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Abstract—Cloud computing providers employ sophisticated
authorization engines to decide when a request to access a
resource should be allowed or denied. Several approaches
have formalized the behavior of individual authorization poli-
cies, but authorization engines employ multiple types of
policies that can interact in different ways. This paper
presents a modular formalization of the Amazon Web Ser-
vices (AWS) authorization engine and a corresponding anal-
ysis tool, called IAM-MULTIPOLICYANALYZER, for verifying
properties pertaining to multiple policies of different types.
IAM-MULTIPOLICYANALYZER adopts ZELKOVA [18]—i.e., the
formalization of individual IAM policies—as a basic building
block, and uses a new domain-specific language for modularly
describing how the authorization engine composes individual
uses of ZELKOVA. As a result, IAM-MULTIPOLICYANALYZER
provides a trusted, reusable, human-readable, and performant
SMT-backed model of AWS’s authorization logic that is now used
within multiple AWS applications. We have run conformance
testing of our model against the engine implementation and
its documentation; the corner cases identified by our testing
have led to improvements and modifications to the official AWS
documentation.

I. INTRODUCTION

Cloud authorization engines enable secure, on-demand ac-
cess to digital resources through policies that control who
can access what resources and under which conditions. These
policies form an essential layer of an organization’s secu-
rity framework, providing clear and enforceable access rules.
Specifically, the AWS Identity and Access Management (IAM)
policy language [10] governs access by allowing or denying
permissions based on rules and conditions on request parame-
ters such as source IP addresses [4] or encryption settings [14].
It provides a rich and expressive syntax that supports multiple
policy types, including identity-based policies, resource-based
policies, permissions boundaries, and more [6].

To help customers analyze properties of IAM policies,
ZELKOVA [18] formalized the meaning of individual policies
in the AWS IAM language. Using this formalization, IAM
policies can be compiled into semantic logical representations
that can be analyzed using Satisfiability Modulo Theories
(SMT) solvers. For example, ZELKOVA is used to help AWS
customers write IAM policies that align with their intent
by flagging policies that authorize public access to a re-
source [21], or by automatically modifying a policy to remove
unwanted access in a provably sound way [23].

While ZELKOVA’s ability to analyze individual policies
has found wide adoption and helped many users of AWS,

many security applications require more precise analysis that
involve understanding how multiple policies interact with
each other. This paper formalizes how the AWS authorization
engine handles arbitrary combinations of IAM policies, and
therefore yields the first logical model of the semantics
of the AWS authorization engine that can be used to
automatically analyze combinations of IAM policies. This
model allows one to analyze all authorization decisions for
AWS resources, thus allowing new automated analysis within
security applications at AWS.

Building a logical model of the semantics of the AWS
authorization engine involves striking the right level of gran-
ularity:

1) Code is too low level: The engine is written in a
general-purpose language with performance in mind
(i.e., it needs to run about one billion authorizations per
second [22]), thus directly compiling the code semantics
into logical constraints will lead to constraints that are
hard to analyze (both in terms of user understanding and
SMT solver performance). However, the model should
be faithful to the implementation and map cleanly to it.

2) Documentation is too high level: While the authorization
engine is heavily documented in natural language [11],
directly translating such a documentation to a logical
formalism will yield a logical model that will not map
well to the actual authorization code and is therefore
hard to test for faithfulness.

To address the considerations above, our work provides a
pragmatic approach for building a logical representation that is
analyzable, faithful to the code, and well-tested by carefully
threading the needle between the levels of granularity offered
by the code and the documentation. By studying the structure
of the AWS IAM authorization implementation, we design
a modular SMT-friendly domain-specific language (DSL) for
formalizing IAM authorization that separates modeling into
two parts. First, our DSL provides modular constructs that
capture the top-level structure of how the actual authorization
engine handles multiple policies (e.g., order of evaluation and
control flow). Second, the low-level details that pertain to the
evaluation of individual policies are encoded as queries to
ZELKOVA, which has been used in production for over seven
years and heavily tested to be correct.

Thanks to this modular structure, the model of the engine
written in the DSL can easily be mapped (line-by-line) to the
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actual code. Aside from making the model human-readable,
the above mapping allows us to design comprehensive test
cases that capture all the combinations of policies that trigger
all possible control-flow combinations in the authorization
engine. Using these test cases, we can perform conformance
testing between the engine implementation and the SMT
encoding generated from the model of the engine written in our
DSL. To further strengthen our conformance testing, we also
consider the third (and customer-facing) way in which the au-
thorization engine is described: the AWS documentation [11].
To automate testing of the documentation, we manually wrote
a Scala implementation of the informal semantics described
in it.

Our efforts have resulted in three key contributions.
1) We built a trusted, human-readable, and performant

SMT-backed model of AWS authorization logic that
can be used to automatically verify properties of IAM
policies across applications (Section III).

