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Abstract

In this paper, we introduce GauchoChat, a social bot developed for the Ama-
zon Alexa Prize SocialBot Grand Challenge 5. Leveraging recent advances in
generative language models as the primary response generator, GauchoChat in-
troduces three main innovative solutions that lead to proactive, controllable, and
personalized conversational interactions, ultimately improving user experience and
satisfaction. GauchoChat introduces a LLM-based Promptist to dynamically select
a set of prompting strategies based on the current user intent, persona, and emotion,
resulting in use-specific responses for high-quality user engagement. Additionally,
GauchoChat explores a proactive topic switching mechanism for transitioning from
reactive conversations to proactive engagement with users. The proposed topic
switching module intelligently determines when to switch conversation topics and
integrates externally-sourced materials into the conversation. Finally, we developed
real-time image retrieval to display image contents on multimodal Alexa devices.
By implementing these solutions, GauchoChat ensures that its conversations remain
engaging, diverse, and well-informed, fostering a proactive dialogue experience.
In this paper, we present the system design and architecture of the socialbot system
GauchoChat developed for the Amazon Alexa Prize SocialBot Grand Challenge 5,
as well as the evaluations to demonstrate its effectiveness.

1 Introduction

Conversational Artificial Intelligence (AI) has been a long-standing area of interest in Natural
Language Processing (NLP), and it is regarded as a significant milestone towards Artificial General
Intelligence (AGI). In conventional research of NLP, constructing a conversational social chatbot
(SocialBot) is formulated as a task of creating an open-domain dialogue system (Wang et al., 2022b;
Hosseini-Asl et al., 2020; Johnston et al., 2023). However, the applicable socialbot system is supposed
to be a complex system with multiple sub-modules. Besides integrating the most basic dialogue
system module, the socialbot should be able to manage and retrieve the large-scale external knowledge
bases to provide richer chat content in the dialogue as well. The socialbot needs to consider the user’s
emotion in the real-time conversation process and respond emotionally from the perspective of the
personified role.

The previous methods in the SocialBot Grand Challenge mainly focused on constructing a neural-
based dialogue response generator. This generator was trained on well-collected dialogue datasets
using a fully supervised learning approach. Since the introduction of LLMs such as (OpenAI, 2022,
2023; Chiang et al., 2023; Komeili et al., 2022), the general-purpose natural language generation
capability of SocialBot is no longer the major bottleneck in constructing strong social chatbots as
LLMs can now be used to guide the use and direct the dialogue rather than just generating potential
responses.
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During SocialBot Grand Challenge 5, the state-of-the-art methods in conversational AI have gone
through a revolution. The Large Language Models (LLMs) enabled by reinforcement learning
from human instruction and feedback have dominated the tasks and applications in human language
technologies. The emergence of ChatGPT (OpenAI, 2022) demonstrates that constructing a SocialBot
now goes beyond the vanilla function of chatting with humans. The stronger next-generation
SocialBot is required to engage users with more fruitful contents grounded on knowledge bases,
provide multi-modal user-bot interaction, and even offer emotional and mental support from the
perspective of friends. To enable such advanced capabilities of SocialBot, we propose a novel
GauchoChat as our systematical solution to Alexa SocialBot Grand Challenge 5. In the following
sections, we will present the high-level design principles, the system architecture, and the evaluations
of the proposed GauchoChat system.

1.1 Design Philosophy and Goals

As the proposed GauchoChat can be regarded as a complex SocialBot System, we will first provide
an overview of the Design Philosophy of GauchoChat:

• General: Previous chatbots were mainly designed for specific purposes, such as shopping,
reservations, daily tasks, and more. In contrast, the proposed GauchoChat system is a
general-purpose social chatbot capable of engaging in social conversations across various
domains, simulating roles like friends, assistants, and family members within human social
networks.

• Personalized: GauchoChat takes into consideration the personality and preferences of the
user during the response generation process. Additionally, the chatbot maintains a consistent
language style and interlocutor role throughout the interaction.

• Proactive: Unlike traditional reactive information providers, GauchoChat is proactive and
can initiate interesting topics, share jokes, and offer emotional support during conversations.

