
Probabilistic Approach for Recommendation
Systems

1st Nada Abdalla
Amazon Web Services

Seattle, Washington, USA
nadabdal@amazon.com

2nd Damien Forthomme
Amazon Web Services

Seattle, Washington, USA

Abstract—In this article, we propose a new probabilis-
tic approach for product recommendations using deep
learning framework, combining information from histor-
ical observations, similar users and prior knowledge. The
deep learning approach is using autoregressive recurrent
networks to model the recommendations probabilistically
from a Bernoulli distribution. If prior information exists
we implement a Pseudo-Bayesian approach, where we
obtain posterior samples assuming Bernoulli likelihood
on the sampled data from the deep learning model. The
proposed approach allows for a very flexible modeling of
product recommendations and quantifying uncertainty in
predictions. Simulations and experiments were conducted
to demonstrate the applicability and performance of the
model. Comparisons made to related recommendation
models revealed more accurate predictions among the
proposed models.

Index Terms—DeepAR; Monte Carlo; LSTM; Recom-
mender Systems; EM

I. INTRODUCTION

We consider the problem of developing a probabilistic,
time aware item recommender system. In this setting,
the broad scientific goal is to capture the underlying
relationships generating user choices by combining user
history if available and interactions, in addition to expert
knowledge if available.

Many traditional approaches to recommendations use
item-to-item similarity, assuming that items that are
clicked/purchased together are correlated. While highly
interpretable and effective in many settings [1], these
models ignore uncertainty, heterogeneity between the
users and the effect of time on the user behavior. Other
methods look at user-to-user similarity and take into
account historical user behavior [2]. Both approaches
lack the ability to produce time aware recommenda-
tions and the ability to work on cold start problems.
They also lack the ability to quantify uncertainty in
a probabilistic manner. As far as we know, there has
not been any work prior to this work on probabilistic
deep learning models in the context of recommenda-
tion systems. Recent work on probabilistic modeling
mostly focused on forecasting problems. For example,

[3] assumed Gaussian or Negative Binomial likelihoods
to predict the probability distribution of the forecasted
estimates in what they refer to as DeepAR. On the other
hand, deep learning based recommendation models have
focused on enhancing the estimated recommendations
by modeling the non-linear relationships between the
features and not on probabilistic inference. The approach
proposed by [4] uses parallel RNNs to model different
features, where hidden states of these networks are
merged to produce the score for all items. Another form
of RNN recommendation models includes the use of
hierarchical RNN (HRNN) to evolve the latent states
across the users’ history [5]. In addition, some recent
work considered enhancements to RNNs which aims
at avoiding noisy signals and overfitting. For instance,
[6] used data augmentation approach and embeddings
dropouts. These modifications however may only be
beneficial for session based recommendations. Another
interesting recommendation model was introduced by [7]
where recommendation is posed as extreme multiclass
classification and the prediction problem becomes to
accurately classify a specific video watch among millions
of videos based on a user and context. The deep neural
network tries to learn the user embeddings as a function
of the user’s history and context that are useful for
discriminating among videos with a softmax classifier.
More recent advancements in sequential recommenda-
tion models consider bidirectional architecture to model
user behavior sequences, such as BERT4Rec [8].

Bayesian deep learning methods are highly flexible,
but more complex. In this context, Bayesian methods
[9] have an established history of success in combining
prior information and direct measurements to quantify
uncertainties through posterior inference. Bayesian prob-
abilistic estimation can help with a lot of scenarios
that require expert knowledge such as cold starts. User
and/or item cold start is a common problem that is
usually addressed dependent on the user-item prefer-
ences. [10] proposed using item based stereotypes, in
a pre-processing step into the recommendation model.

This approach however requires separate modeling for
stereotype creation, while in the Bayesian framework
it is built into the prior specifications. The Bayesian
approach also allows for incorporating expert knowledge
on an item, which is very common in industries such
as medical device personalization, software services and
others. [11] has proposed using expert inputs in physi-
cians surveys to identify patient characteristics relevant
to the performance of the medical device tasks. The
proposed approach suffers from lack of generalization
to other applications and quantification of uncertainty.