2) Our modeling strategy has helped generate test cases that
were used to improve the official AWS documentation
and highlight edge cases customers should consider
while authoring policies. (Section IV)

To fully understand the presentation in this paper we rec-
ommend a basic familiarity with IAM Policy concepts [6].

II. MODELING AWS AUTHORIZATION

AWS customers can control access to their cloud resources
by writing policies in the AWS IAM language [10]. AWS
today supports several different kinds of policies, including
identity-based and resource-based policies [8], service and
resource control policies [16], [15], and permissions bound-
aries [9]. For example, a resource-based policy (i.e., a policy
attached to a resource) can be attached to an Amazon S3
bucket [2] to specify which AWS principals are allowed to read
the bucket’s contents. On the other hand, an identity-based
policy can be attached to a user, a group of users, or a role,
to describe what those identities are allowed to access. For
example, an identity-based policy attached to a role can specify
resources the role is allowed to access, or which actions the
role may perform.

When an attempt to access a resource is made, the AWS
authorization engine evaluates all relevant policies, such as
the policy attached to the resource and any policies attached
to the identity of the principal making the request. The relevant
policies, and the final authorization decision (i.e. whether the
request is allowed or denied), can depend on the hierarchical
structure of AWS applications. Resources and identities belong
to AWS accounts, and accounts can belong to AWS organi-
zations defining service or resource control policies. Access
granted to an AWS account can also be delegated to users or
roles within that account.

The goal of this paper is to build an analyzable model of the
AWS authorization engine. Through an example demonstrating
how the authorization engine processes requests involving both
identity-based and resource-based policies, we illustrate why

our goal requires a new modeling mechanism that differs from
previous work on ZELKOVA.

Example (Cross-Account Authorization): An AWS IAM
role [7] named Ace is requesting to perform the action
s3:GetObject on the S3 bucket named Photo. Ace belongs
to the AWS account 111 while the Photo bucket belongs to
account 222. We consider three cases to demonstrate how
the AWS authorization engine evaluates this request in the
presence of different policies. Figure 1 shows a diagram of
the request and the resulting authorization decisions for each
case. We use notation 111/Ace to represent a user or role
named Ace that belongs to the account with identifier 111.
This is a short form way of representing Amazon Resource
Names (ARNs), which are used within AWS to uniquely identify
identities and resources [1].

Case A. The resource-based policy attached to the S3 bucket
grants the action s3:GetObject to the principal account
111, an alias for the administrator of the account 111, but
there is no identity-based policy attached to Ace. Because
the principal making the request (Ace) is in a different AWS
account than the resource, permission must also be granted to
Ace by the policies within the account. Therefore the request
is denied.

Case B. An identity-based policy attached to Ace grants
permission to perform the action s3:GetObject on the
Photo bucket, but there is no resource-based policy. The
request is denied, since access is not granted by the bucket’s
resource-based policy.

Case C. As in Case B, an identity-based policy attached
to Ace allows access to the Photo bucket. Additionally, the
resource-based policy attached to the bucket grants access to
the principal account 111. Now the authorization request is
allowed: although the bucket’s policy does not name the Ace
role specifically, the administrator of Ace’s account delegates
access to Ace with the identity-based policy.

The example illustrates how different types of policies can
interact in non-trivial ways.

Given that the tool ZELKOVA [18] (described in Sec-
tion III-A) provides SMT models of the semantics of indi-
vidual policies, one might wonder if there is an easy way
to model the combination of multiple policies using analysis
results from ZELKOVA. As we illustrate next, just “combining”
the ZELKOVA analyses of different policies cannot soundly
capture how different policies interact because permissions
can be delegated between multiple principals through policies
attached to different entities (resources, roles, users, etc.).

Consider again the three authorization cases in Figure 1.
There are two policies to consider in each case: one for the
identity-based policy attached to the Ace role in account 111,
and another for the resource-based policy attached the Photo
bucket in account 222. Recall that the request is allowed in
Case C, but not in Cases A and B. Let’s analyze what happens
if we analyze each policy separately using ZELKOVA, and see
if there is a way to combine the results to model the right
authorization outcomes.



Fig. 1. Example of AWS authorization for two types of policies.

For Case A, ZELKOVA captures that the principal in the re-
quest does not match the permissions granted by the resource-
based policy—i.e., the resource-based policy only grants ac-
cess to principal 111, with no mention of the case in which
Ace role makes the request. Similarly, in Case B, ZELKOVA
captures the fact that the identity-based policy allows the
request but the resource-based policy denies—i.e., an empty
policy does not allow any access.