• Modular: The entire system is a pipelined robust chatbot service application consisting of
multiple well-designed, independent modules that collaborate with each other in a pipelined
order. Each module has a unique functionality and clear input-output flow. Importantly, the
system remains functional even if any of the modules are temporarily disabled from the
pipeline.

• Scalable: The proposed system is not just an experimental research demo; it aims to be a
mature application capable of meeting latency requirements while being easily reproduced
and deployed to support a large number of user requests.

• Multimodal: In addition to its voice capabilities, GauchoChat offers users a captivating
and immersive multimodal experience through dynamic content showcased on Alexa screen
devices.

1.2 High-level Conversational Principles

Our bot should be capable of engaging users on a range of high-level topics, including travel and
vacation planning, sport and wellness, food and cooking, news and current events, entertainment and
pop culture, technology and gadgets, personal development, and self-improvement. To maximize
engagement, we have developed a set of core principles that inform our conversational approach.
These include using open-ended questions to encourage users to share their thoughts and opinions,
providing follow-up responses that demonstrate active listening and an interest in the user’s perspec-
tive, using short and focused prompts that avoid generic small talk, and incorporating multimedia
elements such as images and prompts on the screen to enhance the user’s experience. By adhering
to these principles, we aim to create a dynamic and engaging conversational experience that keeps
users coming back to talk to our bot. Empathy is another crucial component of any successful social
interaction, and it is particularly important in the context of our bot. We recognize that users may
be looking for more than just a chit-chat; they may also be seeking emotional support or a sense of
connection. To that end, we have incorporated the bot’s ability to show empathy during conversation.
This includes using language that conveys understanding and validation, such as acknowledging the
user’s feelings and experiences.
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Figure 1: The overview of the system pipeline of GauchoChat.

2 System Design and Architecture

2.1 Overview

The proposed GauchoChat system is a multimodal and controllable socialbot system that can engage
users in personalized and proactive high-quality conversations. The system overview is illustrated in
Figure 1. The proposed GauchoChat relies on a primary response generator based on a LLM, Vicuna-
13b (Chiang et al., 2023) to generate the final system response. Additional to generating the final
system response, the LLM also performs other dialogue management tasks, including knowledge
retrieval query generation and image search query generation. All significant prompts used in
GauchoChat for both response generation and dialogue management are presented in Appendix A.1.

To achieve proactive, controllable, and personalized social conversation, we propose two novel
methods, LLM as a promptist and proactive topic switching to control and construct personalized
and user-specific prompts as input to LLM. With the generated personalized initial response, we then
propose various autonomous conversational control modules to manage the grounded knowledge base
and system policy for the current turn. We demonstrate the high correlation between the interesting
conversation topic and user engagement, and thus we propose to achieve active language modeling
via controlling the conversational topic flow when user boredom is detected. Additionally, the
multi-modal engagement provides compelling user-machine interactions.

2.2 Proactive Topic Switching

Most large language models, such as GPT-4 (OpenAI, 2023), are trained to perform completions
via instructional tuning. While strong performance on responding to human instructions has led to
a wide variety of emerging capabilities, it does not help the LLM-based socialbots become active
agents. Although LLMs can generate plausible responses to queries and utterances, these are all
reactive behaviors. As Figure 2 illustrates, when faced with passive users, the reactive instruction
completion manner will make the chatbots fail in proposing novel ideas or topics to arouse user
interests, leading to the stop of conversations. Therefore, proactively driving the conversation via
topic flow controlling is still a key unresolved challenge. We imagine an agent that can model its
conversational partner’s emotional state, make predictions about ways to interest them, and keep them
engaged with knowledge from the external world. This can be crystallized into three key challenges,
determining (1) when to switch to a new conversation topic, (2) predicting what topic would appeal to
the customer, and (3) integrating externally-sourced materials into the conversation (see Figure 3 and
Figure 4 below). In the socialbot challenge, we propose to achieve active language modeling via a
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Figure 2: Examples for passive and reactive user-system interactions (the text generated by the team
as an exemplar conversation).

proactive topic switching and controlling module to resolve the aforementioned three key challenges.
The whole topic switching and controlling steps and flows are illustrated as below:

STEP 1. We determine when to switch topics by building multiple classifiers that infer the user’s
level of interest, the topic’s maturity, etc. These classifiers monitor the conversation’s state so that a
new topic can be proposed at any moment. For example, the level of interest can often be inferred
from speech patterns and context. Low-effort statements such as "I don’t know," "sure," and "maybe"
indicate that the user is not investing cognitive effort into the conversation, likely due to a lack of
interest. If this happens, we should move on to something else.

