasets in Section 5.

• DistDGLv2 realizes all optimizations under DGL’s API for

ease of use and minimizing accuracy differences between

development and deployment of a model.

2 RELATEDWORK

Many works have been developed to scale GNN training on large

graph data for distributed CPU- and GPU-based clusters. Many

of them [10, 17, 18, 20, 21] are designed for distributed full-graph

training on multiple GPUs or distributed memory whose aggre-

gated memory fit the graph data. Even though full-graph training

is easier to parallelize, it actually takes a longer time to converge

on a large graph and may converge to a lower accuracy than mini-

batch training (Section 3.2). Therefore, the focus of our work is to

optimize mini-batch training.

Multiple frameworks have been developed for distributed GNN

mini-batch training. Some of them [1, 25, 27] adopt distributed mini-

batch training but does not use graph partitioning algorithms that

minimize edge cut to reduce network communication. Their system

is optimized for distributed training on a CPU cluster and many

of their design choices (e.g., only using multiprocessing) are not

suitable for GPU training. DistDGL [26] adopts METIS graph parti-

tioning [12] to reduce network communication, but is not designed

for GPU training. Frameworks, such as PyTorch-Geometric [4]

and PaGraph [15], support multi-GPU training but cannot scale to

graphs beyond the memory capacity of a single machine. P3 [5] is

a distributed GNN framework designed for distributed training in a

GPU cluster. It adopts model parallelism, which works better when

the hidden size is small. In contrast, DistDGLv2 uses data parallel

and works better for larger hidden sizes. As shown in Figure 1,

a large hidden size is required to achieve good model accuracy.

BGL [16] builds on top of DGL for distributed training. It heavily

relies on changing the mini-batch sampling algorithm to increase

data locality and GPU cache hits. This is orthogonal to DistDGLv2’s

design. DistDGLv2 focuses on optimizations that are agnostic to

models and training algorithms to provide robust model training.

It offers very flexible mini-batch sampling pipeline to adopt more

advanced sampling algorithms.

3 BACKGROUND

3.1 Graph neural networks

GNNs emerge as a family of neural networks capable of learning a

joint representation from both the graph structure and vertex/edge

features. Recent studies [2, 6] formulate GNN models with message
passing, in which vertices broadcast messages to their neighbors

and compute their own representation by aggregating messages.
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More formally, given a graph G(V, E), we denote the input

feature of vertex 𝑣 as h(0)𝑣 , and the feature of the edge between

vertex 𝑢 and 𝑣 as e𝑢𝑣 . To get the representation of a vertex at layer

𝑙 , a GNN model performs the computations below:

h(𝑙+1)𝑣 = 𝑔(h(𝑙)𝑣 ,
⊕

𝑢∈N(𝑣)
𝑓 (h(𝑙)𝑢 , h(𝑙)𝑣 , e𝑢𝑣)) (1)

𝑓 ,
⊕

and 𝑔 are customizable or parameterized functions for gener-

ating messages, aggregating messages and updating vertex repre-

sentations, respectively. Similar to convolutional neural networks

(CNNs), a GNN model iteratively applies Equations (1) to generate

representations with multiple layers.

3.2 Mini-batch training

Even though GNNmodels can be trained in full-batch fashion, mini-

batch training is more practical for GNN models on large graphs. It

has been established that training neural networks with SGD using

small mini-batches converges faster and to a lower minimal than

passing the whole dataset through the network [14, 24]. Figure 2

shows the time of full-graph and mini-batch training to converge

on graphs of medium scale and large scale (Table 1) on the same

CPU machine. On these graphs, full-batch training of GraphSage is

one or two orders of magnitude slower than mini-batch training. In

addition, full-graph training cannot converge to the same accuracy

as mini-batch training on some graphs. For example, full-graph

training on the Amazon dataset has the test accuracy of 0.68 while

mini-batch training gets test accuracy of 0.77.

Figure 2: Train GraphSage with full-graph and mini-batch

training on medium-size and large graphs on the same CPU

machine using DGL.

GNNmini-batch training is different from other neural networks

due to the data dependency between vertices. We need to carefully

sample subgraphs to capture the dependencies in the original graph.