The importance of recommendation models lies in
their ability to produce estimates of the usage likelihood
using information generated by the observations. We
extend upon the autoregressive (deep) neural network
model proposed by [3], where we model the likelihood
function for the estimated outcomes using Bernoulli
distributions. We can enrich the inference on the pre-
dicted probability using a Beta prior which enables
incorporating expert/prior knowledge if available in a
Bayesian like framework. We refer to our method as
Pseudo-Bayesian, where rather than fitting a complete
Bayesian Neural Network that can be computationally
intensive [12], we apply the Bayesian framework on
the sampled/simulated Bernoulli data resulting from the
deep neural network. Approximate Bayesian methods
such as Approximate Bayesian computation (ABC) [13]
are rapidly gaining popularity, nonetheless they make
assumptions and approximations whose impact needs to
be evaluated. The proposed model will yield a more
flexible and robust recommender system that outputs a
probability distribution rather than a single point esti-
mate. The uncertainty in the prediction can be directly
quantified through the probability distribution, which
is very important especially in item ranking problems.
We discuss a general framework for inference and
demonstrate our approach on simulated data and real
industry data. The focus of the paper is on one step
recommendation, however the methodology can easily
be extended to multiple steps in the future. 1

II. RELATED WORK

A. DeepAR

[3] proposed DeepAR, a methodology that makes
probabilistic forecasts in the form of Monte Carlo sam-
ples that can be used to compute consistent quantile
estimates for all sub-ranges in the prediction horizon.
It is based on training an autoregressive recurrent neural
network model on a large number of related time series.
Using data from related time series allows more complex
models to be fitted without over-fitting and provides

1We will publish our code as a Sagemaker prebuilt Docker image
to promote reproducibility and expand the impact of our research.

forecasts for items that have little or no history available.
It does not assume Gaussian noise, but can incorporate
a wide range of likelihood functions, allowing the user
to choose one that is appropriate for the statistical
properties of the data.

We approach the recommendation problem by incor-
porating an appropriate likelihood such as the Bernoulli
likelihood, and combining that with non-linear data
transformation techniques, as learned by the (deep) neu-
ral network.

Suppose that {zt : t ∈ T }, zt ∈ ℜnz is a stochas-
tic process, where T is the index set and nz is the
dimension of the target vector. Let DNNt represents
the neural network used in the model at time t. At
each time t, the inputs to the network are the covariates
Xt, the target at the previous time step zt−1 and the
hidden state from the previous network output layer
ht−1. The model output layer at time t thus would be
ht = DNNt(ht−1, zt−1, xt), where xt is the feature set
at time t, ht is then further used to calculate parameters
of the likelihood such as, µ and σ in case of Gaussian
distribution or θ in case of Bernoulli distribution, which
is used for training the DNN parameters. The DNN
initial cell state and hidden state are initialized with
zeroes. In general settings, we would want to find Ω
that maximizes the log likelihood function l, where
l(z|Ω) = logL(z|Ω), where Ω is the set of the DNN
parameters and the likelihood parameters.

Our goal is to model the conditional likelihood at time
t = T + 1, . . . T ∗, using the past at times t = 0, . . . T ,
assuming the covariates are known for all time points.
Figure (1) is a representation of the training and predic-
tion architectures.

Fig. 1: Graphical representation of DeepAR training and
prediction

In prediction, we can obtain samples directly from the
target distribution which is a Bernoulli distribution in the
recommendation framework.

B. Recommendations as Multiclass Classifications

[7] used deep neural networks for Youtube recom-
mendations. They posed recommendation as extreme
multiclass classification where the prediction problem
becomes to accurately classify a specific item wt at time
t among millions of items i from a corpus V based on a
user U and context C. Using the above definitions, the
probability of item i at time t becomes

P (wt = i|U,C) =
eviu∑

j∈V evju

where u ∈ RN is a high-dimensional embedding of
the user and context pair and the vj ∈ RN represents
embeddings of each candidate item. The embeddings are
learned jointly with all other model parameters through
normal gradient descent back propagation updates. Fea-
tures are concatenated into a wide first layer, followed by
several layers of fully connected Rectified Linear Units
(ReLU).

