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ABSTRACT

End-to-end speech recognition models are improved by incorporat-
ing external text sources, typically by fusion with an external lan-
guage model. Such language models have to be retrained whenever
the corpus of interest changes. Furthermore, since they store the
entire corpus in their parameters, rare words can be challenging to
recall. In this work, we propose augmenting a transducer-based ASR
model with a retrieval language model, which directly retrieves from
an external text corpus plausible completions for a partial ASR hy-
pothesis. These completions are then integrated into subsequent pre-
dictions by an adapter, which is trained once, so that the corpus of
interest can be switched without incurring the computational over-
head of retraining. Our experiments show that the proposed model
significantly improves the performance of a transducer baseline on a
pair of question-answering datasets. Further, it outperforms shallow
fusion on recognition of named entities by about 7% relative; when
the two are combined, the relative improvement increases to 13%.

Index Terms— retrieval, language model, domain adaptation,
end-to-end ASR, RNN transducer, contextual biasing

1. INTRODUCTION

End-to-end (E2E) speech recognition models can be improved on
a domain when they are shown text from that domain. While there
have been works that do so by training parts of the model on external
text [1–3], the most common method of incorporating text, unless
precluded by computational constraints, is still fusion with language
models (LM) [4–8] since they can be swapped at inference time.

Nevertheless, even LMs, especially neural LMs, can be un-
wieldy to change to match user interest. It is common for users
of voice assistants and other speech technologies to use words and
phrases associated with trending topics such as sporting events,
album releases, pandemics etc. To contend with these surges in
user interest, these ASR systems must be able to rapidly assimilate
words of interest and also gracefully discard them as such ephemeral
interest wanes. Although it is possible to obtain relevant text from
internet forums or news articles, incorporating them into the ASR
LM requires retraining the entire LM or training a separate LM for
each trending topic. Moreover, LMs struggle with proper nouns and
other named entities which are of the most interest because such
entities, by nature rare and diffuse in training data, are assigned low
likelihoods by LMs which store all information in their parameters.

This has sparked interest in biasing methods which attempt to
boost the likelihoods of a catalog of entities.These include finite
state transducer (FST)-based methods which compose the ASR out-
put with an FST with negative-cost arcs carrying the entities to be
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Fig. 1: RNN-T modified to use retrieval from a datastore. L(. . . xyz)
denotes the retrieval LM encoding of some sentence ending in xyz.

boosted [9–12], and deep-biasing methods which introduce a train-
able adapter into the ASR model, with an attention mechanism to se-
lect the right entity to boost [12–16]. However, both are more suited
to catalogs of limited size (up to a few hundred at a time), such as
contact names and song playlists, rather than the large catalogs nec-
essary to cover multiple trending topics at the same time. FSTs for
instance boost all items in the catalog with predefined weights mak-
ing it hard to control what gets boosted as the catalog size increases.
For deep-biasing, the limitation is due to the smearing of attention
weights as the catalog size increases, as well as the increasing com-
putational overhead of multihead attention. Therefore, it remains
a challenge to have a rapidly adaptable, computationally efficient
way to bias ASR towards large lists of phrases–possibly millions of
tokens–at a time.

Inspired by the success of retrieval mechanisms in language
modeling [17–19], we propose augmenting an RNN transducer
(RNN-T)-based ASR model with a retriever which searches in an
external datastore for candidate continuations of a partial ASR hy-
pothesis. The RNN-T’s encoder output then attends to encodings of
the retrieved continuations, and the attention output is summed to
the encoder output before begin fed into the joiner.

Experiments on the Squad [20] and DeepMind Question-
Answering [21] datasets show that a strong RNN-T baseline can
be improved by retrieving from datastores that contains related text,
even when the datastores also have millions of tokens of unrelated,
distracting content. Furthermore, retrieval can be complemented
by shallow fusion as the latter performs better on recognition of
common words while retrieval performs better for named entities.

2. MODEL

2.1. RNN Transducer

The model we propose is built on the RNN transducer [22]. The
transducer is an end-to-end ASR model composed of three parts.