A typical strategy of mini-batch sampling for GNN [7] follows three

steps: (i) sample a set of 𝑁 vertices, called target vertices, uniformly

at random from the training set; (ii) randomly pick at most𝐾 (called

fanout) neighbor vertices for each target vertex; and (iii) reduce the

𝑁𝐾 neighbors to a unique set. When the GNN has multiple layers,

neighbor sampling repeats recursively. That is, from a sampled

neighbor vertex, it continues sampling its neighbors. The number

of recursions is determined by the number of layers in a GNNmodel.

This sampling algorithm results in mini-batches with 100s times

more vertices than the number of target vertices and causes large

amount of communication in distributed training.

Figure 3: Distributed training components in DistDGL.

3.3 Distributed training

DGL/DistDGL [26] provides the distributed training capability on

homogeneous graphs. It uses the existing programming interface

of mini-batch training in DGL and divides distributed training into

three components (Figure 3):

• A mini-batch sampler samples mini-batches from the input

graph. Users invoke DistDGL samplers in the trainer process.

Internally, the sampling requests are handled by multiple

sampling processes, which generates remote process calls

(RPC) to perform distributed sampling.

• A KVStore that stores all vertex features and edge features

across machines. It provides the pull and push interfaces for

pulling data from or pushing data to the distributed store.

• A trainer fetches mini-batch graphs from the sampler and

corresponding vertex/edge features from the KVStore and

runs the forward and backward computation to compute the

gradients of the model parameters.

When DistDGL deploys these logical components to actual hard-

ware, it is mainly optimized for distributed training in CPU, inwhich

the main optimization is to reduce the network traffic among ma-

chines. DistDGL partitions the input graph with METIS algorithm

[12] and partitions the vertex/edge features according to graph

partitions. DistDGL launches sampler servers, KVStore servers and

trainers on the same cluster of machines and dispatches computa-

tion to the data owner to reduce network communication.

4 SYSTEM DESIGN

DistDGLv2 preserves the programming interface of DGL/DistDGL

and extends DistDGL in two major ways. First, It implements dis-

tributed heterogeneous graphs with guarantees in load balancing

and data locality and expose DGL’s heterogeneous graph interface

for ease of use. It optimizes distributed hybrid CPU/GPU training,

where graph data are in distributed CPU memory and mini-batch

computation in GPU, with API compatible to DGL’s mini-batch

training. As such, DistDGLv2 enables distributed training with al-

most no code modification to DGL’s training scripts. To construct

an efficient system for distributed hybrid CPU/GPU training, we

optimize the system in three aspects.

Data locality: Reducing data movement from slower memory

(e.g., remote memory) to GPUs is essential to the training speed. To
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reduce data movement from the distributed CPU memory to GPUs,

DistDGLv2 partitions a heterogeneous graph with the METIS algo-

rithm and co-locates trainers with graph partitions (Section 4.1.1).

To minimize data copy in CPU inside a trainer, it only uses multi-

threading for parallelization in the mini-batch sampling pipeline

(Section 4.2.1). To reduce data copy to GPUs in a mini-batch, Dist-

DGLv2 deploys two-level graph partitioning to reduce the number

of vertices in a mini-batch (Section 4.1.2).

Load balancing: Due to neighbor sampling, GNN mini-batches

may vary significantly in the number of vertices and edges. In a

heterogeneous graph, vertices of different types may have differ-

ent features, which makes data access more imbalanced if vertex

features are not evenly distributed among machines. DistDGLv2

balances the distributed training workloads in two levels. In the

data preprocessing, it ensures roughly the same number of ver-

tices and edges of different types in each partition (Section 4.1.3).

During training, it removes global synchronization barrier in mini-

batch generation to hide the impact of any imbalance in mini-batch

sampling from the training process (Section 4.2.1).

Use all hardware resources simultaneously: Distributed hybrid

CPU/GPU training involves in different hardware resources: CPU,

GPU, network, PCIe, etc. Different hardware has different computa-

tion speeds or data transfer speeds. To use all hardware resources

effectively, DistDGLv2 adopts two separate strategies: 1) split mini-

batch generation into many stages in a pipeline and turn all com-

putations into asynchronous operations (Section 4.2.1) to overlap

computation and communication, 2) move more computation to

GPUs to reduce the burden in CPU (Section 4.2.2).