We repurpose our LLM for utterance boredom classification and have it monitor every user utterance
for signs of boredom (indicated by a lack of cognitive effort). To increase the accuracy of user
boredom detection, we run multiple prompts in parallel, with each corresponding to a classifier,
followed by an ensemble-based method to make the topic switch decision.

si = Ensemble(lj), lj = LMClassify(promptj , ui), (1)

where si is the ensemble boredom label at the i-th dialogue turn, and ui is the user utterance of the
i-th turn (or a few recent turns). The ensemble function is responsible for figuring out the boredom
label during the last few turns. An example of the switch decision flow is shown in Figure 4.

STEP 2: Once a decision is made that the topic needs to be changed, we need to decide on a
new conversational topic to improve user engagement. Getting this right is essential because the
conversation will stop if the new topic is not relevant or interesting to the customer. Although
heuristics, such as universal popularity, can be useful, a prediction conditioned on information in the
dialogue history (such as a love for bowling) will be more nuanced and relevant.

One way to propose a new interesting topic is to ask the LLM to "generate a response that proposes a
new topic while leaving the conversation open to continue along the previous track." The LLM can
also be used to generate a hook for the new topic and monitor the user’s reaction. If the user shows
further signs of disengagement, the model will recover the conversation, and another topic can be
proposed in the next turn while taking this new dislike into account.

STEP 3. Once a topic is selected, it then becomes essential to engage the customer with new
and relevant content around this topic. We maintain external knowledge bases, which have been
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“This is an Alexa Prize Socialbot. 
How’s it going today?”

“I’m doing well, thanks. I just 
saw an interesting movie.”

“Oh, what was it about?”

(continue conversation about 
movies)

“Not sure”

“Lots of people seem to really like 
The Matrix. What do you think?”

Interest level 
prediction

“That’s ok. Anyway, did you hear 
about the latest SpaceX launch?”

“I did! It was so crazy!”

High

Low

High

Need to
 change to

pic

SpaceX Falcon 
Heavy aborted a 

triple satellite launch 
with 59 seconds to 

go…

Knowledge 
retrieval

Add novelty to the 
conversation (Scraped & summarized 

article from internet)

“Right? There were only 59 seconds 
left in the launch

Figure 3: A high-level illustration of our topic-switching action during simulated exemplar conversa-
tion (the text generated by the team as an exemplar conversation).

pre-collected from a wide variety of sources, including scientific publications, news articles, podcast
transcripts, and more. There are several methods to select the articles, and we adopt both random
rotation and a more sophisticated embedding-based retrieval method. We deploy an LLM-based
embedding tool to generate the vectorized representations {ei}|A|

i=1 for a set of articles. Afterward, a
short description of the new interesting topic is generated and encoded into t. A nearest search is
conducted to find articles that match the customer’s interests and preferences,

argmax
i,∀i∈|A|

ei · t
||ei|| · ||t||

, (2)

where |A| represents the pre-collected KB size, the articles with the highest cosine similarity are
retrieved. We then inject a logically-ordered summary of this knowledge into the response-generation
prompt so that our bot can select content based on the recent conversation and share this new content
with the user. See above Figure 5 that demonstrates the simplified logic of knowledge retrieval and
injection process.

2.3 Language Model as a Promptist

As there is no universal prompt for LLMs to engage in satisfying conversations with diverse users, it
is crucial to dynamically adjust the prompting strategy to meet users’ needs. In this paper, we propose
a combination of a base prompt that outlines the bot’s primary objective and an add-on prompt
that defines the specific strategy to employ in the conversation. The strategy prompt candidates
are derived from both pre-defined, diverse candidates that cover diverse user-groups, and generated
candidates from LLMs based on the current dialogue context. The question then becomes choosing
the prompting strategy to maximize user engagement. We model this problem as a bandit problem,
where a policy learns to select the best candidate strategy from the pool to achieve the highest reward,
such as the highest satisfaction score and the longest conversation turns. An illustrative example of
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“This is an Alexa Prize Socialbot. 
How’s it going today?”