From Case A and Case B, one might guess that the actual
authorization result is Allow if and only if ZELKOVA con-
cludes that both the identity-based and resource-based policies
result in an Allow decision. However, such an approach is not
sound (i.e., the model would not match the actual implemen-
tation): in Case C the request should be allowed, analyzing the
resource-based policy in isolation using ZELKOVA would yield
the same result as for Case A—i.e., that the request should not
be allowed.

A similar issue can arise when a resource-based policy
allows access to a specific role in the same account as the
resource, but an identity-based policy in that role’s account
explicitly denies access. ZELKOVA’s per-policy analysis might
suggest allowing access (seeing the resource-based allow),
while the actual AWS authorization engine would correctly
deny it due to the explicit deny in the identity-based policy.

These examples demonstrate how one cannot model the
AWS authorization engine by separately analyzing single poli-
cies with ZELKOVA and taking Boolean combinations of the
analysis outcomes. The key missing element is the ability to
model how permissions flow through delegation relationships
between principals. A sound analysis needs to represent the
hierarchical structure of AWS principals and resources, captur-
ing how permissions are delegated from resources to accounts
and from accounts to roles or users. The tool presented in
this paper, IAM-MULTIPOLICYANALYZER, introduces a DSL
that still uses ZELKOVA as a building block, but explicitly

models permissions delegation and uses it to soundly capture
all the features of the AWS authorization engine, including
cross-account access requirements and the precedence of dif-
ferent policy types. In IAM-MULTIPOLICYANALYZER, the
authorization decision for Case C is modeled using the DSL
program illustrated in Figure 3. While we discuss the program
in Figure 3 in detail in Section III, they key idea behind
IAM-MULTIPOLICYANALYZER’s model in this DSL is that
delegation is treated explicitly by issuing separate calls to
ZELKOVA using different principals (as illustrated in the third
let-statement).

III. A MODULAR FORMAL MODEL FOR AWS
AUTHORIZATION

Because our goal is to build a model of any possible
combination of all types of policies with allow and deny
statements, modeling the authorization engine requires a new
modular mechanism to combine the decisions performed
by individual policies. In this section, we present IAM-
MULTIPOLICYANALYZER, a modular approach for translating
sets of AWS policies into human-readable SMT terms that
exactly capture the policies’ semantics according to the AWS
authorization engine implementation.

IAM-MULTIPOLICYANALYZER relies on ZELKOVA, a
model for single policies that has withstood the test of time,
to model individual policies (Section III-A) and a high level
SMT friendly domain-specific language (DSL) that models
the control flow of how the authorization engine dispatches
authorization to individual policies and combines their results
(Section III-C).

A. ZELKOVA: From Individual Policies to SMT

The key component that enables modularity is
ZELKOVA [18], an existing service that compiles the
semantics of individual IAM policies into SMT. The core of
ZELKOVA’s compilation is the deconstruction of policies into



p = “111/Ace” ∧ a = “s3:GetObject” ∧ r matches “Photo/*” (1)

p = “111” ∧ a = “s3:GetObject” (2)

Fig. 2. ZELKOVA SMT Encoding of the Identity-based Policy (Equation (1))
and the Resource-based Policy (Equation (2)) from Case C of Figure 1.

a set of statements, where each statement has effect (ALLOW
or DENY), principal, action, and resource components.
Conditions can optionally be used to further restrict which
requests a policy allows, but are not described here for
space considerations (details of conditions in ZELKOVA are
described by Backes et al. [18]).

The ZELKOVA SMT encoding of each policy statement s is
a formula ϕs(p, a, r) over three variables: principal (p), action
(a), and resource (r). Satisfying assignments to the formula
ϕs(p, a, r) correspond to requests for which the policy grants
access (i.e., what principals can perform what actions on what
resources). Figure 2 shows the ZELKOVA SMT encodings of
the two policies shown in Case C of Figure 1. In Equation (1),
the principal and action must match the specific concrete
values given in the policy, while the resource must match the
expression “Photo/*” containing a wildcard * (indicating that
it may be any string that begins with “Photo/”).

To meet the performance required by its applications
within AWS, ZELKOVA employs many powerful optimiza-
tions, and taking advantage of such optimizations is one
of the key design choices behind the modular approach of
IAM-MULTIPOLICYANALYZER. Concretely, ZELKOVA sup-
ports many optimizations for policies involving string and
set comparison, which we want to reuse in our design. For
example, in Equation (2), the resource component is omitted as
a ZELKOVA optimization detects that any string would match
the regular expression containing only the wildcard.

When multiple statements appear in the same policy, the
SMT formula produced by ZELKOVA is a conjunction of:
(1) a disjunction of those statements with effect ALLOW,
and (2) a conjunction of the negation of the statements with
effect DENY—i.e., a request is allowed if it is explicitly
allowed by some ALLOW statement and is not denied by any
DENY statement. As discussed in Section II, this Boolean-
combination approach is only sound (i.e., it accurately captures
whether a request should be allowed) when considering a
single policy, but fails when two statements belong to policies
of different types.