4.1 Distributing heterogeneous graphs

DistDGLv2 is designed to support heterogeneous graphs with di-

verse vertex and edge features while providing the same user-

friendly heterogeneous graph API of DGL. Figure 4 (b) shows a

heterogeneous graph whose schema is shown in Figure 4 (a). After

partitioning a heterogeneous graph and storing data in a cluster

of machines (Figure 4 (d)), DistDGLv2’s API allows users to access

data in the distributed graph as if accessing a graph in a single

machine. When partitioning a heterogeneous graph, we ensure

minimal edge cut and balanced partitions.

4.1.1 Partition heterogeneous graphs. To reduce data communi-

cation in distributed training, DistDGLv2 deploys METIS [12] to

partition a heterogeneous graph with a minimal number of edge

cuts across partitions. Because graph partitioning is a preprocessing

step, the partitioning overhead can be amortized. We usually par-

tition a graph once and use it for many training runs (e.g., during

hyperparameter tuning).

Because METIS can only partition a homogeneous graph, Dist-

DGLv2 homogenizes a heterogeneous graph and stores the entire

graph in a single adjacency matrix, in which all vertices, regardless

of their vertex types, are assigned with unique vertex IDs (Figure 4

(c)). The edges are located in the colored blocks in the adjacency

matrix. In this format, the vertices and edges of the same type are

assigned with contiguous IDs and vertex types and edge types are

stored as metadata. We pass the adjacency matrix to METIS for

partitioning, which results in partitions in Figure 4 (d). After assign-

ing vertices to a partition, DistDGLv2 follows the same strategy in

DistDGL to assign edges to partitions and split a graph into physical

subgraphs. This results in partitions shown in Figure 4 (d).

4.1.2 Hierarchical partitioning. DistDGLv2 deploys two-level par-
titioning to reduce data transfer to GPUs. In the first level, we

deploy METIS to split a graph into physical subgraphs and assign

one first-level partition to a machine. Due to the min-edge cut by

METIS, the first-level partitions reduce data communication across

the network. Inside each partition, we run METIS again to generate

second-level partitions and assign one second-level partition to a

GPU. Instead of generating physical subgraphs for the second level,

we simply assign vertices to second-level partitions and split the

training set accordingly. As such, a trainer samples target vertices

or edges from the local second-level partition. This increases lo-

cality in neighbor sampling. That is, two vertices is more likely to

sample the same neighbor vertex, which reduces the number of

vertices in a mini-batch. Our ablation study (Section 5.5) shows

that introducing the second-level partitions can effectively reduce

the number of vertices in a mini-batch and improves the training

speed by roughly 20% on the benchmark datasets.

Because DistDGLv2 uses synchronous SGD to train the model, the

estimation of the model gradients is unbiased. As such, distributed

training in DistDGLv2 in theory does not affect the convergence

rate or the model accuracy.

4.1.3 Load balancing on graph partitions. Minimizing edge cut re-

duces data communication in distributed training, but may result

in imbalanced partitions and imbalanced data storage in the cluster.

In a heterogeneous graph, different vertex types and edge types

may be associated with different data sizes. It is essential to distrib-

ute graph partitions, vertex data and edge data of different types

evenly across all machines so that CPU memory storage in each

machine is fully utilized and data access during the training can

be evenly distributed among machines. By default, METIS only

balances the number of vertices in a graph. This is insufficient for

a heterogeneous graph. We formulate this load balancing problem

as a multi-constraint partitioning problem [13]. DistDGLv2 takes

advantage of the multi-constraint mechanism in METIS to balance

training/validation/test vertices/edges in each partition as well as

balancing the vertices of different types and the edges incident to

the vertices.

4.1.4 Heterogeneous graph vertex/edge data. To support flexible

storage of diverse features on different vertex types and edge types,

DistDGLv2 extends the distributed KVStore to store features on

each vertex type and edge type separately. The extended KVStore

supports an arbitrary number of ID spaces. When DistDGLv2 loads

a distributed heterogeneous graph, it creates an ID space in KVStore

for each vertex type and edge type. Each ID space is also associ-

ated with a partition policy that maps vertex/edge data to physical

machines. The partition policy is derived from the first-level graph

partitioning (Section 4.1.1). To simplify the access to vertex/edge

data in the KVStore, DistDGLv2 uses type-specific vertex/edge ID,

which is only unique within a particular vertex/edge type.
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Figure 4: An example of a heterogeneous graph and its distributed storage.