“I’m doing well, thanks.

“Great! What are you doing today?”

(continue conversation about 
movies)

“Not sure”

“Lots of people seem to really like 
The Matrix. What do you think?”

Interest level 
prediction

“That’s ok. Anyway, did you hear 
about the latest SpaceX launch?”

“I did! It was so crazy!”

High

Low

High

“Right? There were only 59 seconds 
left in the launch

New

Old

New

Maturity of 
topic in 

conversation

Old

After talking for 
some time, topics 
naturally mature

Presence of 
topic

No topic

Present

Present

“I just saw an interesting 
movie” Present

Trigger topic change

Figure 4: A set of feature-based classifiers for topic change decision (the text generated by the team
as an exemplar conversation)

Topic prediction 
(based on likes / dislikes 

inferred from 
conversation)

LLM-generated summary 
of retrieved articles

Corpus of articles
What do we do when we 

receive a boredom signal?

Retrieve top N 
relevant articles

Conversation
history

Dynamic
Prompt

(predict next response based 
on history and article)

Inject summarized 

article into prompt
Response

Article 
Em

beddings

LLM

Figure 5: Topical knowledge retrieval pipeline of GauchoChat when a topic switch flag is raised.

dynamic prompting, controlling, and selection for user-engaging response generation is presented in
Figure 6.

6



In this subsection, we will firstly describe a general metric for evaluating the user preference towards
system responses based on the number of dialogue turns, as human annotation is labor-intensive and
expensive. Secondly, we present the training details and objectives for the reward model to score
future generated responses. Lastly, we describe how we train the policy of LLM Promptist and how
incorporate the such LLM Promptist into the pipeline of GauchoChat.

Sure, what would you like to talk about?

I like playing basketball.

Awesome! Did you see LeBron's latest game-
winning shot? His technique is incredible!

Sure, I have seen that. That is insane.

Absolutely! The way he reads the defense and 
adjusts is pure art. How about Steph Curry's 
shooting? Unbelievable!

Totally agree. I love Steph curry. He has 
revolutionized the game. His play is so 
enjoyable.

The user is a sport fan. Talk 
with the user with passion. 
Combine with some existing 
news and interesting story. Talk 
about some skills. Have a dive-
deep discussion with him.

Indeed! His range and accuracy are unmatched. 
Remember when he broke his own record, 
hitting 402 threes in a season?

Oh definitely. That is incredible.

It truly is. Curry's impact on the game is 
undeniable. Did you hear about his mini-golf 
show "Holey Moley"?

What is that?

"Holey Moley" is a mini-golf competition show 
on ABC, executive produced by Steph Curry. It's 
a fun, family-friendly show.

Let’s chat

The person is a sport and love 
Steph curry. Dive deep with 
the user about Steph Curry. 
Any interesting story or news 
about the player, share it with 
the user. Keep the 
conversation precise and short.

……

……

……

……

……

Candidate Strategy Prompt Pool

Selected

Selected

Figure 6: An illustrative example showcasing the LLM Promptist’s ability to dynamically select a
combination of prompt strategies during a conversation (the utterances were generated by the team).

Metric for evaluating user preference and engagement. It is natural to use the preference score
as one significant metric, as the feedback rating scores are collected on a daily basis thanks to the
Alexa devices and the team.

Besides that, we hypothesize that the longer turns of dialogue mean that the user is more engaged
in the current dialogue and that the generated response quality is higher. Therefore, we propose to
deploy Return as the metric to evaluate user preference and engagement, which is a reward score
obtained from the user interactions and preference score when the task is finished.

The Return of each dialogue is calculated as follows:

Return =

{
α · turn + score If turn ≥ 5,
−α · max_turn + score otherwise. (3)

where max_turn is the maximum turns in the whole user-bot dialogue data we collect from Alexa
users, α = 0.2 is a scalar to normalize the magnitude of turns into the scale of scoring and then the
two scoring metrics can contribute equally. In addition, we assume that every generated response for
each turn in one dialogue contributes equally to the user engagement due to the lack of turn-level
scores and thus we assign the same Return score to every response within one dialogue.