B. AUTHENGINE: AWS Authorization Engine

In AWS, the authorization engine (which we call AU-
THENGINE) handles the policy evaluation logic. At a
high level, AUTHENGINE takes as input a set of policies
{P1, . . . , Pn} and a request r including details about the
principal, action, resource, and the context about the environ-
ment/resource (e.g., IP address) [13], and decides whether the
request should be allowed.

Algorithm 1 AUTHENGINE algorithm snippet for Section II
Require: req is the authorization request for role Ace; reqA

is the authorization request for account 111; evaluate
evaluates a policy given a request and returns Allow,
ImpDeny or Deny; PI is the identity policy; PR is the
resource-based policy

Ensure: Returns true iff cross-account access request is
allowed by policies
if evaluate(PR, reqA) = Deny ∨ evaluate(PR, req) =
Deny ∨ evaluate(PI , req) = Deny then

return false ▷ Deny trumps all
end if
delegated← evaluate(PR, reqA) = Allow ▷ Trusting
account delegates to the trusted account
trusting ← evaluate(PR, req) = Allow
trusted← evaluate(PI , req) = Allow
return trusted ∧ (trusting ∨ delegated)

The key mechanism employed by the AUTHENGINE (and
the one that we model explicitly in our DSL) is the delega-
tion of permissions across principals. This mechanism allows
permissions to flow automatically through chains of principals
(e.g., from organization to account to role) without requiring
explicit definition of each transfer. This mechanism is enabled
by the interaction between the so-called trusted and trusting
principals, where if a trusting principal A, e.g. an account,
can access a resource and delegates permission to principal
B, e.g. a role within that account, then B becomes a trusted
principal who can further delegate those permissions down the
chain [5].

A common and practical use case for delegation is inter-
account access, where the authors of the resource-based and
identity-based policies are different actors. Using permission
delegation, a resource policy can allow access to a trusted ac-
count without the resource owner needing to know the details
of the identities within that account. The trusted account is
then responsible for further delegating appropriate permissions
to the users or roles that should have access. A key point is that
a principal is only able to delegate the access they themselves
have. For example, if a role A cannot access a resource R,
that same role cannot delegate access to resource R to any
principal.

While the internals of AUTHENGINE are closed-source
and cannot be described in detail, the reader can refer to
AWS documentation for an overview of AUTHENGINE [12].
Additionally, Algorithm 1 in contains a simplified snippet that
corresponds to how AUTHENGINE would operate for the case
described in Figure 1.

C. IAM-MULTIPOLICYANALYZER: From Sets of Policies to
SMT via ZELKOVA

In this section, we describe how IAM-
MULTIPOLICYANALYZER models multiple policies and
delegation of permissions. IAM-MULTIPOLICYANALYZER
follows two key principles:



• Modularity: IAM-MULTIPOLICYANALYZER should use
ZELKOVA (a well-tested and optimized trusted compo-
nent) as a key primitive whenever it models an individual
policy.

• Faithfulness: IAM-MULTIPOLICYANALYZER’s model
should follow the original implementation of AU-
THENGINE as closely as possible—i.e., we should be able
to map each line of the model to a corresponding line in
AUTHENGINE.

IAM-MULTIPOLICYANALYZER uses a DSL (Figure 4)
to model how permissions are delegated by the AU-
THENGINE. Concretely, given a set of policies P , IAM-
MULTIPOLICYANALYZER builds a program X in the DSL
(which can then be translated to an SMT formula), such that
a request r is a valid model of X iff AUTHENGINE allows the
request r for policies P . In the rest of the section, we describe
the components of the DSL.

1) Main Program: A program in the IAM-
MULTIPOLICYANALYZER DSL is a predicate that describes
an authorization decision. Complex predicates can be
built using let-statements, Boolean operations, and most
importantly, the three specialized predicates used for handling
delegation listed under IRPredicate in Figure 4.

For example, the snippet of DSL program in Figure 3
models how AUTHENGINE handles the policies in Case C
of Section II. The first let expression models the access
through some identity policy which is attached to the principal,
in this case 111/Ace. The second let expression models
requests allowed by the resource-based policy directly. The
final let expression models that a resource may delegate
permissions through the account when the acting principal
has an appropriate principal type (Role or User). To keep
the example manageable we do not include the clause for
principal types with more complex delegation chains, such
as AssumedRole, as our running example requires only
the Role type. However, IAM-MULTIPOLICYANALYZER
does support these multi-jump delegation chains as well.
This example demonstrates how this DSL creates a human-
readable program that expresses the model of access control
in AUTHENGINE and is closely aligned with the authorization
algorithm (Algorithm 1).

We now describe each specialized predicate and how their
semantics is translated to SMT terms to enable automated
reasoning on policies.

