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ABSTRACT

Multimodal active speaker detection (ASD) methods assign a
speaking/not-speaking label per individual in a video clip.
ASD is critical for applications such as natural human-
computer interaction, speaker diarization, and video re-
framing. Recent work has shown the success of transformers
in multimodal settings, thus we propose a novel framework
that leverages modern transformer and concatenation mech-
anisms to efficiently capture the interaction between audio
and video modalities for ASD. We achieve mAP similar to
state-of-the-art (93.0% vs 93.5%) on the AVA-ActiveSpeaker
dataset. Further, our model has ~3x smaller size (15.23MB
vs 49.82MB), reduced FLOPs count (11.8 vs 14.3), and lower
training time (15h vs 38h). To verify our model is making
predictions from the right visual cues, we computed saliency
maps over input images. We found that in addition to mouth
regions, the nose, cheek, and area under the eye were helpful
in identifying active speakers. Our ablation study reveals
that the mouth region alone achieved lower mAP (91.9% vs
93.0%) compared to full face region, supporting our hypoth-
esis that facial expressions in addition to mouth region are
useful for ASD.

Index Terms— multimodal, active speaker detection,
transformer, saliency maps, human-computer interaction

1. INTRODUCTION

In human to human interaction, there is a strong use of both
audio and visual signals to enrich understanding and conver-
sation. Building more conversational and natural Al requires
improving techniques to understand and process information
from both audio and video. The goal in ASD is to determine
who among multiple individuals are speaking.

ASD is a deeply multimodal problem with an explicit
need to learn alignment between audio and visual sources to
confirm speaking. Recent work has applied transformers [1]
in multimodal settings [2, 3] with success due to their abil-
ity to correlate features across modalities in long temporal
context, which is crucial in ASD.

Our key contributions are applying multimodal (audio-
video) transformers to ASD, leveraging bilinear pooling for
audio-video fusion, and generating saliency maps to study the
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relative importance of face regions for ASD predictions. We
also conduct ablation studies that illustrate the efficacy of our
feature encoders as indicated by mAP gains. While our work
is inspired by [4], we improve over that method’s mAP per-
formance (93.0% vs 92.3%) due to our full transformer mod-
ules, introduction of single modality self-transformers, effi-
cient temporal feature extractors (Conformer for audio and
1D CNN for video) and richer modality fusion. Addition-
ally, we near the SOTA performance of [5] (93.0% vs 93.5%)
while significantly reducing our model size, FLOP count, and
training time (see Table 3) as we partially avoid compute-
intensive 3D CNNs.

2. RELATED WORKS

Early research in ASD includes approaches using visual-only
inputs [6, 7, 8], or audio-only inputs [9]. Visual-only ASD is
susceptible to errors from non-speech related face/mouth ac-
tions such as laughing or eating. Whereas audio-only ASD
is susceptible to errors due to background speech and noise.
More recently, with the introduction of the large-scale ASD
benchmark AVA-ActiveSpeaker, there has been a plethora of
research showing the benefits of multimodal inputs [4, 10, 5].
The first multimodal attempt at ASD in the wild was a joint
audiovisual model by [11], a method trained end-to-end di-
rectly from image pixels and audio without the use of any
pre-trained networks. Next, [12] proposed using a shallow 3D
CNN based front-end and an ensemble of temporal convolu-
tion and LSTM classifiers to predict ASD, yielding significant
improvements over earlier work. Concurrently, a novel rep-
resentation that models pairwise relationships between multi-
ple speakers over a large time window was proposed by [10].
This method achieved mean average precision (mAP) perfor-
mance similar to [12].

Compared to these works, a significant leap in ASD per-
formance and training efficiency was observed in [4], which
explored long-term multimodal temporal feature extraction
and served as the basis of our work. Later, [13] proposed a
multi-objective learning scheme to leverage the best of each
modality using a novel self-attention, uncertainty-based fu-
sion mechanic.

