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Abstract
Streaming Automatic Speech Recognition (ASR) in voice assis-
tants can utilize prefetching to partially hide the latency of re-
sponse generation. Prefetching involves passing a preliminary
ASR hypothesis to downstream systems in order to prefetch and
cache a response. If the final ASR hypothesis after endpoint de-
tection matches the preliminary one, the cached response can
be delivered to the user, thus saving latency. In this paper,
we extend this idea by introducing predictive automatic speech
recognition, where we predict the full utterance from a par-
tially observed utterance, and prefetch the response based on
the predicted utterance. We introduce two personalization ap-
proaches and investigate the tradeoff between potential latency
gains from successful predictions and the cost increase from
failed predictions. We evaluate our methods on an internal voice
assistant dataset as well as the public SLURP dataset.
Index Terms: Voice Assistants, ASR, Latency, Endpointing,
Prefetching, Language Modeling, Personalization

1. Introduction
In voice assistants, a request is processed by multiple systems
before the response is ready, starting with automatic speech
recognition (ASR) and the interpretation of the ASR hypoth-
esis, and ending with the transmission of the generated text to
speech (TTS) response to the user, as well as potential execu-
tion of external effects such as turning on a smart home de-
vice. The steps involved in the generation of the response each
contribute varying amounts of latency, adding up to the user-
perceived latency (UPL). Besides accuracy, a design goal for
voice assistants is minimization of UPL. One major contributor
to UPL is algorithmic latency for utterance endpoint detection
[1]. Only when the endpoint of the utterance has been detected
with sufficient confidence, e.g., based on acoustic and ASR de-
coder features [2, 3], the final ASR hypothesis can be provided
to downstream systems for result generation. Prefetching [4, 5]
has been proposed as a way to reduce UPL by already propagat-
ing an initial ASR hypothesis before the final endpoint has been
detected and caching the result. E.g., a second, lower thresh-
old for endpoint detection may be applied to trigger speculative
execution using the preliminary ASR hypothesis. If the recog-
nition after the final endpoint confirms the preliminary hypoth-
esis, the prefetched response can be returned to the user. This
allows hiding a part of the downstream systems’ latency within
the period between the speculative and the final endpoint. A
prerequisite is support for speculative execution in the down-
stream pipeline, e.g., the possibility of executing the response
generation speculatively, while postponing any external effects
to after the confirmation by the final endpoint.

In this paper, we propose to extend the concept of prefetch-
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Figure 1: Illustration of major latency contributions for a
voice assistant, comparing standard and predictive ASR. User-
perceived latency (UPL) is dominated by endpointing (EP) and
response generation. Predictive ASR ideally allows hiding the
response generation latency within the time between prediction
and endpointing, assuming successful prediction.

ing. Instead of using a preliminary endpoint detector to trig-
ger prefetching, we use a prediction strategy that generates a
complete utterance from a partially observed utterance while
the user is still speaking. This promises a larger window for
latency savings compared to endpoint-based prefetching. For
queries that can be predicted early in the utterance, we could
hide the entire downstream system latency between the time of
the initial prediction and the final ASR result that matches the
prediction. Ideally, the final response playback or intent execu-
tion could be carried out immediately after the final ASR result
is available, assuming the prediction has been correct. Fig. 1
illustrates this concept: after the user has said ”what is”, we
can predict that the utterance is going to end in ”...the weather
today”, based on the user’s frequent usage of this phrase or ad-
ditional contextual information such as the time of day. We then
use this predicted hypothesis to generate a response. As soon as
the endpoint has been detected and the final ASR result con-
firms the prediction, the response can be returned to the user,
thus saving latency. In case of a mismatch, the cached response
has to be discarded and re-generated, with no effect on latency,
but additional compute cost for response generation1.

1Even in case of mismatch, e.g., the user instead saying ”what is the
weather today in Seattle”, a latency benefit may remain due to down-
stream systems being able to re-use internal caches.



In Sec. 2, we describe our approach for predictive ASR. In
Sec. 3, we present our experimental implementation and results.