2) Evaluation under Context: The main
primitive in the DSL is the predicate
EvalCtx(IRCtx,AuthPolicy,Outcome), which is
used to dispatch the modeling of individual policies to
ZELKOVA. This predicate has the following intended behavior
(i.e., set of satisfying assignments): under context IRCtx,
the single policy AuthPolicy evaluates to the outcome
Outcome.

As we have seen in Section III-A, single-policy evaluation
results in a formula ϕ(p, a, r). The context IRCtx represents
the variable valuations relevant to this single policy evaluation
within the larger evaluation—e.g., who is the principal p, what

Let AllowI =
PrHasArn({111/Ace, a, r},111/Ace) ∧
EvalCtx({111/Ace, a, r}, PI ,ALLOW)

in
Let AllowR =

EvalCtx({111/Ace, a, r}, PR,ALLOW)

Let AllowDelegateR =

(ActPrHasType({111/Ace, a, r},Role) ∨
ActPrHasType({111/Ace, a, r},User)) ∧

EvalCtx({111, a, r}, PR,ALLOW)

in
AllowI ∧ (AllowR ∨ AllowDelegateR)

Fig. 3. DSL program modeling the authorization of Case C from Figure 1
in IAM-MULTIPOLICYANALYZER.

resource r are they accessing, etc. For simplicity we will
restrict the presentation of IRCtx to just the principal, action,
and resource; eliding condition keys. Intuitively, an IRCtx is
a predicate acting as a symbolic representation of a set of
actual concrete requests.

To model delegation, the IRCtx will have different prin-
cipal “assignments“ when performing different evaluations.
For example, the two instances of EvalCtx in the second
and third let statements in Figure 3 use different contexts
{111, a, r} and {111/Ace, a, r} to model the two possible
delegation paths for the role 111/Ace. The resulting autho-
rization decision is the disjunction of the two predicates.

To summarize, a satisfying assignment for a predicate
EvalCtx(IRCtx, P,Allow) is any evaluation context that
is consistent with the predicate IRCtx and that results in an
allow-decision when evaluated by AUTHENGINE on the single
policy P . While in our example, the principal value is set
to different constants corresponding to the possible delegated
principal values in each IRCtx, it is also possible to assign
delegated principal values symbolically through predicates
over p.

3) Predicates for Constraining Principals: While the snip-
pet illustrated in Figure 3 only contains the case in which the
acting principal has type Role or User, the full model of the
example in Figure 1 will also contain cases for other types of
delegation, with the corresponding evaluation behavior.

In AUTHENGINE, the delegation mechanism depends on the
type of a principal (e.g., Root, User, Role) and the structure
of its ARN (a format used by AWS to locate resources). It
is not important to understand the specifics of ARNs for this
work and so specific discussion of ARNs is left to the existing
AWS documentation [1]. For the sake of this explanation, it is
just relevant to know that AWS imposes constraints of what
structures of ARNs one can use for different types of principal
types.

To correctly model delegation, the DSL uses two pred-



IRExpr ::= Let id = IRExpr in IRExpr |
IRPredicate |
TRUE | FALSE | ¬IRExpr |
IRExpr ∧ IRExpr | IRExpr ∨ IRExpr

IRPredicate ::=

EvalCtx(IRCtx,AuthPolicy,Outcome) |
PrHasArn(IRCtx,Arn) |
ActPrHasType(IRCtx,PrncplType)

PrncplType ::=

Root | Role | User |
AssumedRole | FederatedUser |
FederatedPrincipal

Fig. 4. Simplified Syntax of IAM-MULTIPOLICYANALYZER DSL.

icates, PrHasArn and ActPrHasType, that capture the
requirements of different uses of principal in AUTHENGINE.
The predicate PrHasArn (IRCtx, Arn) holds when the
acting principal in IRCtx has the ARN Arn, while
ActPrHasType (IRCtx, PrncplType) holds when the
acting principal in IRCtx has type PrncplType.

In our example, the principal is a constant and therefore one
can trivially infer the account and roles, but in general one may
require string predicates to do so. In fact, while Figure 3 only
illustrates the snippet of DSL program corresponding to the
case in which the principal has type Role or User, IAM-
MULTIPOLICYANALYZER will generate similar snippets for
other types of principals. Because for such snippets the predi-
cate ActPrHasType will be false, these snippets will never
affect the authorization decision in this case.

