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Abstract

Large language models (LLMs) demonstrate
superior reasoning capabilities compared to
small language models (SLMs), but incur
substantially higher costs. We propose
COllaborative REAsoner (COREA), a system
that cascades an SLM with an LLM to achieve a
balance between accuracy and cost in complex
reasoning tasks. COREA first attempts to an-
swer questions using the SLM, which outputs
both an answer and a verbalized confidence
score. Questions with confidence below a pre-
defined threshold are deferred to the LLM for
more accurate resolution. We introduce a re-
inforcement learning-based training algorithm
that aligns the SLM’s confidence through an ad-
ditional confidence calibration reward. Exten-
sive experiments demonstrate that our method
jointly improves the SLM’s reasoning abil-
ity and confidence calibration across diverse
datasets and model backbones. Compared to
using the LLM alone, COREA reduces cost by
21.5% and 16.8% on out-of-domain math and
non-math datasets, respectively, with only an
absolute pass@1 drop within 2%.

1 Introduction

Reasoning ability has emerged as a central perfor-
mance metric for large language models (LLMs),
enabling them to solve complex problems in math-
ematics, science, and coding, etc. A key strategy
for unlocking this capability is the generation of
explicit chain-of-thought (CoT) reasoning steps
(Wei et al., 2023), often combined with reinforce-
ment learning (RL) or supervised fine-tuning (SFT).
While highly effective, this approach introduces
significantly higher inference cost due to the ver-
bose reasoning traces, posing substantial barriers to
real-world integration at scale (Wang et al., 2025).

To address the high inference costs, recent re-
search has explored several approaches. One di-
rection involves training small language models

(SLMs) that are more cost-efficient through knowl-
edge distillation (Yu et al., 2024; Chenglin et al.,
2024). However, SLMs typically exhibit weaker
reasoning capabilities than LLMs (Li et al., 2025b).
Another line of work focuses on optimizing reason-
ing efficiency within a single model through tech-
niques such as adaptive computation (Snell et al.,
2024), latent reasoning compression (Hao et al.,
2024), or dynamic reasoning paradigms (Sun et al.,
2024). While these methods can reduce computa-
tional overhead, they require modifying the model
architecture or training procedure, and their effec-
tiveness is still limited by the underlying model’s
capacity. Routing-based approaches have also been
proposed to direct queries to appropriately-sized
models (Ong et al., 2024; Aytes et al., 2025), yet
they typically rely on external classifiers or heuris-
tics that may not accurately capture the model’s
actual reasoning confidence. These limitations re-
veal a persistent trade-off: using SLMs alone sacri-
fices accuracy and robustness on challenging prob-
lems, while relying exclusively on LLMs incurs
prohibitively high costs.

This contrast motivates a practical question: can
we combine the cost-efficiency of SLMs with the
accuracy and robustness of LLMs? Ideally, an
SLM should take the first pass—solving problems
it can handle confidently—and defer harder prob-
lems to a more powerful LLM. This collaborative
approach promises to deliver high overall accuracy
while keeping operational costs significantly lower
than exclusive LLM usage. However, implement-
ing such a collaborative system is non-trivial. The
key technical challenge lies in enabling the SLM to
recognize its own limitations and make informed
decisions about whether to answer or defer. Specif-
ically, SLMs currently do not know what they know,
nor do they know what they don’t know (Yin et al.,
2023; Prato et al., 2024; Kapoor et al., 2024).

In this work, we propose COREA
(COllaborative REAsoner), which empow-



ers a self-aware SLM to dynamically coordinate
with an LLM during inference. Self-awareness
is achieved by calibrating the SLM’s verbalized
confidence using RL training with a customized
reward function. In this system, when the SLM
is confident and capable of providing a correct
answer, it directly responds to the query; when
uncertain, i.e., its self-assessed confidence falls
below a threshold, it hands the task over to the
LLM for further processing.

To summarize, our main contributions are:
1. We propose COREA, an SLM-LLM collab-

orative system that balances accuracy and cost by
enabling the SLM to defer challenging problems to
the LLM when confidence is low.