4.2 Asynchronous mini-batch generation

The key of efficient hybrid CPU/GPU training is to bring mini-

batch data to GPU efficiently. This requires optimizations in multi-

ple aspects. First, we need to overlap mini-batch generation with

mini-batch computation as well as overlapping computation and

communication to simultaneously utilize all computation resources

(e.g., CPU and GPU) and communication channels (e.g., network,

CPU memory and PCIe). We need to parallelize computation in

CPU and avoid any unnecessary data copy in CPU. In addition, we

need to hide the impact of imbalance of GNN mini-batch sampling

among different trainers.

4.2.1 Asynchronous mini-batch pipeline. DistDGLv2 deploys an

asynchronous pipeline that generates mini-batches from the dis-

tributed graph. It provides the sampling API compatible with DGL

and delivers mini-batches from a distributed graph as if sampled

from a graph in a single machine. It allows customization of sam-

pling algorithm in Python while deploying heavy optimizations to

speed up computation. DistDGLv2 divides mini-batch training into

many stages (Figure 5 (a)):

• a scheduler that determines target vertices or target edges

in each mini-batch to support various learning tasks (e.g.,

node classification, link prediction) for GNN models,

• neighbor sampling that samples multi-hop neighbors of the

target vertices for GNN computation,

• CPU feature copy that fetches data from both local machines

and remote machines for each mini-batch and stores data in

contiguous CPU memory,

• GPU feature copy that loads data from CPU to GPU,

• post-sampling GPU processing for mini-batches (in vertex-

wise neighbor sampling, we performs subgraph compaction

that remaps vertex IDs and edge IDs in the subgraph in GPU),

• forward and backward computation on mini-batches,

• model parameter updates.

There are dependencies between operations in different stages,

but in some stages there are multiple operations that can run in

parallel. For example, the stage of CPU feature copy requires the

frontier of the input layer to be complete in the sampling stage; on

the other hand, copying features in CPU includes data copy from

the local partition, from remote KVStore and from local CPU cache,

which can run independently. A neighbor sampling stage can be

further divided into two substages: sample neighbors and compute

the frontier. The two substages also have dependencies: we have

to wait for neighbor sampling to complete before computing the

frontier of the layer.

DistDGLv2 implements a flexible and efficient asynchronous

mini-batch pipeline to overlap computation with network com-

munication (Figure 5 (b)). Because the target vertices or edges are

sampled from the training set randomly, there are no dependen-

cies between mini-batches. This allows us to sample mini-batches

ahead of time and process multiple mini-batches in a pipelining

fashion. DistDGLv2 divides the mini-batch pipeline into two parts:

1) mini-batch sampling in CPU, which includes mini-batch sched-

uling, distributed neighbor sampling and CPU feature copy, and 2)

post-sampling computation in GPU, which includes data loading to

GPUs, compacting subgraphs, and mini-batch computation in GPU.

To avoid sampling computation from blocking mini-batch train-

ing in GPU, DistDGLv2 creates a dedicated Python thread for the

sampling computation in CPU, which allows us to run customized

Python code for sampling. We refer to this thread as a sampling
thread and the original thread as a training thread. The CPU and

GPU division reduces the interference between the two threads:

The GPU computation in the training thread has a global synchro-

nization barrier among trainers due to synchronized SGD but is not

blocked by any computation in the sampling thread; the sampling

thread is not blocked by the global synchronization barrier caused

by SGD. Even though Python threads have a global lock to guard

the data access to Python objects, the lock is released whenever we

jump to C code. Thus, the Python global lock does not interfere the

computation of the two threads by much.

Inside the sampling thread, DistDGLv2 performs all computation

asynchronously to ensure that network operations are not blocked

by local CPU computations. Whenever DistDGLv2 performs a local

operation in CPU, it creates a job for this operation, sends it to

a worker thread and returns immediately. The job is placed in a

priority queue of the worker thread. A job created for a later stage

gets a higher priority. Whenever DistDGLv2 performs a remote

operation, it issues an RPC request and returns immediately. The

sampling thread processes multiple mini-batches simultaneously.

After it processes the operations of a mini-batch at a certain stage,

instead of waiting for the operations to be complete, it proceeds to

some operations of another mini-batch at a different stage. After

issuing a sufficient number of pending operations, the thread sleeps

and waits for some operations to be complete.