The encoder is a recurrent neural network which encodes a se-
quence of audio frames (x1, . . . ,xN ) into hidden states (h1, . . . ,hN ):

hn = fenc(xn,hn−1), (1)
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Fig. 2: The retrieval LM computes an embedding for previously predicted symbols and retrieves the k nearest neighbors of this embedding
are from a datastore. The continuations (italicized in red font) and log Euclidean distances of the neighbors are transformed by an encoding
network and the resulting vectors are blended by an attention mechanism whose output is used to modify the original RNN-T encoder output.

The prediction network is a recurrent network which encodes
the previously output non-blank tokens y<u:

gu = fpred(yu−1,gu−1), (2)

The joiner computes a joint embedding from the two outputs:
zn,u = ϕ(Uhn +Vgu + b1). (3)

U, V and b1 are trainable parameters and ϕ is the hyperbolic tan-
gent function. The joint embedding is then used to compute a proba-
bility distribution over all tokens plus the blank token for alignment:

p(y|n, u) = σ(Wzn,u + b2). (4)

W and b2 are trainable parameters and σ is the softmax function.

2.2. Retrieval-augmented RNN-T

Figure 1 depicts the modified RNN-T structure that we propose and
Figure 2 illustrates the modifications in more detail. Our modifi-
cations comprise a retriever which finds potential continuations for
the RNN-T’s current output from external text and an adapter which
uses those continuations to bias the RNN-T’s subsequent outputs.

2.2.1. Retriever

The retriever, depicted in pink in Figure 2, is based on the premise
that embeddings generated by a pretrained neural language model
for two similar phrases are closer in Euclidean space than those of
two random phrases. Therefore, to find potential continuations for
any phrase (partial ASR hypotheses in our case) in a text corpus, we
need to find phrases in that corpus that have similar embeddings to
our phrase of interest, and return their continuations.

At the heart of our retriever is a pretrained LSTM LM which is
used to generate embeddings for retrieval.1 First we create a data-
store for an adaptation text from which we intend to retrieve. To
do this, each sentence in the corpus is passed through the LM; the
LSTM’s hidden state at each step is added as a key to the datastore,
with corresponding value comprising the input tokens to the next t
steps (we set t = 2 in this paper). By repeating this procedure for
all sentences in the text, we get a key-value store, whose keys are
the LM embeddings of phrases in the text, and whose values are the
t-token long continuations of each key phrase.

To obtain candidate continuations of a partial ASR hypothesis
during RNN-T decoding, we encode it with the retrieval LM and find

1We use an LSTM instead of the transformers used in prior works on
retrieval LM due to practical latency and memory considerations. Note that
the retrieval LM needs not be trained on the text from which we retrieve. In
fact, in all our experiments, we use the same pretrained LSTM LM regardless
of the adaptation text.

the k nearest neighbors by Euclidean distance from the datastore.
Note that the query to the retrieval is the same as the input to the
prediction network, i.e., the sequence of non-blank tokens (y<u).
The retrieved continuations are then passed to the adapter along with
the logarithms of the Euclidean distances between each key and the
querying embedding.

2.2.2. Adapter

Having retrieved the k nearest neighbors, the question remains how
best to integrate them back into the ASR. Adopting the framework
used for contextual biasing in [15], we introduce a trainable adapter
to bias the RNN-T’s encoder output before feeding it into the joint
network. The adapter, depicted in green in Figure 2, comprises a
recurrent encoder and a multihead dot-product attention mechanism.

The adapter encoder has an embedding layer which converts the
tokens in each candidate continuation into dense form. This is fol-
lowed by an LSTM whose hidden state at the last step is taken as
a fixed-length representation of that candidate. The corresponding
log-distance from the retriever is concatenated to give the model a
clue about the relevance of each candidate, and this vector is further
transformed by a feedforward network to get a final representation.

The multihead attention is used to select from the representa-
tions of the candidates. The attention query is an affine projection of
the encoder output hn

2 and its keys and values are projections of the
candidates’ encodings. Finally, the resulting context vector is added
to the transcription output before passing the sum to the joiner.

In effect, the adapter modifies Equation 3 to:

zn,u = ϕ
(
U
(
hn +

K∑
k=0

αn,u,kcu,k
)
+Vgu + b1

)
, (5)

where K is the number of retrieved candidates and is a hyper-
parameter, cu,1, . . . , cu,K are the values of the attention mechanism
computed from the retrieved candidates (by searching y<u in the
datastore), cu,0 = c is an extra trainable “no-bias” embedding in-
tended to give the model an option when all retrieved candidates are
incorrect, and αn,u,k is the attention weight between hn and cu,k.