2. We develop an RL training method that com-
bines a verifiable reward with a confidence cali-
bration reward, and demonstrate empirically that
it simultaneously improves reasoning ability and
confidence calibration.

3. We conduct extensive experiments validating
both the effectiveness of our RL training method
and the performance of the collaborative system.

2 Related Work

2.1 Efficient Reasoning

LLMs such as GPT-5-thinking (OpenAI, 2025),
Claude 4 (Anthropic, 2025), and DeepSeek-
R1 (DeepSeek-AI et al., 2025) achieve strong rea-
soning performance by producing explicit reason-
ing traces (Li et al., 2025c), but verbose outputs
incur high token costs and latency (Wang et al.,
2025). Research on efficient reasoning follows
three main strategies. Single-model optimiza-
tion reduces overhead through adaptive compu-
tation (Snell et al., 2024), latent reasoning com-
pression (Hao et al., 2024), or dynamic reason-
ing (Sun et al., 2024), but requires architectural
modifications and remains limited by the model’s
capacity. Enhancing SLMs via distillation (Yu
et al., 2024; Chenglin et al., 2024; DeepSeek-AI
et al., 2025), SFT (Muennighoff et al., 2025), or
RL (Li et al., 2025a) enables cost-efficient de-
ployment, yet distilled SLMs often struggle on
complex problems (Li et al., 2025b) and exhibit
overconfidence. SLM–LLM collaboration routes
queries between models: query-level routing (Ong
et al., 2024; Aytes et al., 2025) uses external clas-
sifiers that may misestimate difficulty, while fine-
grained methods (Akhauri et al., 2025; Kim et al.,
2025; Lee et al., 2024, 2025) and advanced cas-

cades (Gupta et al., 2024; Yue et al., 2023) de-
fer challenging steps or employ uncertainty-based
voting. However, these collaborative approaches
typically require additional sampling overhead or
external modules, in contrast, we directly calibrate
the SLM’s internal confidence for reliable routing
decisions.

2.2 Uncertainty and Confidence Calibration

Accurate self-assessment is critical for SLM–LLM
collaboration, yet SLMs often lack reliable confi-
dence calibration. Early studies analyzed prompt-
ing strategies and benchmarks for expressing
doubt (Yin et al., 2023; Prato et al., 2024; Kapoor
et al., 2024), revealing that RLHF often produces
overconfident models (Leng et al., 2025). Research
on improving calibration follows three main ap-
proaches. Eliciting verbalized confidence through
prompt engineering (Yang et al., 2025; Lin et al.,
2022) enables models to express uncertainty ex-
plicitly, however, calibration quality varies signifi-
cantly across tasks and templates. Introspection-
based methods leverage hidden states or auxil-
iary classifiers to detect when the model may be
incorrect (Azaria and Mitchell, 2023), still, the
performance is generally hard to extend to out-of-
distribution tasks. Training for calibration in-
corporates confidence calibration into the learning
objective: like including a Brier score (Damani
et al., 2025; Xu et al., 2024), Logarithmic score
(Stangel et al., 2025) in RL training. We follow
the similar training approach, however, we propose
several different calibration rewards and make an
extensive comparison on these reward designs.

3 Methodology

In this section, we present the design of
our COREA framework. We begin by describ-
ing the overall system architecture and then detail
RL with confidence calibration (RLCC).

3.1 Overall Architecture: The SLM-LLM
Collaborative Framework

As illustrated in Figure 1a, COREA employs a cas-
caded SLM-LLM architecture where queries are
first processed by the SLM. The SLM is prompted
to generate reasoning steps, an answer, and a ver-
balized confidence score indicating the likelihood
that its answer is correct. If the confidence exceeds
a predefined threshold T , the SLM’s answer be-
comes the final output. Otherwise, the original



input query 1：
Compute: $1-2+3-4+5- \dots +99-100$.