Training for Reward Model. Aligning language model natural language generation to follow
human intents and instructions is critically important to capture user preference and enhance user
satisfaction (Ouyang et al., 2022). After labeling each generated response ai in collected user-bot
interaction feedback dataset (ai, pi) ∈ D, we can transfer the training task of a reward model into
a regression task. The pre-trained RoBERTa-large (Liu et al., 2019) language model is used as the
backbone of the reward model. To construct the inputs into reward model, we concatenate both
the previous dialogue history pi and current generated response ai. We incorporate a Linear Layer
with input dimension of embedding size and output dimension of one on the top of pre-trained
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RoBERTa-large model. We select the output encoding towards the first [CLS] token as the reward
modeling scoring towards each sample. We tune the RoBERTa-large pre-trained language model on
the collected user feedback data with the mean-squared error (MSE) loss:

Lmse = ||r(ai,pi) − fθ((ai, pi))||2 (4)
In this way, given the user utterances and generated system response, the reward model is capable of
generating a simulated user rating towards the system response.

LLM Promptist with Reward Model. It is costly to fully tune the language model used for
response generation to be aligned with human instruction. Instead, we propose a lightweight LLM
Promptist to control and sample the customized strategies for generating response. Such lightweight
LLM is also a pre-trained RoBERTa model. We manually construct a list of 20 prompts representing
different strategies for language generation. The 20 prompt strategies are designed from various
perspectives of user interests, chatting styles, system policies, and user intentions, shown in Table 1.
The prompts can guide the language model to generate personalized and interesting response which
is aligned with user instruction and preference.

Index Prompt
1 Speak in a conversational tone, as if you are having a face-to-face conversation.
2 Share a thought-provoking quote and ask the user for their interpretation.
3 Share a fun fact and ask the user for their opinion.
4 Ask an icebreaker question.
5 Pose a thought-provoking question.
6 Provide factual information without asking questions.
7 Incorporate humor into your response.
8 Suggest a book based on the user’s interests.
9 Suggest a movie based on the user’s interests.
10 Proactively share your personal opinion about the subject.
11 Offer an empathetic and supportive response to make the user feel valued.
12 Present a hypothetical situation to encourage the user to think creatively.
13 Share a quote from a famous person and ask the user if they agree with it.
14 Encourage the user to ask you questions and engage in a dialogue.
15 Try to keep the conversation going for as long as possible.
16 Encourage storytelling.
17 Encourage self-reflection.
18 Encourage sharing personal achievements.
19 Share a personal fact.
20 Add a related joke, ensuring it is safe for kids.

Table 1: 20 hand-crafted prompts used in dynamic prompting.

Formally, given a list of dialogue history pi = {ui1, ui2, · · · , uin}, the LLM promptist samples a
set of prompting strategies ei = {e1i , e2i , · · · , e20i }, eji ∈ {0, 1} from a candidate pool Ecand with
20 hand-crafted prompts. Then the sampled prompting strategies are reconstructed into the main
customized prompt and forwarded to LLM response generator, Vicuna-13b to generate the answer ai,
with the goal of maximizing a reward ri = Rθ(ai|pi). The set of prompting strategies are sampled
from the Bernoulli distribution, of which the probability is generated according to a policy

ei ∼ πϕ(ei|pi), (5)
where ϕ are the policy’s parameters. The answer is generated through: ai = LM(ei, pi) using
the selected prompting strategies and the dialogue history as the input prompt. The reward is then
computed by the trained reward model ri = Rθ(ai|pi).
We optimize the reward with respect to the parameters of the policy network using the Policy Gradient
method (Sutton et al., 1998). In our implementation, we use the REINFORCE policy gradient
algorithm (Williams, 1992):

∇Eei∼πϕ(ei|pi)[Rθ(ei, pi)], (6)

where πϕ is the policy of prompt controller, Rθ(:) is the reward model function, and (ei, pi) is the
pair of prompting strategies and dialogue history.
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2.4 Multimodal Interface

The multimodal nature of Alexa devices opens up a unique opportunity for visually-enhanced
conversation (Wang et al., 2022a). While working on the multimodal interface, we developed a
set of design principles that prioritize customer engagement, safety, and ease of use. We created
flexible APL (Alexa Presentation Language) templates to display content related to the conversation
and implemented a dynamic image retrieval algorithm to ensure that visual content enhances the
customer’s experience.