Currently, the best performance on the AVA benchmark is
achieved by [5], which introduces several architectural mod-
ifications to [10], including a Multilayer perceptron (MLP)
for inter-speaker modeling, SincNet [14] for audio feature
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Fig. 1. Front-end ASD model architecture, consisting of
audio-video feature extraction

extraction, and deep 3D CNNs for video feature extraction.
3D CNNs are computationally expensive and MLPs don’t
allow for explicit interaction between the audio and visual
modalities. Additionally, training the front-end (audio-visual
integration) first, followed by feature extraction, then back-
end training (inter-speaker and temporal modeling), leads to
longer training times as opposed to training end-to-end.

Our method largely builds on the efforts of [4] to bring
mAP performance closer to [5], while still maintaining lower
compute costs and training times. We augment [4] by adding
a self-transformer with multiple attention heads for each au-
dio and video embedding, extending the cross-modal atten-
tion to be a full multimodal transformer with positional en-
coding, and employing bilinear pooling [15] for modality fu-
sion. We describe our full architecture in Sections 3 and 4.

3. FRONT-END FEATURE EXTRACTION

3.1. Audio Encoder

The audio encoder ingests audio frames represented by a
tensor of 13 Mel-frequency cepstral coefficients (MFCCs)
across 2bms, then extracts the relevant audio features nec-
essary for ASD, similar to [12, 4]. We use a 2D ResNet-18
network with dilated convolutions [4] such that the tempo-
ral dimension of the resultant audio features match that of
the video features. We then perform temporal modeling of
the extracted audio features using a conformer (convolution-
augmented transformer) architecture, as shown in Fig. 1. We
use a conformer because they have been shown to capture
both the local and global dependencies of an audio sequence
in a parameter-efficient way [16]. Note that temporal pro-
cessing is crucial for accurate ASD, because it enables the
refinement of the extracted audio features by attending to
their temporal structure.

3.2. Video Encoder

Similar to audio, the video encoder extracts facial features
which indicate speaking/not-speaking. For input, we used a
pretrained, frozen face predictor network to find and crop the
face regions offline. The video encoder uses a hybrid 3D-
2D convolutional neural network, to extract the relevant fa-
cial features. In particular, similar to [4], it consists of one
3D convolutional layer, that first reduces each spatial dimen-
sion by ~3x, followed by a 2D ResNet18 block for compute-
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Fig. 2. Back-end ASD model architecture, consisting of
cross-modal and self transformers

efficiency. This front-end encoder is followed by a tempo-
ral processing block, which consists of 5 depthwise-separable
1D CNN layers, followed by a traditional 1D CNN layer for
reducing the feature dimension [4]. We observe that sim-
ple, compute-efficient 1D CNN blocks are sufficient for video
temporal modeling, given that global context is later captured
by the video self-transformer.

4. BACK-END MULTI-MODAL PROCESSING

Our backend architecture, shown in Fig. 2, starts with sep-
arate audio and video self-transformers that model inter-
speaker relational context. Next is two concurrent multimodal
transformers [1], where the audio features attend to the video
counterparts and vice-versa. The multimodal transformers
perform audio-visual synchronization, which is particularly
important given the noise introduced by AVA dubbed videos.

We combine our multimodal transformer outputs through
bilinear pooling [15]. Bilinear pooling has been empirically
shown to efficiently and expressively combine textual and vi-
sual information due its use of the outer product, without
the typical increase in dimension size from standard outer
product operations. We show in this work that it can be ex-
tended to audio-video concatenation. Finally, we apply a self-
transformer, linear layer, and softmax to the fused embed-
dings to predict dense ASD labels.

Both the self and multimodal transformer architectures
consist of an attention layer, followed by a feed-forward layer
(with layer normalization and residual connections), similar
to the encoder block in traditional transformer architectures
[1]. The inputs are the projection vectors of query, key, and
value from audio and visual embeddings, respectively. While
self-transformers either ingest these from a particular modal-
ity (qa, kas Vg OF @y, Ky, v,) or from fused modalities (qqy,
kavs Vav), multimodal transformers require that key and value
correspond to the same modality while query comes from a
different modality, similar to [4]. The outputs of each of these
transformers can be represented as follows:
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Where SM denotes the softmax function, d denotes the di-
mensionality of ¢, k, v, and F,,,_,, denotes the fused output.