III. MODEL

In this section we describe the proposed Pseudo-
Bayesian DeepAR model for recommendations. In Sec-
tion III-A we introduce DeepAR for recommendations,
then we explain the Bayesian addition to the model in
Section III-B.

A. DeepAR for recommendations

Our model is based on multiclass classification pre-
sented in Section II-B, where the output is a probability
distribution as outlined in Section II-A. In recommenda-
tion systems, we can use the Bernoulli likelihood, since
for every user i at time t, we would like to suggest
whether an item should be recommended or not. The
likelihood is defined as

L(Z|θ) =
∏
i,t

θ
zi,t
i,t (1− θi,t)

1−zi,t , zi,t = 0, 1,

θi,t = θ(hi,t) = 1/(1 + exp− (ωT
θ hi,t + bθ)),

where the parameter θ is obtained from the DNN
output layer ht = DNNt(ht−1, zt−1, xt), where ht

is the output layer at time t − 1, and transformed
through an affine function followed by softmax function
to ensure that it lies between 0 and 1, and ω and b are
parameters of the affine function of the network output.
DeepAR for recommendations is provided in Algorithm
1. The algorithm emulates Expectation Maximization
(EM) algorithm [14] since we are optimizing a likelihood
function with the objective of learning a probability
distribution (Bernoulli in this case).

Formally, assume we have i = 1, . . . , N users,
t = 0, . . . T time points and j = 1, . . .M items to

Algorithm 1 DeepAR for Recommendations

• Given xi
0, . . . , xT ∗i, for i = 1, . . . , N ,

– For (t = 0), we initialize hi,0 = 0 and zi,0 = 0
such that hi,1 = DNN(hi,0, zi,0, xi,1,Ω) where Ω
is the DNN parameter vector and the likelihood
parameter θ.

– For t = 1, . . . , T , the target distribution
is zi,t ∼ p(.|θ(hi,t,Ω)), where hi,t =
DNN(hi,t−1, zi,t−1, xi,1,Ω) .

– And for t = T + 1, . . . T ∗ the target
distribution is ẑi,t ∼ p(.|θ(ĥi,t,Ω)) where
ĥi,t = DNN(hi,t−1, ẑi,t−1, xi,1,Ω) initialized
with ĥi,t = hi,t−1 and ẑi,t = zi,t−1, where
t = T + 1.

• At each iteration the parameters of both the DNN
and the likelihood, are learned by maximizing the log
likelihood l =

∑N
i=1

∑T
t=0 zi,tlogθi,t+(1−zi,t)log(1−

θi,t))) using stochastic gradient descent with respect to
all the prameters Ω.

• Draw S samples from the target distribution.
• Develop probabilistic inference from the sample draws.

recommend. We define the dependent variable z ∈ {0, 1}
as

zi,j,t =

[
1 if user i uses item j at time t

0 otherwise

]
such that Z is the (MN)× T matrix.

Similarly, we define the model covariates X as the
NM ×T ∗×R array, where R is the number of features
and T ∗ ≥ T . For large data sets, we can use embeddings
for some or all the variables [15], which is believed to
improve model performance and reduce the dimension
of the feature matrix.

For a given time t, we obtain s = 1, . . . S Monte Carlo
samples from the target distribution, i.e ẑi,j,t,s. Using the
above S samples, we can calculate

θ̂i,j,t =

S∑
s=1

ẑi,j,t,s/S (1)

In a frequentist settings, we can apply bootstrap and user
the 95th and 5th percentiles to get the upper and lower
bounds of the predicted probability.

