
Lighthouses and Global Graph Stabilization: Active SLAM for
Low-compute, Narrow-FoV Robots

1Mohit Deshpande, Richard Kim, Dhruva Kumar, Jong Jin Park, Jim Zamiska

Abstract— Autonomous exploration to build a map of an
unknown environment is a fundamental robotics problem.
However, the quality of the map directly influences the quality
of subsequent robot operation. Instability in a simultaneous
localization and mapping (SLAM) system can lead to poor-
quality maps and subsequent navigation failures during or after
exploration. This becomes particularly noticeable in consumer
robotics, where compute budget and limited field-of-view are
very common. In this work, we propose (i) the concept of
lighthouses: panoramic views with high visual information
content that can be used to maintain the stability of the map
locally in their neighborhoods and (ii) the final stabilization
strategy for global pose graph stabilization. We call our
novel exploration strategy SLAM-aware exploration (SAE) and
evaluate its performance on real-world home environments.

I. INTRODUCTION

For many types of tasks performed by an autonomous
mobile robot, especially in an indoor environment, it is often
useful to have a map of the environment where the robot
operates. However, in many environments, especially homes,
it is often not feasible or practical to construct this map by
hand since it can be time-consuming or prone to human error.

The task of autonomous exploration is to construct this
map without supervision. Traditionally, most exploration
strategies [1]–[4] use a discretized 2D grid map or 3D voxel
map where each cell/voxel has a value that represents a
probability of being occupied, and they produce a plan to
navigate the device to an area where it can convert unknown
cells/voxels into free or occupied cells/voxels. These strate-
gies [1]–[3] often information-theoretic to explore the map
quickly but do not consider the quality of localization during
exploration.

However, the quality of the final map depends on the
quality of localization during exploration. The pose estimates
from a Simultaneous Localization and Mapping (SLAM)
system drift while navigating in an environment, and this
is especially true for visual SLAM (vSLAM) systems when
they encounter environments with a lack of visual features.
Enough drift causes the quality of the map to degrade to
the point where exploration and navigation fail. This drift
requires correction in the form of loop closures. Active
SLAM aims to keep the SLAM uncertainty bounded by
intentionally creating loop closures using an active loop

1All authors are with Amazon Lab126.
{deshmohi,richk,dhruvkm,jongpark,jzamiska}@amazon.com
All authors contributed equally and are listed alphabetically.

Fig. 1: SLAM-aware Exploration (SAE). Our exploration strat-
egy alternates between exploring frontiers, creating lighthouses, and
revisiting a lighthouse. Blue points indicate frontiers points (the
boundary between unoccupied cells and cells with unknown occu-
pancy); green arrows and yellow circles indicate frontier viewpoints
and their associated frontiers (larger means active). The purple box
is the robot, with emanating colored lines indicating candidate local
planner trajectories. Pink spheres are lighthouses which are made of
spatially-clustered keyframes (small yellow rings) in the pose graph.
After we create the “home” lighthouse near the origin, we connect
each subsequently created lighthouse to a previously-created one.

closure (ALC) module which navigates the robot back to
known areas to get a loop closure to reduce uncertainty.
In a pose graph SLAM formulation [5], this corresponds to
adding a constraint between two non-adjacent poses with the
error between the two. However, these techniques, along with
other passive SLAM strategies, often use wide FoV sensors
[6]–[8], such as 360◦ LiDAR or range finders, or use large
compute modules [6], [9].

In this work, we introduce a new type of active SLAM
exploration called SLAM-aware Exploration (SAE) for
narrow-FoV visual SLAM and low-compute devices that
creates a map while maintaining SLAM stability. Figure 1
shows lighthouses created by SAE and the corresponding
pose graph. We evaluate our approach on a mobile robot in
a home environment and show we achieve a higher explo-
ration success rate as well as more loop closures on post-
exploration navigation tasks compared to other exploration
algorithms. Our major contributions are

1) A structure called a lighthouse, which is a visually-



informative location with a panoramic view, that we
create and travel back to during exploration as a
part of our lighthouse-based active loop closure (LH-
ALC) planner to stabilize the pose graph locally during
exploration.