This aggressive ahead-of-time mini-batch generation can poten-

tially lead to data staleness and consume much memory. Currently,

we only apply this ahead-of-time mini-batch generation on im-

mutable data (i.e., sampling from the graph structure and read

vertex/edge features). If a model has learnable embedding table on

vertices, we read the learnable embeddings synchronously. Thus,

our asynchronous mini-batch pipeline does not affect model con-

vergence at all. To reduce memory consumption, the pipeline sets
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(a) The stages of the mini-batch pipeline. The arrows indicate the dependencies of computation.

(b) Realize the asynchronized mini-batch pipeline with three threads.

Figure 5: DistDGLv2 deploys an asynchronous mini-batch pipeline for hybrid CPU/GPU training. The pipeline are divided

into multiple stages. Some of the stages run in GPUs, indicated by the blue boxes, while others run in CPU, indicated by the

white boxes. The computations in the pipeline run in three threads. All GPU computations are invoked in the trainer thread;

sampling computation and CPU feature copy are invoked in the sampling thread but their actual computation happens in the

worker thread. In the sampling thread, computations in multiple mini-batches are invoked simultaneously in a pipelining

fashion to overlap computation of different stages.

different capacities for different stages. The capacity is defined with

the number of pending operations issued in a stage. The memory

consumption by the operations at different stages is different. At

the beginning of the pipeline (mini-batch scheduling and neighbor

sampling), a pending operation only needs to store vertex IDs and

edge IDs, which does not require too much memory, so we can

work on many mini-batches simultaneously. In the middle of the

pipeline, we prefetch vertex/edge features from remote machines

and collect features from local partitions, which may require hun-

dreds of megabytes of CPU memory, so we allows a relatively small

number of mini-batches. At the end of the pipeline, we only move

one mini-batch ahead of time to GPUs because of the scarceness of

GPU memory. As such, we use a relatively large capacity for sched-

uling and neighbor sampling (e.g., 25); a relatively small capacity

(e.g., 5) for CPU feature copy; a capacity of 1 for GPU feature copy.

The main reason of using multithreading for parallelizing sam-

pling in DistDGLv2 is to minimize data copy in the pipeline. This

is different from many other distributed GNN training frameworks,

such as DistDGL [26] and Euler [1], which uses multiprocessing

for parallelization. Even though multiprocessing parallelizes sam-

pling computation well, it requires to copy mini-batch data between

processes, which results in additional data copy and data serial-

ization and deserialization. In contrast, multithreading completely

avoids these overheads. To further reduce data copy in the pipeline,

DistDGLv2 carefully manage data buffers for network communica-

tion and data copy between CPUs and GPUs. It allocates a pinned

memory buffer to collect data from the network and from the local

partition before sending them to GPUs, which results in only one

data copy for each byte.

The asynchronous sampling pipeline introduces a startup over-

head when filling the pipeline at the beginning of every epoch. This

hurts the performance especially when the training set is small. To

remove the startup overhead, we run the asynchronous sampling

pipeline throughout the entire training without stopping in the sam-

pling thread. The trainer thread only needs to fetch mini-batches

from the sampling thread.

4.2.2 Distributed hybrid CPU/GPU sampling. In hybrid CPU/GPU

training, the distributed graph is placed in CPU memory. We have

to sample neighbors of target vertices on CPU from the distributed

graph. To take advantage of GPU’s computation power, we move

some computation to GPUs. As such, DistDGLv2 divides the com-

putation into multiple components. In this section, we use the

vertex-wise neighbor sampling algorithm [7] for vertex classifica-

tion for illustration. The same computation decomposition applies

to other neighbor sampling algorithms, such as layer-wise sampling

[28], and to other training tasks, such as link prediction.

Figure 5 shows the mini-batch sampling pipeline of vertex-wise

neighbor sampling [7] for vertex classification. It starts from the

seed vertices and samples their neighbor vertices in the ego-network.

The sampling computation proceeds with one hop of neighborhood

at a time. After sampling all neighbors within a hop, it computes
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Table 1: Dataset statistics.

Dataset # Vertices # Edges Vertex # train # train

features vertices links

ogbn-product[9] 2.4M 61.9M 100 197K 61.9M

Amazon [3] 1.6M 264M 200 1.3M 264M

ogbn-papers100M[9] 111M 3.2B 128 1.2M 3.2B

ogbn-mag[9] 1.9M 21M 128 629K 21M

mag-lsc[8] 240M 7B 756 1.1M 7B

the frontier (i.e., the unique set of vertices) as the seed vertices for

the next-hop neighbor sampling.

DistDGLv2 divides neighbor sampling into two components.