4) Translation to SMT: For an IAM-
MULTIPOLICYANALYZER model (i.e., a program in the
DSL) to be analyzable, we must generate an SMT term
corresponding to it. We cannot share the exact details
in this work, but implementing this translation requires
maintaining the shared variable state across different
ZELKOVA invocations issued by EvalCtx to ensure
consistency across the dependent evaluations. Intuitively, if
irCtx is the IRCtx and ϕ is the formula encoding the
ZELKOVA invocation, then the formula ϕ(irCtx) encodes
the IR expression EvalCtx(irCtx, P,ALLOW). The final
SMT formula is otherwise generated by composing ZELKOVA
SMT terms according to the structure of the DSL term. The
check of whether the request from Figure 1 matches the
DSL program in Figure 3 is captured by the following SMT

formula. ⎛⎜⎝“111/Ace” = “111/Ace”∧
a = “s3:GetObject”∧

r matches “Photo/*”

⎞⎟⎠∧
⎛⎜⎝
⎛⎜⎝“111/Ace” = “111”∧

a = “s3:GetObject”∧
r matches “*“

⎞⎟⎠ ∨
⎛⎜⎝ “111“ = “111“∧
a = “s3:GetObject”∧

r matches “*“

⎞⎟⎠
⎞⎟⎠

The generated SMT formula has the desired behavior de-
scribed in Section II: any request with principal 111/Ace to
perform action s3:GetObject on the Photo bucket corresponds
to an instantiation which makes this formula true. The vacuous
string equalities are due to the fact that we are instantiating
the principal with a specific constant.

Using an intermediate DSL to build SMT mod-
els enables multiple important optimizations in IAM-
MULTIPOLICYANALYZER. The system applies constant fold-
ing to simplify expressions, caches ZELKOVA models of
individual policies for reuse, and filters irrelevant statements
from resource-based and resource-control policies based on
the requesting principal. The DSL approach also produces
human-readable models, as shown in Figure 3, making it
straightforward to confirm that they capture the AUTHENGINE
logic.

IV. EVALUATION

In this section we evaluate IAM-MULTIPOLICYANALYZER
by assessing its correctness with respect to AUTHENGINE,
as well its performance and usability within applications in
Amazon.

In Section IV-B we evaluate the faithfulness of IAM-
MULTIPOLICYANALYZER to the implementation of AU-
THENGINE, additionally comparing against the publicly
available documentation about AWS authorization, using a
three-way conformance testing approach. In Section IV-C
we examine applications within Amazon using IAM-
MULTIPOLICYANALYZER and in Section IV-D we assess its
runtime performance responding to service requests.

A. Implementation

IAM-MULTIPOLICYANALYZER intentionally relies upon
the existing ZELKOVA model of single-policy semantics,
which has been available through an Amazon internal web ser-
vice used by tens of applications for several years. We imple-
mented IAM-MULTIPOLICYANALYZER as a significant addi-
tion on top of ZELKOVA, extending this web service with novel
operations that use IAM-MULTIPOLICYANALYZER’s model
to check properties about the effective permissions of sets of
policies; for example, whether any kind of access is possible
from a specific principal to an S3 Bucket given all associated
policies. Like ZELKOVA, IAM-MULTIPOLICYANALYZER
runs on AWS Lambda and relies upon a portfolio of
solvers comprising Z3 [24], CVC4 [20], CVC5 [19], and
NFA2SAT [29]. IAM-MULTIPOLICYANALYZER was de-
signed to reuse existing ZELKOVA code as much as possible,



so that it benefits from the correctness and efficiency already
built into ZELKOVA, as well as any future improvements made
to ZELKOVA.

B. Conformance of the Model to the Code and Documentation

We performed 3-way conformance testing of the following
implementations:

• IAM-MULTIPOLICYANALYZER’s model: the model G
contributed by this paper.

• AUTHENGINE implementation: the Java implementation
I of the AWS authorization engine modeled in this paper.

• Informal IAM documentation: a Scala program D encod-
ing the informal specification of the AWS authorization
logic presented in the IAM documentation [12]. Like I ,
the program D takes as input AWS policies along with
an authorization request, and returns a yes/no answer rep-
resenting an authorization decision. Unlike I , it does not
include any optimizations, intended only to correspond
cleanly to how AWS authorization is explained in the
documentation. Note that D is quite distinct from G: it
does not produce an SMT formula or other formal model
of authorization, but is simply a less efficient version of
I .

To guarantee complete and exhaustive evaluation of confor-
mance, we need test inputs that exercise all control-flow paths
of the AUTHENGINE implementation. Each test input should
include a set of policies P , also specifying the entities to which
they are attached, as well as an authorization request r. We say
that the three systems G, I , and D are consistent on a given
test (P, r) if they all agree on whether the request r should
be allowed by the set of policies P . However, generating
such inputs is a hard task because (1) randomly generating
pairs of the form (P, r) results in many meaningless policies
and requests, whereas (2) automated symbolic (or concolic)
execution is difficult due to the complexity of the involved
datatypes; i.e., complex JSON objects with string variables.