3. EXPERIMENTS

3.1. Datasets

We experiment with two question-answering (QA) datasets: the
Stanford Question Answering Dataset (Squad) v2.0 [20] and the

2We also tried using gu as the attention query. We found that while using
gu is computationally cheaper, using hn results in better ASR performance.



Table 1: Summary of the test sets. Squad-V and Squad-T refer to the
Squad validation and test sets respectively, and DQA-V and DQA-T
refer to the DQA validation and test sets respectively.

Dataset Contexts Questions
#Paragraphs #Tokens #Sentences #Words

Squad-V 19124 3997k 6510 68107
Squad-T 1204 287k 11868 123020
DQA-V 1220 1371k 3924 53494
DQA-T 1093 1172k 3198 44737

CNN portion of the DeepMind Question Answering (DQA) [21]
dataset. Each has a set of questions and a set of “context” paragraphs
which contain information useful for answering the questions. 3

Our task is to perform ASR on the questions. We use the TTS
system from [23] to obtain speech for the questions and construct
datastores for retrieval from the contexts. This setup emulates the
data available to a typical voice assistant with open-source, non-
proprietary data. The synthesized questions correspond to user
queries, and the contexts correspond to the knowledge base with
which a downstream NLP module would resolve the queries. Note
that since we do not know exactly which context applies to which
question, each dataset’s datastore contains the keys and continua-
tions of all contexts from the entire dataset.

In Table 1, we report the number of context paragraphs, ques-
tions and their constituent tokens and words for each dataset. Note
that for Squad, since the official test set is not public, we use the offi-
cial dev-set as our test set, and split off 5% of the training questions
for validation. We use the entire set of Squad training contexts for
the Squad-V datastore, which makes the datastore large and retrieval
that much harder. For DQA, all entities are de-anonymized before
TTS and datastore construction.

To get a strong DQA baseline, we pretrain the baseline RNN-
T for 100k steps on a mix of the DQA and Librispeech [24] train-
ing sets, with batches uniformly sampled from each set. The DQA
training set contains 380k questions which–to avoid any acoustic
mismatch–we synthesize with the same TTS system as the test sets,
using speaker profiles which include those used for the test sets.
Compared to a baseline trained purely on Librispeech, including the
DQA training set improves the WER from 34.3% to 13.8% on the
DQA-T, from 23.5% to 15.2% on the Squad-T, with only a negli-
gible degradation on the Librispeech test sets (6.5% to 6.6% on the
test-clean).

With the parameters of the pretrained RNN-T frozen, we train
the adapter for 30k steps on the Squad training set, which contains
124k sentences (the official training set minus the validation sen-
tences); we use its synthesized questions as ASR data along with a
datastore of all its contexts (same datastore as Squad-V).

To mitigate the risk of adapter overfitting on retrieved continua-
tions, we add two forms of noise and force the model to learn when to
rely on the no-bias embedding. First, we mix in an equal proportion
of Librispeech batches to the adapter training data so that the re-
trieved continuations from the Squad datastore would be irrelevant.
In addition, with 0.1 probability we retrieve random continuations
from the training datastore instead of the actual k nearest neighbors,
so that the model is exposed to–and learns to deal with–incorrect
continuations even when the domain matches.

3see https://rajpurkar.github.io/SQuAD-explorer/explore/v2.0/dev for ex-
amples of Squad contexts and associated questions.

3.2. Model configuration

The baseline RNN-T has 64 million parameters, comprising an en-
coder with six LSTM layers with 1024 units followed by a 640-
dimensional affine projection, a prediction network which has two
LSTM layers of 1024 units also followed by projection to 640 di-
mensions, and a joiner with intermediate dimension of 512 and out-
put dimension of 2501 corresponding to 2500 unigram subword to-
kens [25] trained on Librispeech, and the extra blank token.

The adapter adds 1 million parameters, of which 2501× 128 ≈
320k are in the embedding layer. The remaining parameters are in
two 128-unit LSTM layers, two feedforward layers with 128 units
and multihead attention with two heads and key dimension of 128.