In CPU, it samples vertices and edges from the distributed graph

for each hop of neighborhood. The sampled subgraphs are small

enough to fit in GPU memory. It then moves the subgraphs to GPU

and performs graph compaction to remove empty vertices and rela-

bel vertices and edges for mini-batch computation. This algorithm

samples neighbors on each vertex independently and, thus, we

can further decompose the sampling computation within a hop

into local sampling and remote sampling. DistDGLv2 dispatches

the remote sampling requests to the sampler servers and issues

a job for local sampling simultaneously. After local and remote

sampling complete, DistDGLv2 collects the results from different

partitions, stitches them together and issues another job to compute

the frontier vertices for the next hop. All sampling computation

within a hop runs in CPU. To better parallelize the frontier compu-

tation, DistDGLv2 bundles the sampling computation of multiple

mini-batches and use OpenMP to parallelize them.

5 EVALUATION

In this section, we evaluate DistDGLv2 with multiple GNN models

on large graph datasets. We benchmark three commonly used GNN

models (GraphSAGE [7], Graph Attention Networks (GAT) [22] and

Relational Graph Convolution Networks (RGCN) [19]) to evaluate

the performance of DistDGLv2.

Our benchmarks use three medium-size graphs (ogbn-product

[9], Amazon [3] and ogbn-mag) and two large graphs (ogbn-

papers100M [9] and mag-lsc [8]) (see Table 1 for various statistics).

Note that even though all datasets contain labels for vertex classifi-

cation, the number of labeled vertices in all but the smaller datasets

is similar. As a result, the cost to train vertex classification models

for the larger graphs is not as high as the size of the graphs suggests.

However this is not the case for the link-prediction task, for which

we use all the edges to train the GNN models, leading to training

sets with billions of data points.

5.1 DistDGLv2 vs. other frameworks

We compare the training speed of DistDGLv2 with DistDGL [26]

and Euler [1], the state-of-the-art distributed GNNmini-batch train-

ing frameworks, on four g4dn.metal instances, each of which is

equipped with eight NVIDIA T4 GPUs and two Intel Xeon Plat-

inum 8259CL CPUs, for a total of 32 GPUs and 192 CPU cores.

Both DistDGL and Euler are designed for distributed CPU training,

so we run them on four r5dn.24xlarge instances to collect their

CPU training speed, each of which have two Intel Xeon Platinum

8259CL CPUs, for a total of 192 CPU cores across the four instances.

(a) GraphSage and GAT on

homogeneous graphs

(b) RGCN on heterogeneous

graphs

Figure 6: Training speed of DistDGLv2 vs. DistDGL.

To have a fair comparison with DistDGLv2, we change DistDGL

and Euler to perform GNN training on GPUs by moving sampled

mini-batches to GPUs. We refer to their CPU versions as DistDGL-

CPU and Euler-CPU and their GPU versions as DistDGL-GPU and

Euler-GPU. We run all experiments with the same global batch size

(the total size of the batches of all trainers in an iteration) to get

the same convergence.

Figure 6 (a) shows that DistDGLv2 gets 2 − 3× speedup over

DistDGL-GPU on various datasets. DistDGLv2 has higher speedup

over DistDGL-GPU on simpler GNN models (e.g., GraphSage). The

main bottleneck of GraphSage training is mini-batch sampling in

CPU and data copy to GPUs. Even though both DistDGLv2 and Dist-

DGL use METIS to partiton a graph and co-locate data with compu-

tation, this alone cannot fully take advantage of GPU’s computation.

Asynchronous mini-batch generation, parallelization strategies and

load balancing deployed in DistDGLv2 further improve the perfor-

mance of GNN training.

To verify the benefit of distributed GNN training with GPUs, we

compare DistDGLv2-GPU with DistDGL-CPU on GraphSage and

GAT and DistDGLv2-CPU on RGCN. Figure 6 shows DistDGLv2-

GPU has up to 15× speedup over DistDGL-CPU and DistDGLv2-

CPU, which indicates that high floating-point computation and fast

memory in GPU are beneficial to train GNNmodels on large graphs

especially for more complex GNN models, such as GAT and RGCN.

Even for GraphSage, using GPUs still gets 3 − 6× speedup.

Figure 7: The speedup of DistDGLv2 and Euler-GPU over

Euler-CPU for training GraphSage on ogbn-product.