To sidestep this problem, we automatically generated tests
that consider only the dimensions of policies that could affect
the overall control-flow of how an authorization request r
is evaluated. Specifically, we wanted to account for whether
each policy in the set P would individually allow or deny the
request r, but did not want to account for all the many different
ways in which one policy could be written to allow or deny
r. We think this design choice is justified by the fact that
IAM-MULTIPOLICYANALYZER relies on ZELKOVA’s trusted
model of single-policy semantics (i.e., single-policy semantics
have already been heavily tested). Hence, we were able to
focus testing on the high-level policy combining logic within
AUTHENGINE without worrying about the details of intra-
policy evaluation.

Concretely, our generated test cases comprise all potential
combinations of policy types as well as combinations of
whether policies allow, implicitly deny, or explicitly deny
potential principals. The final set of test cases contained
approximately 1,500 (P, r) pairs.

Findings. IAM-MULTIPOLICYANALYZER’s model G and
AUTHENGINE’s implementation I agreed on all the test
cases, thus providing us with high assurance that IAM-
MULTIPOLICYANALYZER’s model is sound. Additionally, our
tests highlighted two edge cases that the Scala program D
did not capture, and have since resulted in changes to IAM
documentation [3]. These changes improve the description
of authorization presented to AWS customers. For example,
one of these edge cases showed that the documentation did
not fully capture how the “NotPrincipal” policy element in
resource-based policies works in combination with permission
boundary policies. Today, the documentation contains a clear
warning highlighting that customers should avoid including a
NotPrincipal policy element with a Deny effect for IAM users
or roles that have a permissions boundary policy attached.

C. Applications of IAM-MULTIPOLICYANALYZER

We discuss three applications running within Amazon that
depend on IAM-MULTIPOLICYANALYZER, chosen to demon-
strate the range of use-cases for which this precise, multi-
policy model of authorization is beneficial.

Security When necessary, Amazon may store customer data,
which can in some cases include highly-sensitive information
such as payment and health records. Amazon’s top priority
in handling this data is keeping it secure, ensuring it is
available only to the small number of applications where it
is absolutely needed. One of the ways in which access to
sensitive data is safeguarded is through a security tool that uses
IAM-MULTIPOLICYANALYZER to audit permissions granted
to these critical resources by AWS policies. The tool sends
regular requests to the IAM-MULTIPOLICYANALYZER web
service to determine all principals that are granted permission
to access any of this sensitive data, considering the identity-
based policies of those principals in combination with the
critical data’s resource-based policies and any organization-
level policies. IAM-MULTIPOLICYANALYZER enables the
security tool to produce a complete picture of all possible
ways access could be granted to these sensitive resources by
AWS policies, helping detect possible security risks.

Availability Service-control policies (SCPs) are guardrails that
define the maximum permissions which can be granted to
members at different levels of an AWS Organization. Modifi-
cations to SCPs can have large-scale effects, possibly affecting
access for all principals within an organizational unit. IAM-
MULTIPOLICYANALYZER is used by a tool within Amazon
that checks whether proposed changes to their organization’s
SCPs are safe before applying them. The tool sends requests
to the IAM-MULTIPOLICYANALYZER web service that in-
clude the proposed new SCPs along with identity-policies for
principals to ensure that (1) the new SCPs do not permit
new accesses that should never be allowed, and (2) the new
SCPs do not cause an availability risk by preventing needed
permissions that are necessary for their applications’ intended
functions.



Fig. 5. Performance of IAM-MULTIPOLICYANALYZER on one million policy
analysis requests.

Automation Some services within AWS help customers on-
board to their cloud offerings by automatically performing
actions on behalf of the customer, such as the deployment
of new resources within their account. This automation can
be done by assuming a role with permissions to perform
these actions in the customer’s account, but in some cases
there can be additional policies such as SCPs or resource-
based policies that prevent the automation from succeed-
ing. One service that relies heavily on this automation uses
IAM-MULTIPOLICYANALYZER to determine whether their
automation will succeed before attempting it, calling the
IAM-MULTIPOLICYANALYZER web service with all relevant
policies to check that each needed action is allowed. This
check enables them to work with customers ahead of time
to identify any policies that could cause problems for the
onboarding, reducing friction around the adoption of their
service.

D. Performance

General metrics The total number of invocations of IAM-
MULTIPOLICYANALYZER ranges from hundreds of thousands
to over a million in a single day. Figure 5 shows the
performance of the analysis on a randomly-chosen set of
one million requests to IAM-MULTIPOLICYANALYZER from
multiple services. The y-axis represents the percentage of
requests solved within the time on the x-axis. The graph shows
that 99% of requests are solved within 349 milliseconds, with
a median response time of 182 milliseconds.