2) A final Global Graph Stability (GGS) planner that
performs post-exploration pose graph stabilization.

3) An overall system design that alternates between ex-
ploring the map and traveling back to lighthouses to
bound SLAM uncertainty.

II. RELATED WORK

There have been a number of works in the active SLAM
and active perception communities using a wide variety of
sensors, SLAM algorithms, uncertainty metrics, and explo-
ration termination criteria. This section groups these works
by theme and compares them to our work. [10] provides a
more detailed and comprehensive review.

A. Rule-based Strategies

Rule-based active SLAM strategies decompose the prob-
lem into (i) candidate action generation, (ii) utility compu-
tation, and (iii) action selection. For (i), random-sampling
goal-selection strategies [11], [12] are very compute-efficient
per candidate action but not exploration efficient. Frontier-
based strategies [4], [13]–[17] use the insight that areas to
explore in the map are at the boundary between known and
unknown space; these approaches drive the robot directly to
unexplored areas of the map but are more expensive since
they require searching through the map. For (ii), traditional
utility functions consider distance to the candidate goals [4],
[12], [15]. More complex utility functions use information
theory to approximate the expected reduction in uncertainty
of the map at that candidate goal and balance that against the
travel distance [11], [17], [18]. To estimate the uncertainty
of the SLAM part of the map, some use various optimality
criteria from the Theory of Experimental Design (TOED)
[19], [20]. Some work [21], [22] creates “virtual” edges in a
pose graph and then estimates the expected uncertainty along
the path to the goal. For (iii), action selection performs some
kind of optimization, the simplest being greedy selection, that
minimizes either covariance or entropy [4], [11], [12], [15],
[17].

Our approach fits into this set of strategies. Our candidate
action generation is frontier-based and uses the frontiers to
generate candidate viewpoints. We propose a novel compute-
efficient utility computation accounting for the robot dynam-
ics, and our greedy action selection works well in practice.

B. Belief-space Strategies

Instead of operating in a discrete space, belief-space
strategies optimize the continuous trajectory and require a
continuous utility function. These approaches incorporate an
approximate uncertainty reduction term in the optimization to
prefer trajectories that move towards the goal while reducing
map uncertainty [23], [24].

C. Deep Reinforcement Learning Strategies

Many deep reinforcement learning approaches [6], [19],
[25]–[27] map sensor inputs, e.g., depth images and laser
scans, perhaps along with some auxiliary information, into a
fixed set of actions, e.g., go forward 0.2m, turn left 8◦, and
turn right 8◦; for these works, the reward functions consist of
an extrinsic reward that performs collision avoidance and an
intrinsic reward that encourages exploring new areas while
minimizing uncertainty using information theory or TOED.

III. SLAM-AWARE EXPLORATION (SAE)

We factor the active SLAM exploration problem into two
coupled parts: (i) constructing a high-fidelity 2D occupancy
map that contains information about obstacles and free space
for navigation and (ii) maintaining a stable SLAM pose
graph. For navigation and planning, we use a 2D occupancy
grid map M where each cell mi,j at index i, j represents the
log odds probability that cell is occupied. Note that mi,j = 0
is a special value meaning “unknown”. Practically, this is
realized using a standard depth sensor measurement model
and Bayesian updates. The objective of this part of SAE is
to ensure completeness of the occupancy map, i.e., there are
no unknown cells in the occupancy map.

For our SLAM formulation, we use a keyframe-based
pose graph vSLAM system [28]. The objective of the graph
stabilization part of SAE is to keep the global uncertainty of
SLAM, i.e., uncertainty of the entire pose graph, bounded
by (i) creating lighthouses and traveling back to them during
exploration and (ii) performing a final GGS plan to create
more keyframes and loop closure constraints that lower the
global uncertainty. SAE maintains both a stable occupancy
map and a stable pose graph as the robot incrementally
explores the environment.