2. Proposed approach
We consider a simplified voice assistant system architecture
consisting of an utterance endpoint detector, a causal streaming
ASR model, and a response generator. We make the simplify-
ing assumption that the endpoint detector (EP) and the response
generation make up the UPL of the system, neglecting ASR la-
tency2:

TUPL = TEP + TResponse, (1)

where TEP is the time between end of the speech and the end-
point decision, and TResponse is the time that systems downstream
from ASR require to generate a response and execute the intent.
In the literature, prefetching has been proposed for executing
response generation and endpoint detection in parallel [4], re-
ducing UPL in case of success:

TUPL, PF =

{
max(TEP, TPF + TResponse) (successful prefetch)
TEP + TResponse (failed prefetch),

(2)
where TPF is the prefetching latency, which typically is a pos-
itive delay between end of speech and the point in time where
we trigger prefetching3. We propose to extend prefetching to
predict the full utterance transcription before the user has fin-
ished speaking the utterance, thus extending the latency saving
opportunity. If a correct prediction of the utterance is available
by ∆T before the end of speech in the spoken query, we have a
negative prefetching latency, i.e., TPF = −∆T . We call ∆T the
prediction gain. Premature early prefetching can hinder the ef-
ficacy of a predictive ASR strategy. To address this, we propose
to implement predictive ASR using combination of a predic-
tion model and a policy that uses a prediction confidence model
to accept or reject a predicted transcription. We describe these
models in the following.

2.1. Prediction Model

We consider the task of predicting the full utterance token se-
quence, yfull, at time t as determining the most probable se-
quence given all observations available until t, xt:

ŷfull,t = argmax
yfull

P (yfull|xt) (3)

Observations would typically consist of the partial utterance au-
dio, but could also include previous interactions and any avail-
able contextual information, such as the time of day. For simpli-
fication we separate the modeling task into a causal ASR model
which estimates the partial token sequence up to t, ŷt, and a
prediction model which extrapolates this partial token sequence
to the most probable complete token sequence:

ŷt = argmax
y

P (y|xt) (4)

ŷfull,t ≈ argmax
yfull

P (yfull|ŷt) (5)

This allows the use of a standard ASR model and decoder to
obtain the partial utterance (4) and a standard generative lan-
guage model (LM) for the prediction (5). E.g., prediction could

2An in-depth study of ASR latency contributions can be found in
[1].

3Note that some ASR models can have a negative partial latency,
which would result in a negative delay (see Sec. 4).

re-use the model and partial computation results from an LM
which is used for re-scoring [6, 7, 8], or leverage a general pre-
trained language model such as Generative Pre-trained Trans-
former (GPT) [9].

2.2. Prediction Confidence Modeling

After predicting the full utterance text, a decision needs to
be made on whether to propagate the result downstream for
prefetching or not. The tradeoff to consider here involves the
the probability of success, the cost of a failed speculation at-
tempt, and the latency gain in case of success. While these fac-
tors could be modeled in a joint loss function, for now, we only
model the prediction confidence, i.e., the probability of the pre-
dicted utterance ŷfull,t matching the final ASR hypothesis ŷfull:

P (ŷfull,t = ŷfull). (6)

We apply a threshold to this confidence estimate to decide on
whether to act on a prediction, and assume we only act on one
prediction per utterance.

In the simplest case, this confidence model could be re-
placed by the probability given by the prediction model. How-
ever, training a dedicated confidence model allows the use of
additional features which have not been made available to the
prediction model, such as the time since the start of the utter-
ance, the confidence of the ASR model for the partial hypothe-
sis, or additional personalized signals.

2.3. Personalization and Contextualization

Usage patterns of voice assistants are highly individual and de-
pendent on the context of an interaction. E.g., a user may have
the habit of asking for the weather at a certain time of the day,
or just use the same consistent phrasing for common requests.
Further, requests may depend on information such as the lo-
cation of the device, entries in a user’s playlist, or available
smart home devices and their state. E.g., if the partial hypothe-
sis is ”turn living room”, and the user has a device called ”liv-
ing room light” which is turned off, a completion with ”...light
on” is very likely. We therefore expect that it is beneficial for
prediction accuracy to account for personalization and context.
We may condition either the prediction model and/or the con-
fidence model on personal and contextual information such as
the recently spoken utterances of a user or the current time of
day. While conditioning the prediction model itself is likely to
be the most general and powerful approach, practical consider-
ations make the use of personalization in the confidence model
attractive as well. E.g., in case an existing, general LM is used
for prediction, a confidence model could be built with contex-
tual or personalized features and used to select one of several
n-best predictions generated from the LM. In this paper, we im-
plement personalization in two ways. First, we use the relative
frequency of a prediction in a user’s recent utterance history as
a feature for the confidence model. Second, we augment the
predictions from the LM with additional predictions obtained
by prefix matching in the recent utterance history of a user.

3. Experiments
We conduct experiments on two English speech datasets. The
first is an internal dataset consisting of de-identified user inter-
actions with a voice assistant. This dataset contains four weeks
of continuous interaction data from a number of users, with ap-
prox. 1700 users in the training partition, and 200 in the devel-
opment and test partitions, respectively. We use the last three



weeks for evaluation, thus allowing us to evaluate the effect of
personalized prediction and confidence modeling with at least
one week of prior historical context for each utterance under
test. The second dataset we experiment on is the SLURP dataset
[10], which covers similar domains as our internal dataset, how-
ever, consists of artificially generated independent utterances
and therefore cannot be used for personalization experiments.