In the Pseudo-Bayesian framework, as explained in
the following section, we will generate the credible
intervals using posterior samples for the probability θ.
The estimated probabilities can be used to rank the
recommendations for the given user, item and time.

B. Pseudo-Bayesian methods

We extend upon the model in section III-A by using
the Bernoulli sampled data and imposing a prior distribu-
tion on the predicted probability and drawing inference
using the posterior distribution. The use of a Bayesian
framework allows very flexible modeling of the predicted

probability for a particular item. We use conjugate prior
on the probability due to their algebraic convenience as
well as intuitively showing the updates on the prior.

For the Bernoulli likelihood, the Beta distribution is a
conjugate prior, where the posterior distribution is also
a Beta distribution. More generally, the proposed model
admits the following hierarchical representation

zi,j,t,s|θ ∼ Bernoulli(θ),

Zi,j,t|θ ∼ Binomial(S, θ),

θ ∼ Beta(a, b) (2)

where Zi,j,t =
∑

s zi,j,t,s.
Reasonable informative priors can be used where we

are able to specify a prior point estimate θ0 for θ based
on previous data i.e. θ0 = zold/nold, published study,
data from a similar experiment, expert knowledge or
reasoning about the circumstances. A lot of the recom-
mendation applications can get advantage from expert
knowledge on new items and/or users, which can help
with cold start problems. Examples of such applications
include personalizations in the medical field, where
specialists knowledge is available and can help with
enhancing the accuracy of the recommendations. An-
other example is online sales recommendations, where
marketing and sales professionals can provide insights
on new items.

Given θ0, the mean of θ ∼ Beta(a, b) is θ0 =
a

a+b , hence, given an estimate of the variance σ2 =
a

a+b
b

a+b
1

a+b+1 , we can solve for a and b in (3).

σ2 = θ0(1− θ0)
1

1 + a+ b
,

a+ b+ 1 =
θ0(1− θ0)

σ2
,

a+ b =
θ0(1− θ0)

σ2
− 1

such that θ0(1− θ0) > σ2. Finally we get a = (a+ b)θ0
and b = (a+ b)(1− θ0). Specifying a prior sample size
n0 = a+b and θ0 = a/(a+b), we get a = θ0n0 and b =
(1− θ0)n0. In the absence of informative prior, we can
specify a = b = 1 which is equivalent to Uniform[0, 1]
distribution.

C. Model Implementation and Evaluation

We will consider two variations of the model. We will
refer to the first as Frequentist Probabilistic Recommen-
dation model (FPR). FPR results from a non-Bayesian
framework, where we use (2) to calculate confidence
intervals. Our second model imposes a Beta prior and is
referred to as Bayesian Probabilistic Recommendation
model (BPR). Depending on the application, we can
consider a non-informative prior where a and b in (3)

equals 1 or informative priors where we specify a and
b from previous experiments. We compared the results
against several baselines that are grouped into three
categories; simple architecture models, deep learning
based models and sequential models. The first category
includes item-to-item similarities (SIMS) model that uses
item based Collaborative Filtering [1] which identifies
the co-occurrence of the item in user histories in the
interaction dataset to recommend similar items. We also
include Matrix Factorization (MF) [16] which represents
user/item as a vector of latent features projected into a
shared feature space where the user-item interactions are
modeled using the inner product of user-item latent vec-
tors. The second category includes Neural Collaborative
Filtering [17] which replaces the inner product with a
neural architecture that can learn an arbitrary function
from data. The third category includes BERT4Rec [8]
and hierarchical recurrent neural network (HRNN) [5]
which includes the use of RNN to evolve the latent states
across the users’ history.

For models comparisons, we use Mean Reciprocal
Rank (MRR) and precision. MRR tries to measure the
rank of the first relevant item. For each user i, a list
of recommendations are generated with rank ki,j where
i = 1, . . . N and j = 1, . . .M . Let the reciprocal of
the rank of the first relevant recommendation for user
i be 1/ki. MRR is the average of the reciprocal rank
for all the users, i.e. MRR = 1

N

∑N
i=1

1
ki

. MRR can
be generalized to the relevance of the top L items, i.e
MRR = 1

N

∑N
i=1

∑L
j=1

relevancej
ki,j

. We consider MRR
at 25 as well as precision at 25 which means the fraction
of relevant items in the top 25 recommendations.