SAE consists of a number of different planners working
together to efficiently and stably explore the environment.
A frontier-based exploration planner analyzes the occupancy
map for areas of information gain and produces plans to
travel to those areas. The LH-ALC planner proactively cre-
ates lighthouses at visually-informative places and monitors
pose uncertainty to determine if we need to travel back to a
lighthouse to locally stabilize the SLAM pose graph. Finally,
after the occupancy map is fully known, the GGS planner
produces plans to globally stabilize the graph.

A. Frontier-based Exploration (FE)

To construct the occupancy map, we use a frontier-based
exploration strategy [4] to identify areas in the partially-
explored map to reduce the occupancy map entropy, i.e.,
converting unknown cells into free or obstacle. A frontier
is a contiguous set of unknown cells that are all directly
adjacent to free cells. Using a wavefront search [13] over
the occupancy map emanating from the robot pose and
exploiting the contiguous property of frontier cells, we can
find all frontiers in the partially-explored map. We produce a
viewpoint for each frontier by computing a pose that obeys a
number of constraints, e.g., away from obstacles but within



sensor range. Since there are normally several frontiers, we
assign a cost to each frontier viewpoint using Equation 1.

C(V ;R,G) = L(R, V ) + βA(R, V ) + ζI(V ̸= G) (1)

where V represents the viewpoint-in-question; R is the
current pose of the robot; and G is the previous viewpoint.
L(R, V ) measures the path distance from the robot pose
to the viewpoint V using the A⋆ global planner. For non-
holonomic robots, we also have an angular penalty A(R, V ),
along with a weight β, that discourages the robot from
selecting viewpoints that require turning around since those
are expensive operations for non-holonomic robots. The final
term I(V ̸= G), along with its penalty ζ, is an indicator
function that returns 1 if the viewpoint-in-question V and
previous viewpoint G are not the same. This prevents the
robot from oscillating between two similarly-priced view-
points by penalizing changing the viewpoint.

We take the greedy approach and travel to the frontier with
the lowest cost. The nature of exploration constantly causes
the frontier to be pushed back and deformed; furthermore,
localization drift and loop closures can shift the map causing
frontiers to change as well. For this reason, we re-evaluate all
frontiers at a fixed rate to ensure we have the latest frontiers
and viewpoints.

B. Lighthouse Definition and Creation

As the robot explores an environment, SLAM provides
it with pose estimates that drift along the length of the
trajectory. To correct this drift, we use purely vision-based
loop closures. Since the creation of a loop closure con-
straint requires comparing the visual features of the current
keyframe with a previous one, more correspondences help in
both creation and disambiguation of loop closure constraints.

Fig. 2: Lighthouse. In the pose graph, a lighthouse looks like
a normal set of keyframes (blue circles) encompassed in a loop
closure, but, in the occupancy map, that set of keyframes is
generated by an in-place rotation which creates a little circle of
spatially-clustered keyframes in the trajectory (orange circle).

For a narrow-FoV robot, we can emulate a panoramic
view by performing an in-place rotation. This is equivalent
to having a 360◦ view at the point where the robot stopped;
intuitively, this is like “looking back” along the trajectory.
But for narrow-FoV robots, this “looking back” requires
extra motion and time so it would not be efficient to do
this all across the map. Instead, while performing FE, we
opportunistically and proactively identify a few key places
to perform this in-place rotation. We monitor the incoming
keyframes and, for each, we compute a view score that
is the number of detected features in the keyframe. In
addition to the panoramic view, the number of features also

correlates to a higher likelihood of loop closure. If the view
score is above a particular threshold, then we know that,
if we were to perform an in-place rotation, then we have
at least one view that is high in view score to encourage
a likely loop closure. In the pose graph, this creates a
special structure of keyframes that are both spatially and
topologically clustered together, with a loop closure across
all constituent keyframes. We call this cluster a lighthouse
(Figure 2). If, while performing FE, we detect an incoming
keyframe that satisfies the view score threshold, we pause FE
and create a lighthouse which will be used by the LH-ALC
planner for loop closure.