3.1. Evaluating Prediction Performance

We distinguish three possible outcomes for an utterance. If
the confidence model with a given threshold did not allow any
prefetching, there is no impact on latency or cost (no prefetch).
If prefetching was triggered with a prediction that contains at
least one additional word over the partial ASR hypothesis, and
the prediction turns out to match the final ASR hypothesis, we
have a potential for a latency gain, without an impact on cost
(successful prefetch). Finally, if we triggered prefetching with
an incorrect prediction, there is no impact on latency, but an im-
pact on cost for repeated response generation (failed prefetch).
We assume at most one prefetching attempt per utterance.

We first evaluate the rate of successful and failed prefetches
relative to the total number of utterances. The rate of successful
prefetches corresponds to the fraction of utterances which ben-
efit from prefetching. The rate of failed prefetches corresponds
to the relative downstream cost increase due to prefetched re-
sponses which need to be discarded and re-generated. To quan-
tify the potential latency gain from prefetching for an utterance,
we evaluate the prediction gain ∆T as the time between the
availability of the prediction and the end of speech of an utter-
ance. In other words, this prediction gain corresponds to the
extension of the prefetching window achievable over a hypo-
thetical ASR system with perfect endpointing or perfect causal
endpoint-based prefetching.

3.2. System Implementation

3.2.1. ASR Decoding

We use an RNN-T ASR model [11, 12] with an 8×1280 long
short-term memory (LSTM) encoder, a 2×1280 LSTM predic-
tion network, a single-layer joint network, and a total of 148M
trainable parameters. The model uses 4k word pieces and is
trained on an internal voice assistant dataset. In order to gener-
ate partial ASR hypotheses, we trigger result generation in fixed
intervals of 120 ms. The final ASR result is obtained by decod-
ing the utterance audio after endpoint detection. We note that,
while the utterance audio in our dataset contains trailing silence,
we compute the prediction gain ∆T of an utterance as the in-
terval between the last frame used for partial decoding, and the
last frame containing speech according to a phonetic alignment
of the utterance.

3.2.2. Prediction

Our prediction model is a word-level 2-layer LSTM LM [13,
14]. It is trained to predict the next token given the previous
tokens on a mix of voice assistant utterances and out-of-domain
datasets. We use the same type of LM in the ASR second-pass-
rescoring stage [6, 7, 8, 15] and could therefore theoretically re-
use both the model and partially the computations. The model
has a the vocabulary size of 283k and 149M trainable parame-
ters (4M in the LSTM, the remainder in the input embedding).
For evaluation on the SLURP dataset, we train a second model
by fine-tuning the first model on data from the SLURP training
partition. The perplexity of the models is 15 for the internal

dataset test partition, and 31 for the SLURP dataset test parti-
tion, respectively (we attribute the difference in perplexity to the
fact that the SLURP dataset contains artificial sentences which
were generated in written form for research purposes). Pre-
diction is implemented using beam search to generate a set of
NLM candidate predictions which complete the partial input to-
ken sequence until the end-of-sentence symbol. We here chose
NLM = 4 as a tradeoff between diversity in prediction candi-
dates and computational effort.

In addition to the prediction from a neural language model,
we generate a set of personalized predictions from the past rec-
ognized utterances of a user prior to the current utterance (up
to 4 weeks of personal usage history). We do this by select-
ing all previous recognitions which match the prefix of the cur-
rent partial hypothesis, and combining them with the set of non-
personalized predictions obtained from the language model.

3.2.3. Prediction Confidence Modeling

We train an ensemble neural classifier (up to 4 dense layers with
width 512) to classify whether a prediction matches the final ut-
terance. We train this classifier on predictions from the training
partition of the respective dataset and use the development parti-
tion for model selection and early stopping. For each utterance,
all predictions generated from all partial ASR hypotheses are in-
cluded in the training dataset (excluding predictions with zero
predicted tokens), resulting in a training dataset size of 5.5M for
our internal dataset and 1.2M for the SLURP dataset.

Our baseline model uses as features the log-probability of
the prediction conditioned on the partial hypothesis, and the
rank of the prediction in the n-best list, as obtained from the
LM. We also use simple text features (number of words and
characters in the partial hypothesis and prediction) and the time
of the prediction relative to the start of the utterance. Note these
features have a minor impact compared to the LM features.

We implement a confidence model which accounts for per-
sonalization by adding a personalized feature, which is the log-
frequency of the prediction relative to other possible comple-
tions of the given prefix from a user’s history, with a fallback to
-10.0 for utterances not seen in the history.