IV. DATA ANALYSIS

In this section, we evaluate the performance of the
models discussed in Section III-C, using computer-
simulated datasets as well as two real industry data sets.
The first data set contains users consuming streaming
content on Twitch and we will refer to it as Twitch
data [18]. The second data set consists of AWS users
used products and we will refer to it as AWS data
set. The effectiveness of the methods proposed are as-
sessed through the measures discussed in Section III-C.
Moreover, we compare the performance of the proposed
models to the SIMS, MF, NCF, BERT4Rec and HRNN
models. We consider prior settings for the BPR model
based on results of previous experiments if exists as
explained in the following section. The models are
implemented using Torch using ml.g4dn.8xlarge AWS
EC2 instance with 32 CPUs and up to 4 GPUs. We
optimize the neural models for the likelihood loss using
Adam optimizer [19]. For each data set, we used manual
search to select LSTM hyperparameter candidates (e.g
hidden units, dropout rate). We fit the model on the data

set up to the last time point before the forecast interval,
and picked the candidate with highest evaluation metric.
In all cases hidden units were between 5 and 10, dropout
regularization [20] was between 0-0.2 and best learning
rate in all applications was found to be 0.001.

A. Prior Settings

In recommendation systems, reasonable informative
priors may exist in some applications based on expert
knowledge or prior experiments. For the simulation data
set and Twitch data set, we assume a neutral prior in
the form of Beta(1/3, 1/3), which leads to posterior
distributions with approximately 50 percent probability
that the true value is either smaller or larger than the
maximum likelihood estimate as proved in [21]. For
AWS data set we use historical industry specific data
to construct informative priors as follows. The posterior
Beta mean is convex weighted mean of the prior mean
and data mean, where the weights are w = (a+ b)/(a+
b+N) and N/(N + a+ b) respectively, where N is the
total number of recommendations samples for a given
user and item. So it depends on the relative information
in the prior (a + b) and the data N . We assume that
a + b = N/4, which puts more weight on the data
than on the prior. Also we assume that if an item was
observed in a historical experiment z times out of N∗

times, the prior mean is a/(a + b) = z/N∗, hence
a = z/N∗ × N/4. If the item was not observed, we
assume the non-informative prior Beta(1, 1).

B. Data

1) Simulation Data: We generated a data set of
M=50 items, and N=1000 users over T=24 time points
by assuming a correlation structure between the users
and items. We generated random variables {yi,j , i =
1, . . . N, j = 1, . . .M} from a multivariate Gaussian
distribution with 0 mean and covariance ΣMN , where
Σij,i∗j∗ is the correlation between user i, item j and user
i∗, item j∗ at time t. The correlation structure is random
and is not pre-specified. We then generate {zi,j ∼
Bernoulli(p = eyi,j/(1 + eyi,j)), i = 1, . . . N, j =
1, . . .M} as the outcome of interest. To generate the
sequence of observations over time t = 1, . . . T , we
assume a Markov model with a 2 × 2 transition prob-
ability matrix P , where the transition states are 0 and

1. We assume that P =

[
0.8 0.2
0.05 0.95

]
. The transition

probability matrix assumes that the likelihood that the
user is adopting a new item is 20% and that if the user
uses a particular item, they are 95% likely to keep using
it.

2) Real Data: The first data set contains users con-
suming streaming content on Twitch. This is a dataset of
100k users consuming streaming content on Twitch. We
retrieved all streamers, and all users every 10 minutes

during 43 days. We eliminated items with interactions
≤ 3 and users with ≤ 15 sessions. For a given set of
users in the given time period with all 0 interactions, we
randomly assigned interactions using the most popular
streamers. This helps removing the noise by keeping
users and/or items with sufficient information for mod-
eling. This makes the data more session-based where
recommendations are based mostly on the interactions in
the current user session rather than on the user’s history.
The features included in the model are streaming time
and the user identifier. The second data set consists of
30k AWS customers and the products they use on AWS
over a period of 24 months, along with some metadata
on the customers.