C. Lighthouse-based Active Loop Closure (LH-ALC)

The purpose of ALC is to bound the pose uncertainty
during FE by creating loop closure constraints in the pose
graph. For keyframe-based vSLAM, this means traveling
back to reacquire a view from some previous keyframe to
trigger loop closure creation. However, for even smaller en-
vironments, vSLAM can produce hundreds, if not thousands,
of keyframes that could be potential loop closure candidates.
Furthermore, attempting to loop close at any one particular
keyframe is very challenging since noise or drift may shift
that keyframe making it difficult to reacquire.

To remedy these problems, instead of traveling back to a
particular keyframe, we travel to a lighthouse and perform
an in-place rotation. This greatly increases our likelihood of
loop closure since the panoramic view detects many features
that have a wider dispersion over the local environment than
the features of a single keyframe. We call this flavor of ALC
Lighthouse-based Active Loop Closure (LH-ALC).

There are several mechanisms to trigger LH-ALC such as
(i) a periodic timer and (ii) computing the relative uncer-
tainty of latest keyframe from the nearest lighthouse. For
the former, we trigger LH-ALC first after some time T0

and keep scaling the timer by a factor γ for every time
we trigger LH-ALC: T0, γT0, γ

2T0, · · · . This ensures we
aren’t spatially bounded to some radius from any particular
lighthouse. While this approach requires only constant-time
evaluation, it can fail if the pose uncertainty has increased
drastically between LH-ALC timers. The latter approach is
more reactive to the pose uncertainty in that we only trigger
LH-ALC when the relative uncertainty is high; however,
computing the pose uncertainty of the latest keyframe is an
expensive operation, requiring covariance estimation.

We unconditionally create the very first lighthouse, i.e., the
home lighthouse, around the starting point of exploration.
The home lighthouse is reliable because it is created near
the origin so we collect additional panoramic views around
the home lighthouse to ensure we can easily obtain a loop
closure here. Note that since the home lighthouse is the
starting point of exploration, a loop closure at the home
lighthouse encompasses almost the entirety of the SLAM
pose graph and is considered a global loop closure.

An additional graph strengthening measure we use is to
connect each lighthouse to a nearby one. When we oppor-
tunistically create a lighthouse, instead of continuing FE



(a) Pose Graph Before GGS. (b) GGS Convex Hull.

Fig. 3: Global graph stabilization (GGS). The nature of our
exploration strategy creates a spoke-and-hub pattern in the pose
graph emanating from the lighthouses. This means the spokes are
not necessarily connected at their farthest extents; they are only
connected at the hub, i.e., lighthouse. The GGS planner consumes
the keyframes or lighthouses, computes a convex hull (green lines),
and travels to the vertices (blue circle; red is active) both clockwise
and anti-clockwise to collect bi-directional views. For optimization,
we skip vertices that are already close to others (purple circle).
The red trajectory (with arrows denoting one directionality) is an
example trajectory the robot would take and will be traversed both
forwards and backwards.

immediately, we find the nearest lighthouse and travel to it to
perform an in-place rotation. In the pose graph, this creates a
loop that encompasses both lighthouses, thereby connecting
them to each other and lowering both of their relative
uncertainties. Using this strategy, we effectively connect each
lighthouse to the home lighthouse transitively. By performing
this sequence of connections, we create even more loop
closure constraints in the pose graph that encompass other
loops; this creates a very stable mesh-like structure that helps
bound the SLAM uncertainty. After connecting each new
lighthouse to a previously-created one, we continue FE.

D. Global Graph Stabilization (GGS) Planning

The loop closures constraints created by the LH-ALC
planner ensure local pose graph stability since we travel
back to lighthouses or connect adjacent ones together. Global
Graph Stability (GGS) is stability over the entire pose graph
rather than just the subgraphs that encompass the adjacent
lighthouse connections. The GGS planner creates an even
more stable pose graph by analyzing regions of the map that
are view-deficient and extending the trajectory along those
regions in both directions and connecting them to the home
lighthouse. Our lighthouse creation and connection strategy
of SAE, paired with the greedy approach of FE, effectively
creates a spoke-and-hub pattern in the keyframes across
the occupancy map where the “spokes” aren’t necessarily
connected. Furthermore, partial observability of the map
during FE often interferes with the ability to connect the
“spokes”.