The retrieval LM is a two-layer LSTM with 256 units trained on
Wikitext-103 [26]. We reiterate that this retrieval LM is kept fixed
regardless of which datastore we retrieve from.

We implement the k-nearest-neighbor search in FAISS [27] us-
ing a CPU index with product quantization [28]. The largest index in
our experiments–constructed by concatenating all datastores (“All”
in Section 3.3)–occupies just under 500 megabytes of RAM. We set
K to 16 for both training and inference, i.e. at each step, we retrieve
16 candidate continuations out of hundreds of thousands to millions
(number context tokens in Table 1).

3.3. Test set performance

Table 2 shows the word error rates (WER) of the various test sets.
Since our retrieval mechanism involves introducing and train-

ing an adapter, some of the improvement or degradation in perfor-
mance may be attributed to simply having extra parameters trained
on question-answering data, essentially updating the RNN-T’s in-
ternal language model (ILM), rather than being able to retrieve and
use the correct continuations. To measure this effect, we train an-
other baseline which has an adapter but no retriever. For this, we
input to the adapter LSTM a single trainable embedding instead of
the embeddings of retrieved continuations. This “fixed embedding”
approach, when compared to the baseline without any adaptations,
improves Squad and degrades DQA performance. This is expected
because the baseline training includes DQA training data, while the
adapter is trained with Squad and Librispeech ASR data.

We observe significant improvements compared to either base-
line on all test sets when the datastore matches the corresponding
contexts, e.g. Squad-T datastore for Squad-T test set etc. It is note-
worthy that we get relative improvements of 9% and 7% respectively
on the DQA validation and test sets compared to the baseline with no
adapter despite the performance drop that we incur due to the ILM
shift from training the adapter on Squad+Librispeech (as evidenced
by the fixed embedding results).

Next, we observe that the performance improvements brought
by retrieval are generally proportional to how relevant the datastore
is. For instance, when decoding the Squad test set, the WER in-
creases when we switch from the datastore of Squad test contexts to
the datastore of Squad validation contexts and increases further as
we switch to the datastores of DQA contexts, at which point we get
performance comparable to using the fixed embedding.

The matched results are predicated on picking the right data-
store for each test utterance. We also consider retrieving from a
single large datastore containing contexts from all the datasets (the
“All” rows in the table). While this performs worse than picking the
matching datastore, it is significantly better than using any other sin-
gle datastore. This implies that even in the presence of a few million
extra distracting contexts in the datastore, the retriever still does a
good job of retrieving the correct ones. Thus, in practice, it would



Table 2: WER on various test sets as the datastore is varied com-
pared to the baseline with no retrieval (“None”) and a baseline with
retrieval replaced by a fixed embedding (“Fixed emb.”). S-F denotes
the use of shallow fusion.

Datastore S-F Squad-V Squad-T DQA-V DQA-T

None ✗ 15.8 15.2 14.0 13.8
Fixed emb. ✗ 14.4 13.8 14.7 14.7
Squad-V ✗ 11.9 12.5 15.1 15.1
Squad-T ✗ 13.6 11.1 15.5 15.7
DQA-V ✗ 14.2 13.6 12.7 14.3
DQA-T ✗ 14.4 13.8 14.6 12.8
All ✗ 12.3 11.9 13.3 13.3

None ✓ 13.7 13.1 12.5 12.4
Fixed emb. ✓ 12.3 11.7 13.4 13.3
Match ✓ 11.0 9.9 11.7 11.8
All ✓ 11.4 10.8 12.4 12.5

Questions ✗ 4.5 4.5 5.5 5.8

be a viable strategy to concatenate several data stores unless sure of
which one to pick.

The second partition of the table shows the results of using shal-
low fusion on each system. For the DQA test sets, we use an LSTM
LM trained on the DQA training contexts for shallow fusion. For
Squad, we use an LSTM LM trained on Wikitext-103 (the same one
used as the retrieval LM), since both Squad and Wikitext are con-
structed from Wikipedia data, and the Squad dataset is too small to
train a robust LM. This reflects one of the advantages of retrieval: we
can add any relevant corpus, no matter how small, to the datastore
without danger of overfitting to it. We optimize the LM interpola-
tion weights separately on each validation set and apply them to the
corresponding test sets. Retrieval is comparable to shallow fusion on
DQA test sets and outperforms it on Squad. Furthermore, the two are
complementary as further significant improvements can be obtained
by combining retrieval with shallow fusion.