Fav—(w:SM(

5. EXPERIMENTAL SETUP & DATA INGESTION

We use a dense sampling scheme to ensure each video frame
has its corresponding ASD prediction in a particular batch,
similar to [4], which increases the training efficiency by re-
quiring less forward passes than sliding window-based ap-
proaches [5, 10]. We use cross-entropy loss to compare pre-
dicted labels with ground-truth.

Since it is challenging to accurately predict speaking/not-
speaking in the presence of background speech/noise, [4] pro-
posed a negative sampling technique, where the number of
training samples are increased by randomly using a different
audio clip from the same mini-batch as noise with the original
video. We extend this technique by additionally shifting the
audio track by a random number of frames. Our augmenta-
tion technique can thus help tolerate little audio-video desyn-
chronization (up to ~1 s) present in the dubbed AVA videos.
Moreover, similar to [4], our approach does not require any
external dataset to inject additional noise. For vision inputs,
we apply the standard augmentation techniques of rotating,
flipping, and cropping input images randomly.

Our architecture and training algorithm are implemented
in PyTorch and all experiments are performed using a sin-
gle NVIDIA V-100 GPU with 16 GB memory. We use the
Adam optimizer for 50 epochs, with an initial learning rate of
0.0002, which is decreased by 5% for every epoch. The face
crops are reshaped to 128x128. The number of MFCC vec-
tors is set to 13. We set the dimensions of the audio and visual
embeddings to 256. All attention blocks in the transformers
used in our architecture have eight attention heads [4].

5.1. AVA-ActiveSpeaker Dataset

The AVA-ActiveSpeaker dataset is the current SOTA bench-
mark for large-scale ASD [11]. It consists of 262 15-minute
video clips from Hollywood movies, 120 of which are used
for training, and 33 for validation. There are a total of 3.65
million manually annotated face crops, each of which is as-
signed a binary ASD label. Contiguous face crops corre-
sponding to a particular person are concatenated to create a
face-track. The key challenges involved in this dataset are
wide diversity in terms of languages and demographics, vary-
ing fps (25—30), large number of low-resolution (<100 pix-
els) face crops, noisy audio, and short utterance lengths (~1
s), which hinders the use of large sliding windows for ASD.
We report mAP performance! as is customary for this dataset.
We trim the first and last 2 frame predictions in reporting
mAP, similar to sliding window approaches without padding,
because we observe that the starting and ending frames of any
face track perform worse due to lack of surrounding context.

'We use the validation set for evaluations because the test set evaluation
server was closed during the submission of this paper.
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Fig. 3. From left to right: a.) face crop image from AVA-
ActiveSpeaker dataset, b.) gradient-based saliency map rep-
resenting visual attention, c.) average saliency value binned
by face region

5.2. Ablation Studies

We performed numerous ablation studies to understand the ef-
fectiveness of our transformer based method. In Section 6.2,
we show the learned behavior of the visual encoder by analyz-
ing an aggregated facial region saliency map [17]. To generate
the saliency map, we calculate gradients with respect to each
input image in the validation set, compute facial keypoints,
bin the saliency values based on facial region, and compute
the average per facial region (process shown in Figure 3). In
Section 6.3, we compare various temporal feature encoder ar-
chitectures and explore different combinations of multimodal
transformers and their relative placements. Finally, we com-
pare model efficiency in Section 6.4.

6. RESULTS

6.1. mAP Results

In Table 1, we report a validation mAP of 93.0% on the AVA-
ActiveSpeaker dataset. We near SOTA results [5] with sig-
nificantly lower training time and model size, as shown in
Section 6.4.

Approach mAP (%)
ASD-Transformer 93.0
Kopuklu et.al. [5] 93.5

Talknet [4] 92.3
MAAS-TAN [18] 88.8

ASC [10] 87.1

Roth et. al. [11] 79.2

Table 1. Comparison with SOTA methods on the validation
set of the AVA-ActiveSpeaker dataset.