2.4.1 User Interface Design Principles

Aiming to create an engaging multimodal experience for every Alexa customer, we developed a set
of user interface design principles to guide our implementation of visual content and to ensure it is
consistent, intuitive, and safe.

Firstly, we want to create a sense of familiarity and trust with the customers by using the official
Alexa Prize logo, competition title, and Alexa color palette. Our visual content is designed to be
displayed in the background with the use of backgroundColorOverlay, with minimal text to avoid
distractions and to maintain the flow of the conversation. Secondly, we ensure that all displayed
images are safe, child-friendly, and copyright-free. We use dynamic retrieval to display visual
content that is relevant to the conversation to enhance the customer’s engagement with the bot. Third,
we aim to improve customer experience by providing ideas for the next conversation topic. We use a
mix of visual and text hints to guide Alexa customer. These hints are designed to be intuitive and
easy to use for everyone.

Overall, our user interface design principles prioritize engagement, safety, and ease of use, and we
believe that they help us to create a truly appealing conversational experience for Amazon Alexa
customers. To deliver an engaging multimodal experience with Social Bot, we have used APL
templates that dynamically display images and text, which are presented in Figure 7 and Appendix
Table 3. These templates have flexible design which can be customized to different conversation
flows, which is shown in [Figure 12, 13, 14, 16, 17, 18].

Figure 7: Simplified logic of APL templates display with relation to the conversation flow.

2.4.2 Dynamic Image Retrieval

A dynamic solution to retrieve images on-the-fly is essential for an exceptional customer experience.
The novelty from these visuals would inspire customers to be more creative in their interactions
with Alexa and make the experience more immersive. While calling an API to retrieve and display
an image has been possible for quite a while, LLMs have only recently achieved the capability to
dynamically generate a summary of the conversation that can be applied for the image search query
and further implemented on a multimodal device. Following that, we designed the system in a way
that we retrieve and display images that are on-topic, diverse, and safe to use. Our image retrieval
works in real-time manner and returns images relevant to the most recent conversation topic. The
image retrieval pipeline is shown in Figure 8.
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Figure 8: Simplified logic of image retrieval

Our prompt instruction for vicuna is quite high-level, but carefully-worded. The phrase “child-
friendly” adds a layer of protection to prevent display of inappropriate images. We experimented with
the number of recent conversation turns and found that using the last 2 turns gave the most reliable
results. An example prompt and a search tag is:

Prompt: Return a general, child-friendly search tag to find an image relevant to the most recent topic
of the following conversation. Do not output anything other than this. If it is a person or organization,
do not return anything. Conversation: bot: “Sure, what would you like to talk about? Music, sports,
games, anything in particular?, ’user’: ’travel’, bot: ‘Traveling is always a great topic. Where would
you like to go next? ’user’:i am thinking new york city”

Result: new york city travel’.

The demonstration of image retrieved with a search tag ‘new york travel’is shown in Figure 9.

Figure 9: Demonstration of image retrieved with a search tag ‘new york travel’ (the conversation was
generated by the team for illustrative purposes).
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Then, we forward these queries to an image-hosting service for retrieval. We use pixabay as its
images are copyright-free, it has a safe search option, and reasonable API requests limits). When
no images are found (pixabay is smaller than Google Images or Unsplash), we display a default
‘Response’ template with a neutral background. Although our approach is simple, we found it to be
quite effective. Whether the conversation is centered around “dance forms of Thailand”, “Star Wars”,
or “smoothie recipes”, relevant images are shown each time [19, 20, 21]. In fact, its simplicity is a
major advantage, lowering the barriers for integration into existing systems. Our inference costs are
low (0.61 seconds on average to generate the search query, 0.7 seconds to perform the image search),
and the prompt can easily be changed or moved in.