Xenia picks a positive integer N \leq 5000, and selects
20 distinct positive integers a_1, a_2, \ldots, a_{20},
such that for each k = 1, 2, \ldots, 20, we have N \equiv
a_k \pmod{k}.In each move, Sergey chooses a subset
S \subseteq \{1,2,\ldots,20\}, and Xenia replies with the
set \{a_k : k \in S\}, but not which element corresponds
to which k. What is the minimum number of such moves
needed to determine N with certainty?

input query 2：

SLM

answer with
confidence score Final Answer 

< threshold T 

>= threshold T 
✅

LLM

Instruction  for SLM:  Please reason step by step, and
put your final answer  within \boxed{}, then output the
confidence (0.0-1.0) that  your answer is correct within
\confidence{}.

(a) Architecture of COREA

+

prompt

Answer

Reasoning Steps

Reasoning Steps

Small Language Model (SLM) 🔥

Correctness
Reward

Confidence 
Reward

RL Training: GRPO

Confidence Score

Format
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(b) Confidence calibration of the SLM

Figure 1: (a) Architecture of COREA: COREA cascades an SLM with an LLM. For each query, the SLM is
prompted to generate reasoning steps, an answer, and a confidence score. LLM is invoked only when the SLM’s
confidence is less than the predefined threshold. (b) Confidence calibration of the SLM: The SLM is trained using
GRPO with a multi-objective reward function to improve its reasoning ability and calibrate its confidence.

query is passed to the LLM, whose response serves
as the final answer.

To elicit the desired response format, we append
the instruction after each question: "Please reason
step by step, and put your final answer within
\boxed{}, then output the confidence (0.0-1.0) that
your answer is correct within \confidence{}."

3.2 Calibrating Confidence through RL

RL with verifiable rewards (RLVR) focuses only
on improving a model’s reasoning ability. RLCC
further aligns the model’s confidence by adding
additional confidence calibration rewards (abbrevi-
ated as confidence reward) on top of the verifiable
rewards. Moreover, we incorporate a format re-
ward to ensure the model produces well-structured
outputs containing reasoning steps, a final answer,
and a confidence score.

Formally, given an input question x, the SLM is
prompted to generate reasoning steps yr, an answer
ya, and a confidence score yc ∈ [0, 1] using the
instruction in Section 3.1. Let y∗a denote the ground
truth answer and p represent the probability that
the SLM can answer the question correctly. The
composite reward function is:

R = Rcorrect +Rformat +Rconfidence, (1)

where Rcorrect = I(ya = y∗a) is the binary cor-
rectness reward. Rformat is a simple format reward
which enforces consistent language usage, output
of answer and confidence score as required in the
prompt, and is normalized to [0, 1].

The confidence reward Rconfidence should encour-
age the model to generate confidence scores that
aligns with its correctness probability. It is defined
as the negative distance between the confidence

score yc and the correctness probability p. Sev-
eral distance metrics can be employed, including
L1 distance, L2 distance, and KL distance. Corre-
spondingly, the confidence rewards are

RL1(p, yc) = −|p− yc| (2)

RL2(p, yc) = −(p− yc)
2 (3)

RKL(p, yc) = −p log
p

yc
−(1−p) log

1− p

1− yc
(4)

RKL is unbounded, and can lead to instability in
training, so we make some clipping, normalization,
and remove the constant term to obtain:

RKL(p, yc) =p
log(max(yc, ϵ))

log ϵ
+

(1− p)
log(max(1− yc, ϵ))

log ϵ
, (5)

where ϵ ∈ (0, 1) is a clipping factor.
Since the correctness probability p is un-

available, we estimate it using group accu-
racy during GRPO rollouts. Specifically, for a
question-answer pair (x, y∗a) ∼ D, N responses
(y0r , y

0
a, y

0
c ), . . . , (y

N−1
r , yN−1

a , yN−1
c ) are sampled

from the SLM, then p is estimated as:

p̂ =
1

N

N−1∑
i=0

I(yia = y∗a). (6)

Our confidence reward definition is on group
level, i.e., each sampled response (yir, y

i
a, y

i
c) in

the same group would use the same p̂ regardless
of its correctness. This is different from the sam-
ple level definitions in (Damani et al., 2025; Xu
et al., 2024; Stangel et al., 2025). In their defini-
tions, p is estimated as p̂ = I(yia = y∗a), which
depends on the sampled answer’s correctness. We



denote the sample-level confidence rewards as sam-
ple_L1, sample_L2 (equivalent to the Brier score
in (Damani et al., 2025)), sample_KL. We focus
on L1 reward and will compare the performance of
different rewards in the ablation study.