6.2. Saliency Map Analysis

Figure 4 represents the average saliency value of each facial
region normalized by the max region value (mouth). As ex-
pected, our method mostly attends to the mouth region for
ASD predictions as seen by the nose region and the lower jaw
left and right regions. It seems the further from the mouth re-
gion, the less attention the face region gets, with the notable
exception that the eyes get nearly double the attention as the
rest of the upper face. We further explore the attention on
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Fig. 4. Gradient-based saliency map for the canonical face
generated from the AVA-ActiveSpeaker validation dataset

other facial regions by training our method first using mouth
crop inputs and second using face crops with masked mouth
regions as input. To generate mouth crop inputs offline, we
predict facial keypoints on the face crop, then perform align
and crop on the mouth such that the leftmost and rightmost
mouth points lie on a horizontal line. We see mAP degra-
dation in the mouth-only model versus the full face model
(91.9% vs 93.0%) supporting the usefulness of facial expres-
sions in ASD prediction. Additionally, we observe that our
masked mouth model achieves 83.42% mAP, showing that
facial expressions with audio is sufficient in our framework to
achieve higher mAP than [11] (79.2% mAP). Even with no
information from the mouth, the model is still able to pull out
enough information to make reasonable predictions and beat
another recent architecture that has access to mouth informa-
tion.

Temporal Encoder Modeling
Video Audio mAP (%)
1-D CNN Conformer 93.0
GRU Conformer 92.1
1-D CNN GRU 924
GRU GRU 91.9

Table 2. Comparison of mAP with different temporal encoder
modeling techniques on the AVA-ActiveSpeaker dataset.

6.3. Temporal Feature Encoder Modeling and Multi-
modal Transformers

In Table 2, we compare various temporal feature encoder
modeling architectures. The conformer and 1D CNN perform
best for audio and video respectively. In Figure 5, we per-
form ablation studies on various combinations of multimodal
transformers and their relative placements. Note that (b) in
Figure 5 refers to removing the self-transformers applied to
the extracted features for each modality, whereas (c) refers
to removing the fused transformer after bilinear pooling. We
also compare the ASD performance for early (immediately
after front-end) fusion in (d), where we only apply the fused
transformer, since the information corresponding to each
modality is already lost. Our results indicate that the multi-
modal transformer gives the highest increase in mAP (2.6%,
d to b), followed by the fused self-transformer (1.3%, c to a)
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Fig. 5. Comparison of mAP with different transformer de-
signs on the validation set of the AVA-ActiveSpeaker dataset.

then the feature self-transformers (.5%, b to a). Combining
all of them gives the best mAP (93.0%, a).

6.4. Parameter, Compute, and Training Efficiency

Our approach has significant improvements in model size and
FLOPs count over [5], as shown in Table 3, since we partially
get rid of the expensive 3D convolutions, which enables the
deployment of our models on low-power edge devices. Our
approach can also be trained end-to-end, unlike [5], which
needs to train feature extractors first, followed by extraction
and back-end training thus resulting in ~2.6 X more training
time. Also note that our method yields similar model size,
FLOPs count, and training time compared to [4], while offer-
ing 0.7% higher mAP in the AVA benchmark. The simulation
times are benchmarked on an Nvidia V-100 GPU with 15.6
GB of memory.

Method Model GFLOPs | Training

Size (MB) Count time (hrs)
ASD-Transformer (Face) 15.02 11.8 15.0
Kopuklu et. al. [5] 48.75 14.25 38.7
TalkNet [4] 15.50 11.3 14.2

Table 3. Comparison of model size, compute, and training
time of our proposed model with the top ASD models

7. CONCLUSION

In this work, we presented a novel framework composed
of audio and video feature extractors, self and multimodal
transformers, and bilinear pooling for audio-video modal-
ity fusion. The framework is trained end-to-end resulting
in effective, efficient multimodal ASD. We showed that our
framework nears the SOTA results against the mainstream
ASD benchmark, namely AVA-ActiveSpeaker, while de-
creasing model size by 3x. Additionally, we validated our
visual encoder’s learned features and showed the usefulness
of facial expressions in predicting ASD through a canonical
face saliency map analysis. Finally, we performed ablation
studies to show the efficacy of our multimodal transformer
architecture and temporal feature encoders design.
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