The final partition shows the result of retrieving not from a data-
store of contexts but of the questions themselves (with an adapter
trained for questions). This gives us an upper-bound, however un-
realistic, on performance in the “Match” setting. We observe that
by retrieving from datastores of questions, we can more than halve
the WER to around 5% across all test sets. This indicates that even
though we only retrieve 16 continuations at a time out of hundreds of
thousands (after tokenization of #Words in Table 1), the main bottle-
neck is not in the retrieval itself, but the simple fact that the contexts
and the questions are not perfectly matched. The residual WER tells
us the inherent errors due to either the retriever failing to retrieve the
correct continuations or the adapter failing to bias the ASR output.

3.4. Performance on named entities

Table 3 shows the results on the DQA test sets split by whether or not
the reference word is a named entity. We report results only on DQA
because, unlike DQA, the Squad dataset references have no named
entity tags. We observe that retrieval generally improves named en-
tities more than it does other words. Adding retrieval to the baseline
RNN-T leads to relative WER improvements of 11% and 8% respec-
tively on named entities and other words on the validation set. The
respective improvements on the test set are 12% and 4%. We ob-
serve that shallow fusion improves more on regular words and less
on named entities compared to retrieval. Finally, when we use shal-
low fusion and retrieval together, we get better named entity WER

Table 3: DQA dataset WERs for named entities and common words.

Datastore S-F DQA-V DQA-T
Entities Others Entities Others

None ✗ 25.8 10.0 27.1 9.8
Fixed emb. ✗ 27.1 10.6 28.5 10.4
Match ✗ 23.0 9.2 23.9 9.4
All ✗ 24.1 9.7 24.9 9.8
None ✓ 24.6 8.5 25.6 8.4
Fixed emb. ✓ 25.2 9.5 26.7 9.2
Match ✓ 21.4 8.5 22.4 8.6
All ✓ 22.7 9.0 24.6 9.0

Table 4: WER obtained by retrieving from the mixed datastore as
the number of retrieved neighbors is varied.

Test set - 1 2 4 8 16 32 64

Squad-V 15.8 16.2 15.1 13.4 12.7 12.3 12.2 12.0
Squad-T 15.2 16.3 14.8 13.3 12.4 11.9 11.6 11.5
DQA-V 14.0 17.0 15.0 14.1 13.7 13.3 13.1 12.9
DQA-T 13.8 16.4 14.9 13.8 13.5 13.3 13.2 13.0

that using either by itself, but the WER on other words does not get
better than using shallow fusion by itself. This supports our thesis
that the trained shallow fusion LM can do fine by itself for common
words, and the utility of retrieval is most pronounced for rare words.

3.5. Impact of number of retrieved neighbors

Table 4 shows the WERs on the test sets as we vary K while retriev-
ing from the datastore of all datasets (“All”). Note that we only vary
K at inference time; during training it is still fixed to 16. We observe
that the WER improves–with diminishing returns–as K increases.

In experiments whose results we omit due to space constraints,
we varied K at training time and note that the higher we set K at
training time, the higher we can, and have to, set it during inference.
To get improved the results with lower values of K at inference, we
need to train with low values of K. For instance, across test sets, the
WERs obtained from setting K = 1 for both training and testing fall
between those obtained from setting K = 4 and K = 8 in Table 4.

4. CONCLUSIONS

In this work, we have proposed augmenting an RNN-T based ASR
model with a retrieval mechanism, which searches an external datas-
tore for potential continuations of partial ASR hypotheses. We show
that biasing subsequent decoding steps with these continuations sig-
nificantly improves ASR performance, especially on named entities,
when the datastore contains relevant text. We further show that re-
trieval can be complemented by a conventional shallow fusion LM,
as using the two in tandem results in further improvements.

Avenues for future work include replacing the retrieval LM with
a model trained explicitly for retrieval, further reducing performance
degradation when the datastore and test set are unrelated, and im-
proving efficiency by exploring ways to reduce retrieval frequency.
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