We wait until FE is completed and we have a completed
occupancy map and locally-stable pose graph around the
lighthouses. Performing global uncertainty calculations on

the pose graph itself is often very expensive, but we can
exploit this “spoke-and-hub” pattern in a much cheaper
way. By taking all of the keyframes in the pose graph
and computing the convex hull via the QuickHull algorithm
[29], the vertices become the endpoints of the “spokes”.
The GGS planner will travel to each of these vertices both
clockwise and anticlockwise along the hull to connect the
spokes and collect both forward and backward views to
connect to the home lighthouse. Figure 3 shows the convex
hull and path the device would take to each vertex. GGS
planning connects even more views of the environment to the
home lighthouse to ensure global stability of the pose graph.
This stability creates more loop closure constraints when
performing subsequent navigation on the explored map.

E. System Design

Fig. 4: System Design. At a fixed rate, we collect perception data
such as the occupancy map and pose graph and bundle it into the
world snapshot that is accessible to all planners. We first start with
the discovery phase and alternate between LH-ALC and FE. After
those are finished, we move on to the refinement phase where we
run the GGS planner. All planners issue plans to the motion planner.

SAE has multiple planners that interact with each other.
Figure 4 illustrates our system design. Certain planners may
preempt others or depend on them to finish operations.
To ensure no contention between planners, we propose a
system design based around planners that consume data
from perception at a fixed rate, called the world snapshot,
and produce plans to our motion planner. Furthermore, to
enable GGS after FE, we define two phases of SAE: (i)
discovery and (ii) refinement. For the former phase, we run
two planners in order: LH-ALC and FE. LH-ALC starts by
creating the home lighthouse. At the start of exploration, the
SLAM uncertainty is near zero since the device starts at the
origin so LH-ALC yields to FE immediately. During FE,
if we notice a good view score, LH-ALC preempts FE to
create the lighthouse and connect it to a previous lighthouse.
If we detect SLAM uncertainty crosses a threshold or the
timer triggers, we also preempt FE and travel to the closest
lighthouse to create a loop closure constraint. The first phase
finishes when FE finishes, and we travel back to the home
lighthouse.

After the first phase, we have a completed occupancy
map and the robot is at the home lighthouse. For the next
refinement phase, we focus on the GGS planner and creating



global stability for subsequent navigation. We exclusively run
GGS planning during the second phase to ensure a globally
stable pose graph for subsequent navigation. After GGS
planning, we navigate the robot back to the home lighthouse
for a final global correction.

IV. EXPERIMENTS

We evaluated our SAE approach on a nonholonomic
mobile ground robot with a low compute budget and narrow-
FoV active depth sensor and stereo camera in various indoor
home environments. We use a keyframe-based pose graph
vSLAM [28]. For our baseline exploration algorithm, we
used a frontier-based exploration planner [4] with the wave-
front frontier detector [13]. Our mobile ground robot used
two Qualcomm QCS605 octocore ARM processors, each
with 2GB RAM and with two cores running at 2.5GHz and
six cores running at 1.7GHz. The indoor home environments
consist of a single floor and vary from about 1000 ft2 to 3000
ft2.

A. Exploration Success

A successful exploration is one where we can map the
entire unknown environment without incurring so much
localization drift that we cannot travel to unexplored regions
or the home lighthouse. Since the quality of the map is
dependent on the quality of localization [30] and ALC creates
loop closures to stabilize the map, we performed an ablation
study to measure the effect of the LH-ALC planner on overall
exploration success. We ran exploration in 6 indoor home
environments; in each environment, we ran ten exploration
trials (half FE and half SAE) for a total of 60 samples.
The robot started and ended in the same location in every
environment.

Fig. 5: Exploration success rate for both FE and SAE in six
indoor environments with five trials each. The mean success rate,
represented by the dashed line, is 93% for SAE compared to 62%
for FE. There’s also a higher variance for FE indicating the success
rate is left to chance of creating loop closures.