Our solution is not specific to a specific LLM or image resource and can be replicated. For example,
one can explore dynamic image retrieval and display with ATM, and image resources like Wikimedia
Commons, Unsplash, or Getty Images. We demonstrate how LLMs can help retrieve relevant images
dynamically and how this capability can be further improved. Although the bot does not engage in
conversations about image content, multimodal models will make this possible in the future. This
enables a wide variety of conversation topics, such as analyzing a map or discussing objects on
the picture. LLMs can also predict the next user response based on recent turns and display it as a
conversation hint on the footer of the APL template.

3 Experiments

3.1 Impact of Proactive Topic Switching

In order to mitigate bias from adversarial users, we discard conversations containing words in
Google’s profanity list. From the remaining conversations, we measure the proportion of successful
topic-switches. Specifically, each time our topic-switching module activates, we consider the switch
"successful" if the user’s next response contains a set of keywords that indicate increased engagement.
We define a switch as successful if the user’s next turn contains any of the following keywords: "yes",
"sure", "definitely", "yeah", "okay", "I haven’t", and "love". These keywords are derived from the
most frequent user responses to topic switches in our conversation transcripts (excluding obvious
negatives, like "no" and "not really"). We prefer this approach over LLM-based evaluations because
it (1) avoids exposing user utterances, (2) avoids training-dataset-induced biases common to all
LLMs, (3) is fully interpretable (i.e. no reliance on any black-boxes), and (4) scales across all of our
transcripts.

Although it is quite intuitive that a successful topic switch should be positively correlated with
better user engagement, we perform some statistical analysis on such correlation with user feedback
data collected between semi-final phase. Concluding from these results in Table 2, it is easy to
conclude that the rating is highly correlated to successful topic switching. Therefore, we would
expect consistent and dynamic topic switches to increase both engagement and rating.

Conversation rating Frequency of successful topic switches
1.0-2.0 37.5%
2.0-3.0 50%
3.0-4.0 50%
4.0-5.0 64.2%

Table 2: Correlation between successful Topic Switch and higher conversation ratings. The data is
collected during semi-final phase (06/10/2023-06/23/2023).

We introduced the proactive topic switching and controlling module to our experimental traffic on
May 21st. The last-3-day (l3d) rating time series of the experimental traffic of our bot around the
introduction date of topic switch module are shown in Figure 10. We can observe that our ratings
significantly increase since the introduction of proactive topic switch module. Also the regressed
trend line also demonstrates the positive effect of topic switch.

Note that the decline observed starting on May 28 results from adding a latency timeout to our full
topic switching pipeline, causing our bot to give false promises for interesting information whenever
our knowledge retrieval took more than 4 seconds. This was required to stay within Alexa’s hard 10
second limit. However, retrieval was later moved to a background task, alleviating this issue.
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Figure 10: The l3d rating time series around the introduction of topic switch module. “ProactiveTS“
represents the active language modeling method via proactive topic switching

3.2 Impact of LLM Promptist

We introduce the proposed LLM-based Promptist method to our bot on March 19th and the time
series of last-3-day (l3d) rating near the introduction date has been shown in Figure 11. We can
clearly see an increase in l3d rating on the figure after the introduction of the LLM Promptist method.

Figure 11: The time series of average 3-day rating since the introduction of proposed dynamic
prompting method. The dashed line is the trend line for the l3d rating.

4 Conclusion

In this paper, we propose a novel Socialbot System, GauchoChat as our solution to Alexa Socialbot
Grand Challenge 5. The proposed system is constructed based a primary large-language-model
based response generator and various autonomous controlling modules. We propose three major
technical contributions to engage user in proactive and personalized conversation. The whole system
demonstrates its robustness and effectiveness in several evaluation periods in terms of user ratings
and conversation duration.
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A Appendix

A.1 Key Prompts

Main Dialogue Prompt Have a conversation with the user like a friend in English. Ask engaging
questions. Keep responses to 20-30 tokens. Share your opinions. Talk like a talk show host. If the
user doesn’t react actively, try changing the subject to a creative new topic.