4 Experimental Setup

4.1 Models and Dataset

SLM: Our main base SLM is Qwen2.5-7B-
Instruct (Qwen et al., 2025) (Qwen2.5-7BI). In
ablation studies on model backbones, we addi-
tionally evaluate Qwen2.5-1.5B-Instruct (Qwen
et al., 2025) (Qwen2.5-1.5BI) and Llama3.1-8B-
Instruct (Grattafiori et al., 2024) (Llama3.1-8BI).
We use instruction-tuned versions for their superior
instruction-following capabilities and faster conver-
gence during training.

LLM: We utilize Qwen2.5-32B-Instruct (Qwen
et al., 2025) (Qwen2.5-32BI) as the base LLM.

Training and In-Domain Evaluation Datasets:
We construct our training and in-domain evaluation
sets by randomly sampling from the DeepMath-
103K (He et al., 2025) dataset, a meticulously
curated mathematical dataset containing 103K
question-answer pairs of varying difficulty levels,
which also excludes common math benchmark
datasets. Specifically, we sample 16K problems
for training (referred to as DeepMath16K) and an
additional 500 problems as in-domain evaluation
dataset (referred to as DeepMath500).

Out-of-Domain (OOD) Evaluation Datasets:
We select 5 OOD datasets across mathematical
and non-mathematical reasoning tasks. For mathe-
matical reasoning, we utilize Math500 (Hendrycks
et al., 2021), GSM8K (Cobbe et al., 2021), and
OlympiadBench (He et al., 2024). For broader rea-
soning evaluation, we include: 1) GPQA (Rein
et al., 2024), a challenging graduate-level sci-
ence dataset spanning biology, physics, and chem-
istry with 448 multiple-choice questions; 2) Com-
monsenseQA (Talmor et al., 2019), a common-
sense reasoning dataset containing 1,221 multiple-
choice questions. We evaluate correctness using
math_verify (Hugging Face, 2024) for mathemati-
cal datasets and exact match for others.

4.2 Baselines

We consider the following baselines:
Standalone Model:

• SLM: Original SLM.
• RLVR-SLM: SLM trained using RLVR.

• Brier-SLM: SLM trained using RLCC with
the Brier score.

• L1-SLM: SLM trained using RLCC with the
L1 confidence reward.

• Baseline LLM: To make a collaborative sys-
tem useful, the Baseline LLM should have better
reasoning ability than the RL-trained SLM, other-
wise, there is no need to defer to the LLM. To meet
the requirement, we trained the LLM using RLCC
with the L1 confidence reward.
Collaborative System: For all systems, we employ
the Baseline LLM as the capable LLM. Then the
systems differ only in the SLM and the method to
generate confidence scores. For simplicity, we use
these two factors to denote a system.

• SLM-Verb: The original SLM with verbalized
confidence.

• RLVR-SLM-Verb: The RLVR-SLM with ver-
balized confidence.

• RLVR-SLM-AvgProb: The RLVR-SLM with
confidence score obtained by averaging the token
probability of the response.

• RLVR-SLM-Probe: The RLVR-SLM with
a probe to generate confidence score. The probe
is a multi-layer perceptron (MLP) which takes as
input the average-pooled hidden states from RLVR-
SLM’s final layer, and outputs the correctness pre-
diction of RLVR-SLM’s answer. It is trained using
the same DeepMath16K, but with answers sampled
from RLVR-SLM. Probe model and training details
are provided in Appendix A.1.

• Router + RLVR-SLM: We employ a router
to decide the use of the SLM or the LLM. We as-
sess the RLVR-SLM’s accuracy on DeepMath16k
by sampling 8 responses per question, then utilize
the accuracy to construct a training dataset for the
router with the prompt: "Question: {Question}
Instruction: Estimate and output the probability
(0.0-1.0) that a small language model (≤10B) can
answer the question correctly." During evaluation,
the router generates a probability score for each
question. Questions are routed to the RLVR-SLM
when the probability exceeds a given threshold,
and to the LLM otherwise. The Router utilizes the
same base model as RLVR-SLM. Training details
are provided in Appendix A.2.