Figure 5 shows the results averaged from several trials
of each set. We see that SAE has a mean success rate
of 93% compared to FE with 62%. On average, the SAE
exploration time (without GGS) takes 1.75x longer than FE.
The increase is due to the extra motion of actively creating
more loop closures. Figure 6 shows example occupancy maps
from two indoor home environments. We see map drifts with
FE due to increasing pose uncertainty which causes paths

(a) FE home 1 (b) SAE home 1

(c) FE home 2 (d) SAE home 2

Fig. 6: Exploration maps in two homes comparing FE and SAE.
Notice the map drift in the top right region of home 1 and bottom
left region of home 2 with FE. These block off paths between the
regions causing navigation failures. The maps on the right show the
lighthouses and the resulting stable maps.

to be blocked in the occupancy map. Exploration failures
occur when the uncertainty of SLAM grows unbounded and
distorts the occupancy map by placing obstacles in a way
that blocks paths to prevent further exploration or returning
to the home lighthouse. Such distortions can be found in
the top right region in Figure 6a and bottom left region
in Figure 6c. Since frontiers are created at the boundary
of free and unknown space, FE has no incentive to travel
to known spaces. However, SLAM benefits from traveling
to previously observed areas since they are the only places
to obtain loop closures. SAE keeps the pose uncertainty
bounded during exploration which mitigates drift and allows
exploration to complete successfully.

B. Post-exploration Loop Closures

Beyond exploration, subsequent navigation on the ex-
plored map should be successful as well and not produce
drift. SAE has the GGS planner which globally stabilizes the
pose graph to ensure the success of subsequent navigation. To
understand the effectiveness of the GGS planner, we explore
two real-world environments: a furnished and unfurnished
home. We separately keep track of keyframes and loop
closures during the discovery and refinement phases; since
GGS is the only planner in the refinement stage, this becomes
an ablation study assess how many additional keyframes and
loop closures are created from the GGS planner to strengthen
the pose graph.

Table I shows the additional keyframes and loop clo-



Furnished Home Unfurnished Home
Total KFs 5740 5086
Total LCs 161 121

Discovery Refinement Discovery Refinement
KFs created 3814 1926 3688 1398

% of total KFs 66% 34% 73% 27%
LCs created 88 73 70 51

% of total LCs 55% 45% 58% 42%

TABLE I: Additional Keyframes (KFs) and Loop Closures
(LCs) from GGS. We separately track the number of KFs and
LCs generated during each phase of exploration. We see that the
GGS planner in the refinement stage creates significantly more KFs
and LCs in addition to just the discovery phase.

sures generated by the GGS planner. We see that in both
cases, the GGS planner contributes significantly to additional
keyframes being added to the pose graph that provide even
more views for subsequent navigation. The furnished home
produces a slighly larger number of keyframes than the
unfurnished one since the furniture has visual features on
it and also creates occlusions. We also see that almost half
of the total loop closures in the exploration run come from
the GGS planner which globally stablizes the pose graph and
reduces drift.

We also compare the ability of the entire SAE against
FE to improve subsequent navigation on the explored map.
We explore the same environment twice, once with FE and
another with SAE and save the maps. Then we travel through
the same sequence of 50 fixed poses and measure the number
of loop closures against the saved pose graph, which we call
relocalizations instead of loop closures to distinguish the
two.

Figure 7 shows the qualitative results comparing post-
exploration navigation with FE and SAE. Quantitatively, the
total number of SAE relocalizations was 315; FE achieved
only 163 relocalization. There are almost twice the number
of relocalizations for SAE. In general, observing more views
of the environment increases the likelihood of relocalization
which causes higher navigation success rates because the de-
creased pose uncertainty prevents occupancy map distortion.
Views have directionality so observing views going in one
direction of a path are different from views observed going
in the opposite direction of the same path. The GGS planner
directs the robot to observe views in both directions increase
the overall likelihood of relocalization.