We further compare DistDGLv2 with Euler on CPUs and GPUs

when training GraphSage on ogbn-product (Figure 7). DistDGLv2

gets 18× speedup over both Euler-CPU and Euler-GPU. Euler-GPU

does not get speedup over Euler-CPU. Because Euler only uses

multiprocessing to parallelize computation and run sampling inside

the trainer process, it requires many trainer processes to achieve



KDD ’22, August 14–18, 2022, Washington, DC, USA Da Zheng, Xiang Song, Chengru Yang, Dominique LaSalle, and George Karypis

(a) ogbn-papers100M (b) mag-lsc

Figure 8: The speedup of DistDGLv2 with GPUs on large

graphs.

good performance. This parallelization strategy works relatively

well on CPU clusters but does not work well on GPUs because we

usually launch one trainer process per GPU to save GPU memory

and avoid interfering computation between trainer processes on the

same GPU. This indicates that effective distributed GNN training

on GPUs requires both multiprocessing and multithreading.

5.2 Scalability

We evaluate the scalability of DistDGLv2 in the EC2 cluster. In this

experiment, we fix the mini-batch size in each trainer and increase

the number of trainers when the number of GPUs increases.

Figure 8 shows that DistDGLv2 achieves 20× speedup in Graph-

Sage and 36× speedup in GAT with 64 GPUs on ogbn-papers100M.

mag-lsc is too large to fit in the CPU memory of one or two

g4dn.metal instances. Its training speed doubles when scaling from

four instances to eight instances. The sub-linear speedup of Dist-

DGLv2 in GraphSage is due to CPU saturation caused by mini-batch

generation and network saturation caused by data copy from remote

machines. When a GNN model (e.g., GAT) has more computation,

DistDGLv2 gets better speedup. In a cluster of 64 GPUs, one epoch

takes only 5 seconds for GraphSage and 7 seconds for GAT on

the ogbn-papers100M graph and takes 13 seconds for RGCN on

mag-lsc in a cluster of 64 GPUs.

5.3 Training convergence

Each trainer of DistDGLv2 samples data points from its graph parti-

tion, but collectively, the data points in a global mini-batch are sam-

pled uniformly at random from the entire training set. This training

method is a little similar to ClusterGCN [3], which partitions a

graph with METIS and sample partitions to form mini-batches. We

compare DistDGLv2 with ClusterGCN on OGBN-papers100M. We

partition the graph into 32 partitions for DistDGLv2 and 16,384

partitions for ClusterGCN.

Figure 9 shows that ClusterGCN has slower convergence than

DistDGLv2 and it cannot converge to the same accuracy as Dist-

DGLv2. The main difference between ClusterGCN and DistDGLv2

is that ClusterGCN drops the edges that do not belong to the parti-

tions in a mini-batch, while DistDGLv2 always samples neighbors

uniformly at random. Thus, DistDGLv2 estimates neighbor aggre-

gation in an unbiased fashion, while ClusterGCN’s estimation is

based by graph partitioning results. This indicates that we have to

sample neighbors across partitions to achieve good model accuracy.

Figure 9: Convergence of DistDGLv2 vs. ClusterGCN on

OGBN-papers100M.

Table 2: Time breakdown of distributed training for different

tasks on ogbn-papers100M.

Task ParMETIS Load/save Load data Train to

(partition) (training) converge

Vertex classification 12 min 23 min 8 min 4 min

Link prediction 12 min 23 min 8 min 305 min

5.4 Time breakdown

In DistDGLv2, training a GNN model requires to partition a graph

and run a distributed training job on the partitions. We measure

the time of different components in the training pipeline, including

loading and saving data for partitioning, partitioning the graph,

loading partition data for training and finally training a model

to converge. We use ParMETIS [11] to partition large graphs. We

benchmark ParMETIS on ogbn-papers100M on a cluster of four

r5dn.24xlarge instances and distributed training jobs on a cluster

of g4dn.metal instances.

Table 2 shows the time breakdown in the training pipeline. It

assumes that graph partition occurs for every distributed training

job. In practice, we partition a graph for multiple training jobs

(e.g., parameter searching and testing different models). Even in

this setting, graph partitioning is not the most time-consuming

component in the training pipeline. It takes only 12 minutes to

partition ogbn-papers100M into 512 partitions. In comparison, data

loading and saving takes much more time. For vertex classification,

the training time is short because ogbn-papers100M has a very

small training set (1% of vertices are in the training set). It is likely

to get a large dataset with more labeled vertices. For link prediction,

we may use all edges to train a model, which leads to a training set

with billions of data points. Training a model for link prediction

takes multiple hours even with one epoch.