C. Results

Table I presents the precision and MRR for the test set.
We calculate metrics by comparing the recommendations
the solution version generates to the actual interactions
in the newest 10% of each user’s data from the testing
set. The results in Table I shows that, in absence of
informative priors, BERT4Rec model’s performance is
comparable to probabilistic based models. When we use
informative priors such in AWS data, BPR outperforms
all the models. SIMS model is a very competitive out-
performing the more sophisticated models in precision
followed NCF.

TABLE I: MRR@25 and Precision@25 for the SIMS,
MF, NCF, HRNN, BERT4Rec, FPR and BPR models
for AWS, Twitch and Simulation Data sets

AWS Data
Model MRR@25 Precision@25
SIMS 1 0.80
MF 0.43 0.36
NCF 1 0.74
HRNN 0.7 0.43
BERT4Rec 1 0.78
FPR 1 0.86
BPR 1 0.90

Twitch Data
Model MRR@25 Precision@25
SIMS 1 0.80
MF 0.50 0.46
NCF 1 0.48
HRNN 1 0.33
BERT4Rec 1 0.99
FPR 1 0.99
BPR 1 0.99

Simulation Data
Model MRR@25 Precision@25
SIMS 0.85 0.28
MF 0.57 0.53
NCF 0.95 0.55
HRNN 0.94 0.30
BERT4Rec 1 0.80
FPR 1 0.80
BPR 1 0.80

V. DISCUSSION

We have proposed a probabilistic framework for rec-
ommendation systems. This approach provides a very
flexible yet robust modeling of recommendation systems
such that any user based recommendation data can be
accommodated. The probabilistic framework provides a
natural approach for uncertainty quantification in var-
ious ways. The Bayesian framework proposed allows
imposing prior distribution based on expert knowledge
or previous experiments. In our applications, sequential
methods tended to perform better since user identifiers
are present and propagate information from the previous
user session to the next, thus improving the recommen-
dation accuracy. BPR and FPR tended to perform very
similarly when we use non-informative prior with respect
to precision and MRR with some improvement when we
use informative prior from historical experiments.

The model has some limitations in providing pre-
dictions for more than one time point in the future
since it uses previous time point estimate which can
propagate the errors over time. We conclude with some
indicators for future research. First, as alluded to earlier,
we can include training the model on the predicted
values from previous time points rather than on the actual
observations, such that the model would generalize better
for predicting different time points in the future. We can
also enrich the Bayesian inference by fitting a complete
Bayesian neural network, incorporating more informa-
tive priors from experts and/or relax the assumption
for conjugate prior which can provide richer Bayesian
framework overall. We can consider Quasi-Bayesian
[22], an alternative decision theory framework that deals
with difficulty of choosing a single prior when we might
actually have many preferences/distributions over thetas
with a complex or unknown relationship to the state of
the world and previous “decisions”/realizations.

REFERENCES

[1] G. Linden, B. Smith, and J. York, “Amazon.com recommenda-
tions: item-to-item collaborative filtering,” IEEE Internet Com-
puting, vol. 7, no. 1, pp. 76–80, 2003.

[2] M. D. Ekstrand, J. T. Riedl, and J. A. Konstan, Collaborative
filtering recommender systems. Now Publishers Inc, 2011.

[3] J. G. David Salinas, Valentin Flunkert and T. Januschowski,
“Deepar: Probabilistic forecasting with autoregressive recurrent
networks,” International Journal of Forecasting, vol. 36, pp.
1181–1191, 2020.

[4] B. Hidasi, M. Quadrana, A. Karatzoglou, and D. Tikk, “Parallel
recurrent neural network architectures for feature-rich session-
based recommendations,” in Proceedings of the 10th ACM con-
ference on recommender systems, 2016, pp. 241–248.