V. CONCLUSION

In this work, we presented a novel active SLAM explo-
ration strategy that used lighthouses to ensure local and
global SLAM pose graph stability. By creating, traveling
back to, and connecting these panoramic views, we can en-
sure local graph stability through our LH-ALC planner. The
GGS planner ensures global graph stability by connecting
potentially nonadjacent views back to the home lighthouse.

In future work, we plan on investigating graph stability
analysis techniques to better target which subgraphs and
regions need the most focus during the refinement stage to
reduce unnecessary motion to speed up exploration [21].

(a) FE (b) SAE

Fig. 7: SAE’s Effect on Post-exploration Navigation. These
relocalization heatmaps shows the cumulative trajectory of 50
navigation goals. Shaded green cells indicate the number of suc-
cessful relocalization events in each of the discretized cells. Red
colors indicate repeated relocalization events while the device was
stationary to indicate any pauses between navigation goals. Figure
7b shows better trajectory estimation convergence, higher frequency
of relocalizations, and a more diverse distribution of relocalization
events.

ACKNOWLEDGMENT

The authors would like to thank Chaitanya Desai, Rajasim-
man Madhivanan, Hesam Rabeti, Arnie Sen, Leena Vakil,
and Roger Webster for their contributions to the ideas that
went into this work.

REFERENCES

[1] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart,
“Receding horizon” next-best-view” planner for 3d exploration,” in
2016 IEEE international conference on robotics and automation
(ICRA). IEEE, 2016, pp. 1462–1468.

[2] T. Dang, F. Mascarich, S. Khattak, C. Papachristos, and K. Alexis,
“Graph-based path planning for autonomous robotic exploration in
subterranean environments,” in 2019 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). IEEE, 2019, pp.
3105–3112.

[3] M. Dharmadhikari, T. Dang, L. Solanka, J. Loje, H. Nguyen,
N. Khedekar, and K. Alexis, “Motion primitives-based path planning
for fast and agile exploration using aerial robots,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 179–185.

[4] B. Yamauchi, “A frontier-based approach for autonomous exploration,”
in Proceedings 1997 IEEE International Symposium on Computational
Intelligence in Robotics and Automation CIRA’97.’Towards New Com-
putational Principles for Robotics and Automation’. IEEE, 1997, pp.
146–151.

[5] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial on
graph-based slam,” IEEE Intelligent Transportation Systems Magazine,
vol. 2, no. 4, pp. 31–43, 2010.

[6] J. Hu, H. Niu, J. Carrasco, B. Lennox, and F. Arvin, “Voronoi-
based multi-robot autonomous exploration in unknown environments
via deep reinforcement learning,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 12, pp. 14 413–14 423, 2020.



[7] M. Ramezani, G. Tinchev, E. Iuganov, and M. Fallon, “Online lidar-
slam for legged robots with robust registration and deep-learned loop
closure,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2020, pp. 4158–4164.

[8] C. Stachniss, D. Hahnel, and W. Burgard, “Exploration with active
loop-closing for fastslam,” in 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566),
vol. 2. IEEE, 2004, pp. 1505–1510.

[9] H. Lehner, M. J. Schuster, T. Bodenmüller, and S. Kriegel, “Explo-
ration with active loop closing: A trade-off between exploration effi-
ciency and map quality,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 6191–
6198.

[10] J. A. Placed, J. Strader, H. Carrillo, N. Atanasov, V. Indelman,
L. Carlone, and J. A. Castellanos, “A survey on active simultaneous
localization and mapping: State of the art and new frontiers,” arXiv
preprint arXiv:2207.00254, 2022.

[11] H. H. González-Banos and J.-C. Latombe, “Navigation strategies for
exploring indoor environments,” The International Journal of Robotics
Research, vol. 21, no. 10-11, pp. 829–848, 2002.

[12] B. Tovar, L. Munoz-Gómez, R. Murrieta-Cid, M. Alencastre-Miranda,
R. Monroy, and S. Hutchinson, “Planning exploration strategies for
simultaneous localization and mapping,” Robotics and Autonomous
Systems, vol. 54, no. 4, pp. 314–331, 2006.