• Brier-SLM-Verb: The Brier-SLM with ver-
balized confidence.

4.3 Evaluation Protocol
The following metrics are considered to evaluate
the different systems.



System DeepMath500 OOD Math OOD Non-Math

Pass@1% ↑ Avg Cost ↓ LLM% Pass@1% ↑ Avg Cost ↓ LLM% Pass@1% ↑ Avg Cost ↓ LLM%

Standalone
SLM 42.7 4423 0.0 60.4 2622 0.0 45.2 2004 0.0
RLVR-SLM 57.6 2511 0.0 71.8 1928 0.0 62.4 1438 0.0
Brier-SLM 55.7 3490 0.0 72.7 2322 0.0 63.5 1708 0.0
L1-SLM* 56.6 3766 0.0 72.1 2589 0.0 64.7 1902 0.0
Baseline LLM 69.0 14882 100.0 79.6 10164 100.0 71.4 7428 100.0

Collaborative
SLM-Verb 60.3 (–8.6) 11594 (–22.1%) 43.6 75.7 (–3.9) 7300 (–28.2%) 34.9 48.8 (–22.6) 2609 (–64.9%) 9.4
RLVR-SLM-Verb 57.6 (–11.4) 2672 (–82.0%) 1.0 72.6 (–7.0) 2927 (–71.2%) 14.0 62.7 (–8.7) 1510 (–79.7%) 1.1
RLVR-SLM-AvgProb 57.6 (–11.4) 2511 (–83.1%) 0.0 72.4 (–7.1) 2206 (–78.3%) 4.5 62.5 (–8.9) 1488 (–80.0%) 0.9
RLVR-SLM-Probe 63.3 (–5.7) 9562 (–35.7%) 41.7 75.9 (–3.7) 5874 (–42.2%) 25.2 67.3 (–4.1) 4724 (–36.4%) 32.7
Router+RLVR-SLM 61.4 (–7.5) 7659 (–48.5%) 35.6 74.4 (–5.2) 4974 (–51.1%) 20.6 65.4 (–6.0) 3781 (–49.1%) 34.0
Brier-SLM-Verb 66.3 (–2.7) 15254 (+2.5%) 72.5 78.8 (–0.8) 9264 (–8.8%) 57.4 70.3 (–1.2) 7188 (–3.2%) 78.9
COREA * 67.5 (–1.5) 13882 (–6.7%) 59.9 77.9 (–1.7) 7978 (–21.5%) 35.5 69.7 (–1.7) 6178 (–16.8%) 59.0

Table 1: Performance comparison across different systems and datasets. Pass@1, average cost per question
(Avg Cost), and LLM usage percentage (LLM%) are reported. OOD Math includes Math500, GSM8K, and
OlympiadBench. OOD Non-Math includes GPQA and CommonsenseQA. In all collaborative systems, the Baseline
LLM’s Pass@1 serves as the confidence threshold. Values in parentheses indicate the difference from the Baseline
LLM. COREA (L1-SLM-Verb) utilizes L1-SLM and verbalized confidence. * indicates our method.

For the SLM component:
Pass@1: A common measure of accuracy.
Expected Calibration Error (ECE): Measures

the alignment between predicted confidence and
actual accuracy through binning:

ECE =
M∑

m=1

|Bm|
N

|acc(Bm)− conf(Bm)| , (7)

where Bm represents the m-th confidence bin,
acc(Bm) denotes the empirical accuracy of sam-
ples in Bm, and conf(Bm) corresponds to the mean
confidence score of predictions in Bm.

AUROC: Computed as the area under the ROC
curve generated by varying the confidence thresh-
old. For binary classification of answer correctness:

AUROC =

∫ 1

0
TPR(t) · FPR′(t)dt, (8)

where TPR (True Positive Rate) and FPR (False
Positive Rate) are functions of threshold t.