[5] M. Quadrana, A. Karatzoglou, B. Hidasi, and P. Cremonesi,
“Personalizing session-based recommendations with hierarchical
recurrent neural networks,” in Proceedings of the Eleventh ACM
Conference on Recommender Systems, 2017, pp. 130–137.

[6] Y. K. Tan, X. Xu, and Y. Liu, “Improved recurrent neural
networks for session-based recommendations,” in Proceedings of
the 1st workshop on deep learning for recommender systems,
2016, pp. 17–22.

[7] P. Covington, J. Adams, and E. Sargin, “Deep neural networks
for youtube recommendations,” in Proceedings of the 10th ACM
conference on recommender systems, 2016, pp. 191–198.

[8] F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and P. Jiang,
“Bert4rec: Sequential recommendation with bidirectional encoder
representations from transformer,” in Proceedings of the 28th
ACM international conference on information and knowledge
management, 2019, pp. 1441–1450.

[9] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari,
and D. B. Rubin, Bayesian Data Analysis. Chapman and
Hall/CRC, 2013.

[10] N. AlRossais, D. Kudenko, and T. Yuan, “Improving cold-start
recommendations using item-based stereotypes,” User Modeling
and User-Adapted Interaction, pp. 867–905, 2021.

[11] B. M. Knisely, M. Vaughn-Cooke, L.-A. Wagner, and J. C.
Fink, “Device personalization for heterogeneous populations:
leveraging physician expertise and national population data to
identify medical device patient user groups,” User Modeling and
User-Adapted Interaction, vol. 31, pp. 979–1025, 2021.

[12] C. Bishop, Bayesian methods for neural networks. United
Kingdom: Oxford University Press, 1995.

[13] K. Csilléry, M. G. Blum, O. E. Gaggiotti, and O. François,
“Approximate bayesian computation (abc) in practice,” Trends
in ecology & evolution, vol. 25, no. 7, pp. 410–418, 2010.

[14] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum
likelihood from incomplete data via the em algorithm,” Journal
of the Royal Statistical Society. Series B (Methodological),
vol. 39, no. 1, pp. 1–38, 1977. [Online]. Available: http:
//www.jstor.org/stable/2984875

[15] C. Guo and F. Berkhahn, “Entity embeddings of categorical
variables,” arXiv preprint arXiv:1604.06737, 2016.

[16] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization tech-
niques for recommender systems,” Computer, vol. 42, no. 8, pp.
30–37, 2009.

[17] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. Chua,
“Neural collaborative filtering.” International World Wide Web
Conferences Steering Committee, 2017, pp. 173 – 182.

[18] J. M. Jérémie Rappaz and K. Aberer, “Recommendation on live-
streaming platforms: Dynamic availability and repeat consump-
tion,” in RecSys, 2021.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[20] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural
networks from overfitting,” The journal of machine learning
research, vol. 15, no. 1, pp. 1929–1958, 2014.

[21] J. Kerman, “Neutral noninformative and informative conjugate
beta and gamma prior distributions,” Electronic Journal of
Statistics, vol. 5, no. none, pp. 1450 – 1470, 2011. [Online].
Available: https://doi.org/10.1214/11-EJS648

[22] F. J. Girón and S. Rı́os, “Quasi-bayesian behaviour: A more
realistic approach to decision making?” Trabajos de Estadistica
Y de Investigacion Operativa, vol. 31, no. 1, pp. 17–38, 1980.

http://www.jstor.org/stable/2984875
http://www.jstor.org/stable/2984875
https://doi.org/10.1214/11-EJS648

	Introduction
	Related Work
	DeepAR
	Recommendations as Multiclass Classifications

	Model
	DeepAR for recommendations
	Pseudo-Bayesian methods
	Model Implementation and Evaluation

	Data Analysis
	Prior Settings
	Data
	Simulation Data
	Real Data

	Results

	Discussion
	References