Comparison to prior approaches While ZELKOVA can
answer questions about what could be allowed by a single
policy, IAM-MULTIPOLICYANALYZER is used to analyze
the effective permissions of multiple policies with respect to
AUTHENGINE. The only policy-analysis problems both tools
can solve are ones involving single policies, but in this setting,

Fig. 6. Performance of IAM-MULTIPOLICYANALYZER compared to
ZELKOVA on 3819 security tool requests involving identity-based and service
control policies.

the two tools are identical as IAM-MULTIPOLICYANALYZER
simply encodes a single policy using ZELKOVA.

To perform a meaningful comparison between the two
tools, we retrofit a set of benchmarks that were created
by the security tool described in Section IV-C, which was
in fact using ZELKOVA before the development of IAM-
MULTIPOLICYANALYZER. Though ZELKOVA is intended
to only analyze a single policy at a time, this applica-
tion relied on custom compositions of calls to ZELKOVA
that combined multiple policies into one for analysis (i.e.,
they manually implemented a special case of the IAM-
MULTIPOLICYANALYZER’s semantics). The tool’s ad hoc
policy-combining logic applied several heuristics to improve
the performance of ZELKOVA on their requests.

When using IAM-MULTIPOLICYANALYZER to perform
the same analysis, we observed no differences in the outcomes
of the analysis (i.e., the two tools agreed in all cases) and
observed similar performance. Figure 6 shows a scatter plot of
the performance of IAM-MULTIPOLICYANALYZER on 3,819
requests from the security tool, compared to the performance
of the existing ad-hoc implementation using ZELKOVA. On
average, the response time of IAM-MULTIPOLICYANALYZER
on this set of requests was 99.94 milliseconds (or 1.31 times)
longer than the response time of ZELKOVA, with 99% of
requests taking at most 331.90 milliseconds (or 1.87 times)
longer than the response time of ZELKOVA.

While the ad-hoc ZELKOVA encoding could take ad-
vantage of the problem structure to achieve better perfor-
mance, the security tool still decided to switch to IAM-
MULTIPOLICYANALYZER because (1) conformance testing
provides assurance that IAM-MULTIPOLICYANALYZER faith-
fully captures the AWS authorization logic, and (2) the per-
formance was largely comparable.

Furthermore, because IAM-MULTIPOLICYANALYZER can
model more policy types than just identity-based policies and



service control policies, this tool was able to extend its usage to
include additional policy types, e.g., resource-based policies,
thus enabling more precise and generalizable analyses.

V. RELATED WORK

ZELKOVA [18] has been used in a variety of applications.
For example, the stratified predicate abstraction algorithm was
built on top of ZELKOVA to summarize all permissions granted
by an IAM policy [17], while Bouchet et al. [21] introduced
an approach built on ZELKOVA to detect IAM policies that
grant overly broad or public access. These extensions focus on
identifying which permissions are allowed or denied by single
IAM policies; in a similar vein, D’Antoni et al. [23] describe a
technique for automatically modifying IAM policies to remove
undesired permissions.

While ZELKOVA models the permissions granted by
individual access control policies in isolation, IAM-
MULTIPOLICYANALYZER focuses on the combined effect of
multiple policies, which may be attached to distinct, dis-
tributed cloud resources, on authorization decisions. The appli-
cations that use ZELKOVA can now be lifted to supporting mul-
tiple policies by adopting IAM-MULTIPOLICYANALYZER.

Other approaches have also looked at modeling permissions
granted by access control policies expressed in different lan-
guages. Fisler et al. [26] use transitions between evaluation
states to determine access control in policies. Other applica-
tions also use an SMT encoding to model authorization, such
as the work on verification of NGAC policies by Dubroven-
ski et al. [25]. These applications target different languages
and authorization mechanisms and cannot be applied to our
domain. SecGuru [28] also uses SMT; specifically, the SMT
theory of bit vectors, to compare network connectivity policies.
Hughes and Bultan [27] transform XACML policies into
Boolean satisfiability problems and use a SAT solver to check
partial orders between policies using a bounded analysis. This
bounded analysis is however unsound, while both ZELKOVA
and IAM-MULTIPOLICYANALYZER are based on a sound
SMT encoding that ensures all allowed accesses are identified.

VI. CONCLUSION

We proposed a modular approach for analyzing how
AWS IAM authorization handles sets of policies and
implemented it in IAM-MULTIPOLICYANALYZER. IAM-
MULTIPOLICYANALYZER has launched as an internal ser-
vice in AWS, serving about two million requests per week
showing the scale at which the approach operates in prac-
tice. Customers use IAM-MULTIPOLICYANALYZER in many
tasks and applications, from checking that the service con-
trol policies used within their organizations are not overly
permissive, to detecting ahead of deployment when overly-
restrictive service control policies can cause access-denied
issues. As next steps, we are building solutions that use
IAM-MULTIPOLICYANALYZER for AWS customers—e.g.,
allowing customers to audit who has access to what within
their accounts and organizations.
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