Confidence Output Ratio: Measures the ratio
of responses with a verbalized confidence score.
For the collaborative system:

Pass@1: Accuracy of the final answer.
System Cost: The system cost depends on the

number of input and output tokens. We assume
that 1) the cost of output tokens is four times that
of input tokens, which aligns with prevailing API
pricing models (e.g., GPT 4:1, while Claude 5:1).
2) pricing scales proportionally with model size.
For a question, the SLM/Router cost is defined as:

SLM/Router Cost = nprompt + 4 · nSLM, (9)

where nprompt and nSLM represent the numbers of
prompt and output tokens, respectively. Each SLM
input token is normalized to a base cost of 1.

The LLM cost is defined as:

LLM Cost =
(
nprompt + 4 · nLLM

)
· |θLLM|
|θSLM|

, (10)

where nLLM represents the number of output tokens
of the LLM, and the term |θLLM|

|θSLM| adjusts for the
relative cost scaling based on parameter counts.

The cost of a system without a router is:

System Cost =

{
SLM Cost, yc ≥ pT
SLM Cost + LLM Cost, yc < pT

where yc and pT are the confidence score of the
SLM and the confidence threshold, respectively.

The system cost of Router + RLVR-SLM is:

System Cost =

{
Router Cost + SLM Cost, yc ≥ pT
Router Cost + LLM Cost, yc < pT

where yc is the correctness probability of the router.

4.4 Implementation Details
We conduct training on an AWS p5en.48xlarge
instance equipped with 8×H200 GPUs using the
SimpleRL-reason framework (Zeng et al., 2025).
For GRPO training, we use the framework’s de-
fault hyperparameters with the following key set-
tings: sampling temperature of 1.0, maximum re-
sponse length of 4,096 tokens, and a learning rate
of 5 × 10−7 with AdamW optimizer. Each train-
ing episode consists of two phases: (1) a rollout
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(d) Pass@1 vs Avg Cost

RLVR-SLM Baseline LLM RLVR-SLM-Verb RLVR-SLM-AvgProb RLVR-SLM-Probe Router+RLVR-SLM Brier-SLM-Verb COREA

Figure 2: Pass@1, Avg Cost and LLM% vs Confidence Threshold of different systems on DeepMath500. The
vertical dashed line at threshold 0.69 equals to the Baseline LLM’s Pass@1.

phase generating 8 responses per question with a
batch size of 1,024, and (2) a training phase using
a batch size of 256. The loss function includes KL
divergence regularization (coefficient: 1×10−4) to
prevent policy drift and entropy regularization (co-
efficient: 1× 10−3) to encourage exploration. We
trained Qwen2.5-1.5BI, Qwen2.5-7BI, Llama3.1-
8BI, and Qwen2.5-32BI for 150, 80, 120, and 50
steps, respectively, with training duration deter-
mined by total reward convergence. During infer-
ence, we set the sampling temperature to 0.6 to
reduce output variability and improve consistency.
All evaluation results are averaged over 10 runs
unless otherwise stated.

5 Results

5.1 Overall Performance

The main results are provided in Table 1. De-
tailed per-dataset results and experiments with an
alternative SLM+LLM pairing are provided in Ap-
pendix C and Appendix D, respectively. From the
table, we observe that:

Confidence reward does not hurt correctness:
This is demonstrated by comparing the standalone
models. Compared to RLVR-SLM, both Brier-
SLM and L1-SLM achieve comparable Pass@1
performance despite incorporating an additional
confidence reward. Furthermore, although all RL
trainings are conducted on DeepMath16K, perfor-
mance improvements extend to the OOD Math and
OOD Non-Math datasets as well, demonstrating
the good generalizability of the proposed method.

COREA shows superior performance-cost
trade-off: In Table 1, we set the Baseline LLM’s
Pass@1 as the confidence threshold for all col-
laborative systems, where the SLM defers to the
LLM when its confidence falls below this threshold.
With well-calibrated confidence, the system should

achieve substantial cost reductions while maintain-
ing performance, as confident questions are an-
swered by the SLM alone. Our COREA achieves
this goal, reducing costs by 6.7%, 21.5%, and
16.8% on DeepMath500, OOD Math, and OOD
Non-Math respectively, while limiting Pass@1
degradation to within 2 percentage points.