Here’s some external knowledge you can use when making your response:

"<EXTERNAL KNOWLEDGE FROM RETRIEVAL>"

<DIALOGUE HISTORY>

Assistant:

Knowledge Summarization Prompt Here’s an article on <topic name>. This article will eventu-
ally get fed into a prompt used in a dialogue system, for retrieval augmented generation. Summarize
it in a dramatic way into 3 paragraphs so that the dialogue system can introduce the knowledge
turn-by-turn well. <LONG SCRAPED ARTICLE>

Boredom Detection Prompt Example 1 Given a conversation transcript, classify if the person is
likely to be bored or not. Do not output anything other than "bored" or "not bored. I believe that the
user is "
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Boredom Detection Prompt Example 2 Based on the person’s responses, do they seem disinter-
ested or bored? Consider the following factors: short length of response, lack of details, repetitive
response, a lack of engagement. Please return ’bored’ or ’not bored’. Do not output anything other
than this.

Image Retrieval Query Generation Prompt Generate a description of an image in English that
captures the most relevant elements of the given conversation.

"<DEMONSTRATION EXAMPLES>"

<DIALOGUE HISTORY>

Query:

A.2 APL Template Design Overview

Screen Components Description Examples

1. Welcome
Screen

Alexa Prize logo, compe-
tition name, background
image, welcome message,
"Waving Hand" emoji,
footer with text hint.

The first screen customers see when they start chatting
with our Social Bot. Features the Alexa Prize logo,
competition name, a neutral background image, and a
welcome message. Includes a "Waving Hand" emoji
for connection and a footer displaying a hard-coded text
hint in the form of "Try, ’xxx’".

Figure 12

2. Topic Selec-
tion

Alexa Prize logo, compe-
tition name, background
image, conversation topics
with images, text hints.

Displayed when the customer wants to change the topic.
Features the Alexa Prize logo, competition name, a neu-
tral background image, and 6 common conversation top-
ics with relevant images and text hints to motivate cus-
tomers to switch topics.

Figure 13

3. Image Re-
sponse

Alexa Prize logo, competi-
tion name, dynamically re-
trieved background image,
bot response, footer with
text hint.

Displayed when there is a relevant image for the conver-
sation topic. Features the Alexa Prize logo, competition
name, a dynamically retrieved background image, and
the bot response. Footer displays a selected hard-coded
text hint related to the topic.

Figure 14

4. Text Re-
sponse

Alexa Prize logo, compe-
tition name, neutral back-
ground image, bot response
(2 lines of text), footer with
text hint.

Displayed when there is no relevant image. Features
the Alexa Prize logo, competition name, a neutral back-
ground image, and the bot response summarized in 2
lines of text. Footer displays a randomly selected hard-
coded text hint.

Figure 15

5. Visual Hints Alexa Prize logo, competi-
tion name, background im-
age (visual hint), footer with
hint.

Displayed every 5th conversation turn to guide the cus-
tomer to a specific topic. Features the Alexa Prize logo,
competition name, a background image (visual hint),
and a footer hint in the form of "Try, ’xxx’".

Figure 16,17

6. Feedback Alexa Prize logo, compe-
tition name, neutral back-
ground image, feedback
question, two buttons.

Displayed when there is no relevant image or text re-
sponse. Features the Alexa Prize logo, competition
name, a neutral background image, and a feedback ques-
tion with two buttons.

Figure 18

Table 3: APL Template Design Overview

A.3 Multimodal Engagement Examples

Figures 12,13,14,15,16,17,18 show examples for various APL templates which are filled in during
response generation, as described in Section 2.4. Figures 19,21,21 present instantiated versions of
these templates in the developer’s console.
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Figure 12: Start Screen on Alexa Echo Show 8

Figure 13: Topic Selection on Alexa Echo Show 8

Figure 14: Image Response on Alexa Echo Show 8
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Figure 15: Text Response on Alexa Echo Show 8

Figure 16: Visual Hints on Alexa Echo Show 8

Figure 17: Visual Hints on Alexa Echo Show 8
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Figure 18: Feedback Button on Alexa Echo Show 8

Figure 19: Demonstration of image retrieval on a popular topic (the conversation was generated by
the team for illustrative purposes).

Figure 20: Demonstration of image retrieval on a popular topic (the conversation was generated by
the team for illustrative purposes).
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Figure 21: Demonstration of image retrieval on a niche topic (the conversation was generated by the
team for illustrative purposes).
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