[13] M. Keidar and G. A. Kaminka, “Robot exploration with fast frontier
detection: Theory and experiments,” in Proceedings of the 11th Inter-
national Conference on Autonomous Agents and Multiagent Systems-
Volume 1, 2012, pp. 113–120.

[14] P. Quin, D. D. K. Nguyen, T. L. Vu, A. Alempijevic, and G. Paul,
“Approaches for efficiently detecting frontier cells in robotics explo-
ration,” Frontiers in Robotics and AI, vol. 8, p. 616470, 2021.

[15] D. Holz, N. Basilico, F. Amigoni, and S. Behnke, “Evaluating the
efficiency of frontier-based exploration strategies,” in ISR 2010 (41st
International Symposium on Robotics) and ROBOTIK 2010 (6th Ger-
man Conference on Robotics). VDE, 2010, pp. 1–8.

[16] M. Keidar and G. A. Kaminka, “Efficient frontier detection for robot
exploration,” The International Journal of Robotics Research, vol. 33,
no. 2, pp. 215–236, 2014.

[17] C.-Y. Wu and H.-Y. Lin, “Autonomous mobile robot exploration in
unknown indoor environments based on rapidly-exploring random
tree,” in 2019 IEEE International Conference on Industrial Technology
(ICIT). IEEE, 2019, pp. 1345–1350.

[18] E. Bonetto, P. Goldschmid, M. Pabst, M. J. Black, and A. Ahmad,
“irotate: Active visual slam for omnidirectional robots,” Robotics and
Autonomous Systems, vol. 154, p. 104102, 2022.

[19] J. A. Placed and J. A. Castellanos, “A deep reinforcement learning
approach for active slam,” Applied Sciences, vol. 10, no. 23, p. 8386,
2020.

[20] S. Suresh, P. Sodhi, J. G. Mangelson, D. Wettergreen, and M. Kaess,
“Active slam using 3d submap saliency for underwater volumetric
exploration,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2020, pp. 3132–3138.

[21] J. A. Placed, J. J. G. Rodrı́guez, J. D. Tardós, and J. A. Castellanos,
“Explorb-slam: Active visual slam exploiting the pose-graph topol-
ogy,” in ROBOT2022: Fifth Iberian Robotics Conference: Advances
in Robotics, Volume 1. Springer, 2022, pp. 199–210.

[22] A. Kim and R. M. Eustice, “Active visual slam for robotic area cov-
erage: Theory and experiment,” The International Journal of Robotics
Research, vol. 34, no. 4-5, pp. 457–475, 2015.

[23] Y. Chen, S. Huang, and R. Fitch, “Active slam for mobile robots with
area coverage and obstacle avoidance,” IEEE/ASME Transactions on
Mechatronics, vol. 25, no. 3, pp. 1182–1192, 2020.

[24] C. Leung, S. Huang, and G. Dissanayake, “Active slam using model
predictive control and attractor based exploration,” in 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
2006, pp. 5026–5031.

[25] L. Tai and M. Liu, “Mobile robots exploration through cnn-based
reinforcement learning,” Robotics and biomimetics, vol. 3, no. 1, pp.
1–8, 2016.

[26] O. Zhelo, J. Zhang, L. Tai, M. Liu, and W. Burgard, “Curiosity-driven
exploration for mapless navigation with deep reinforcement learning,”
arXiv preprint arXiv:1804.00456, 2018.

[27] C. Oh and A. Cavallaro, “Learning action representations for self-
supervised visual exploration,” in 2019 International Conference on
Robotics and Automation (ICRA). IEEE, 2019, pp. 5873–5879.

[28] F. Dellaert, M. Kaess, et al., “Factor graphs for robot perception,”
Foundations and Trends® in Robotics, vol. 6, no. 1-2, pp. 1–139,
2017.

[29] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull
algorithm for convex hulls,” ACM Transactions on Mathematical
Software (TOMS), vol. 22, no. 4, pp. 469–483, 1996.

[30] H. Liu, M. Chen, G. Zhang, H. Bao, and Y. Bao, “Ice-ba: Incremental,
consistent and efficient bundle adjustment for visual-inertial slam,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 1974–1982.