5.5 Ablation Study

DistDGLv2 deploys many optimizations. In this section, we study

the effectiveness of the main optimizations introduced by Dist-

DGLv2, excluding the ones introduced in DistDGL: 1) 2-level parti-

tion that splits the graph for the levels of machines and GPUs; 2)

asynchronous pipeline that performs every operation in mini-batch

generation asynchronously to overlap CPU and GPU computation

and network I/O; 3) hybrid CPU/GPU sampling that moves some

mini-batch sampling computation to GPUs. We study these opti-

mizations by adding one optimization after another until we add all

optimizations. The last one basically includes all optimizations in

the study. The study uses the optimization of METIS partitioning
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Figure 10: The effectiveness of the techniques for GraphSage

and GAT on ogbn-product and for RGCN on ogbn-mag.

as the baseline because the benefit of METIS partitioning has been

demonstrated by DistDGL [26]. We use a cluster of four g4dn.metal

instances to run the experiments.

Figure 10 shows each optimization has impact in performance

and we get overall 3× speedup for GraphSage and over 2× speedup

for GAT and RGCN on top of METIS partitioning. Even though

this cluster already has 100Gbps network, 2-level partitioning gets

about 20% speedup because confining the training vertices in a

smaller partition leads to better locality and a smaller number of

neighbor vertices in a mini-batch. Asynchronous sampling pipeline

gets significant boost because it overlaps the CPU and GPU compu-

tation and network I/O to hide network latency, PCIe data transfer

and CPU data copy. Hybrid CPU/GPU sampling is another effective

optimization. This indicates that moving more computation to GPU

is beneficial to speed up training.

6 CONCLUSION

We develop DistDGLv2 for distributed GNN training in a GPU clus-

ter. The hybrid CPU/GPU training allows to scale to very large

graphs. We show that distributed hybrid CPU/GPU training can

get speedup by a factor of 3 − 15 over distributed CPU training on

a graph with hundreds of millions of vertices. DistDGLv2 adopts

many optimizations to make GNN training more efficient in a clus-

ter of GPUs. We show that only using METIS partitioning is in-

sufficient to achieve good training speed for distributed hybrid

CPU/GPU training. By deploying an asynchronous pipeline for

generating mini-batches, we can effectively hide the latency of data

communication and overlap CPU and GPU computation. Because

asynchronous mini-batch sampling only applies to immutable data,

it does not affect model convergence. By having all optimizations,

DistDGLv2 gets 2 − 3× speedup over DistDGL and 18× speedup

over Euler on GPUs. Currently, the heterogeneous graph support

in DistDGLv2 has been released as part of DGL 0.7 and have been

used in production.We plan to release the asynchronous mini-batch

sampling pipeline in DGL’s following release.
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A APPENDIX

A.1 Hyperparameters and software

We perform hyperparameter search and select a set of hyperpa-

rameters that achieve good model accuracy on these datasets. For

GraphSage and GAT in vertex classification, we use three GNN

layers and the hidden size of 256; the fanout of each layer is 15,

10 and 5. GAT uses 2 attention heads. RGCN uses two layers with

the hidden size of 1024 and the sampling fanout is 15 and 25. We

use the batch size of 1000 per trainer for GraphSage and 500 for

GAT and RGCN
1
. For link prediction, we run two GraphSage lay-

ers to generate embeddings and the sampling fanout is 25 and 15;

the remaining configurations are the same. We use a cluster of

eight AWS EC2 g4dn.metal instances (96 vCPU, 384GB RAM, 8

T4 GPUs each) for GPU experiments and a cluster of four AWS

EC2 r5d.24xlarge instances (96 vCPU, 768GB RAM) for CPU ex-

periments and data preprocessing. Both clusters connect machines

with 100Gbps network.

In all experiments, we use DistDGL in DGL 0.6
2
and Pytorch

1.8. DistDGLv2 is implemented based on DGL 0.6. For Euler experi-

ments, we use Euler v2.0 and TensorFlow 1.12.

1
GAT and RGCN run out of memory with the batch size of 1000.

2
Some of the features in DistDGLv2 have been implemented in DGL0.7 and newer

releases
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