3.3. Results and Discussion

Fig. 2 shows the tradeoff between successful and failed prefetch
rates on our internal dataset (test partition) for varying accep-
tance thresholds. We also show oracle results, where we ac-
cept the first prediction which matches the final recognition;
this sets an upper bound of 57% predictable utterances with
our given prediction model. Plot labels display the prediction
gain ∆T after averaging over all successfully predicted utter-
ances. Fig. 3 additionally shows the prediction gain averaged
over all utterances (with fallback to 0 for utterances with no or
failed prefetching attempt), thus reflecting the average potential
latency gain while also taking the prefetching rate into account.

We first note that the relationship between successful and
failed prefetches is not monotonic, but successful prefetch rate
starts decreasing at some point as the acceptance threshold be-
comes more permissive. This is due to our chosen limitation
to at most one prefetch per utterance, which means we waste
the potential for prefetching at a more promising point in time
if we decide to prefetch too early. On the other hand, we see
that more permissive operating points, corresponding to earlier
prefetching, lead to a higher latency gain in case of success.

At a maximum, by using a combination of personalized and
LM predictions, as well as a confidence model which includes



Figure 2: Rate of successful vs. failed prefetches on the internal
voice assistant dataset. Text labels show the prediction gain
(time between prediction and end of speech) averaged over the
successful prefetches.

Figure 3: Mean prediction gain over all utterances vs. rate
of failed prefetches (internal voice assistant dataset). Rate of
failed prefetches corresponds to downstream cost increase.

personalized features, we can achieve 28% correctly predicted
utterances, at a cost of a 20% downstream execution overhead
(due to failed prefetches). The average prediction gain for
successful prefetches at this operating point is 356 ms, or 1.7
words. Using the same confidence model, but relying merely
on LM predictions or only personalized predictions reduces the
success rate. This indicates that the combination of global and
personalized modeling is critical for successful prediction. Fi-
nally, using LM predictions without any personalized features
in the confidence model causes a more significant drop in per-
formance, regardless of whether we use a confidence model or
the LM score directly as decision criterion for prefetching.

Fig. 4 shows corresponding results on the SLURP dataset
(test partition). For this dataset, we did not estimate the speech
endpoint for each utterance, instead we only evaluate prefetch-
ing success and failure rates, as well as the average number of
predicted words for successful prefetches, which we show in la-
bels. We note that there is no consistent improvement from the
use of a confidence model, possibly due to mismatch between
the training and test partition distributions, or due to the fact that
the confidence model is trained to classify each prediction sepa-

rately, which is slightly mismatched with our evaluation metric.
Overall, prediction accuracy on SLURP is behind our internal
dataset, reflecting the higher perplexity which we also observed
in the language model. Due to the lack of a per-user history, this
dataset also cannot benefit from personalization.

4. Relation to Prior Work
In [4, 5], prefetching for ASR is described as the process of trig-
gering an early ASR hypothesis generation based on an estimate
of the end-of-speech probability. This early hypothesis is used
to generate results which are then confirmed or discarded based
on the final ASR hypothesis. The authors of [5] also present
observations that streaming ASR models are capable of produc-
ing partial hypotheses with a negative latency, corresponsing to
a prefetch window extension of up to 50ms. Further increase
in negative latency could be achieved by applying regulariza-
tion during model training (FastEmit), although at the cost of
degrading word error rate (WER) [16]. One major difference in
our work is that we use a dedicated prediction model. We there-
fore do not need to constrain the ASR model training in ways
that potentially affect accuracy. Also, prediction using a sep-
arate language model allows us to predict up to multiple word
tokens of the user utterance. A second difference is that we do
not trigger prefetching based on an end-of-utterance probability,
but by an estimate of the probability that a prediction matches
the final ASR hypothesis.

5. Conclusion
We proposed a predictive ASR system for voice assistants
which prefetches downstream results based on predictions of
the full utterance from a partially spoken utterance. The pro-
posed system allows obtaining the correct complete hypothesis
on average 300 ms before the end of speech (i.e., up to 300 ms
latency reduction) for 23% of the utterances in a voice assis-
tant dataset, while incurring only an 8% increase in downstream
cost due to failed prefetching attempts. The maximum suc-
cessful prefetch rate of the current system of 28% might be
further increased by lifting the limitation to a single prefetch
attempt per utterance, instead allowing multiple parallel or se-
quential prefetches (incurring higher downstream cost). We fur-
ther found personalization of predictions to be a critical factor,
and expect that an even larger effect could be achieved by condi-
tioning the prediction model itself on the usage history, as well
as exploiting additional contextual features such as the time of
day or approximate device location.

Figure 4: Rate of successful vs. failed prefetches on the SLURP
dataset. Text labels show the average number of predicted
words for successful prefetches.
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