While some systems achieve either higher
Pass@1 or lower costs in certain cases—for in-
stance, Brier-SLM-Verb attains higher Pass@1 on
OOD datasets—this comes at the expense of re-
duced savings. Conversely, systems like RLVR-
SLM-Verb, RLVR-SLM-AvgProb, RLVR-SLM-
Probe, and Router-RLVR-SLM achieve greater
cost reductions but suffer significant Pass@1 drops
due to poorly calibrated confidence scores. These
results demonstrate that our method successfully
maintains near-optimal performance while achiev-
ing substantial cost savings through intelligent
SLM-LLM collaboration.

5.2 Confidence Threshold Selection

In Table 1, the confidence threshold is fixed at the
Baseline LLM’s Pass@1. However, the collabo-
rative system offers flexibility to trade off perfor-
mance and cost by adjusting this threshold. As
shown in Figure 2, when the threshold increases
from 0 to 1.1, system Pass@1 increases alongside
average cost due to higher LLM usage across all
methods. If cost is prioritized, we can sacrifice
accuracy for savings. For instance, decreasing the
confidence threshold from 0.69 to 0.4 for L1-SLM-
Verb yields an additional 14% relative cost reduc-
tion with only 0.6 percentage point Pass@1 loss.
While other methods achieve greater cost reduc-
tions, they incur more severe accuracy drops. We
set 1.1 as the maximum threshold since the SLM’s
verbalized confidence caps at 1.0, thus only values
> 1.0 ensure all questions defer to the LLM. Fig-



Method Pass@1% ↑ ECE ↓ AUROC ↑

SLM-Verb 52.8± 0.9 0.45± 0.01 0.50± 0.01
RLVR-SLM-Verb 66.9± 0.7 0.30± 0.01 0.50± 0.01
RLVR-SLM-AvgProb 66.9± 0.7 0.28± 0.01 0.64± 0.01
RLVR-SLM-Probe 66.9± 0.7 0.17± 0.01 0.72± 0.01
Router+RLVR-SLM 66.9± 0.7 0.20± 0.01 0.56± 0.01
Brier-SLM-Verb 67.5± 0.7 0.17± 0.01 0.72± 0.01
L1-SLM-Verb* 67.8± 0.7 0.12± 0.01 0.72± 0.01

Table 2: Comparison of different methods on accuracy
and calibration metrics, averaged across all datasets.
Here, the metrics are only evaluated on the SLM.

ure 2d draws Pass@1 versus average cost curves
of different methods, although COREA is not
Pareto optimal across all regions, it achieves the
best accuracy-cost trade-off in high Pass@1 regions
([0.62, 0.67]).

5.3 Evolution of SLM Self-Awareness
Training Dynamics and Convergence: Figure
3a demonstrates that trainings with and without
confidence rewards (either Brier Score or L1 con-
fidence reward) achieve comparable correctness
and format rewards, indicating that the SLM can
simultaneously improve its reasoning ability and
align its confidence estimates. The evolution of
key metrics in Figure 3b (Pass@1, ECE, AUROC,
and Confidence Output Ratio) further supports this
finding. Figure 3c provides a clearer view of the
confidence-accuracy alignment process: initially
(step 0), the SLM exhibits severe overconfidence
with nearly all confidence scores approaching 1.0.
Through training, the model progressively diversi-
fies its confidence estimates and aligns them more
closely with actual accuracies.

Quantitative Results: Table 2 shows the aver-
aged accuracy and calibration results of different
methods on all datasets (detailed results on each
dataset are presented in Appendix E). It is noted
that RL training improves the SLM’s reasoning per-
formance significantly. Among all methods, the
proposed L1-SLM-Verb method achieves the high-
est Pass@1 and lowest ECE, showing the superior-
ity of the proposed method.

5.4 Ablation Study
5.4.1 Generalizability: Robustness Across

SLM Sizes and Architectures
We further conducted RLVR training and RLCC
training with L1 confidence reward (RLCC-L1) on
Qwen2.5-1.5B, Llama3.1-8B, and Qwen2.5-32B.
Figure 4 demonstrates that the proposed RLCC
method is effective across all tested model sizes and

Conf. Reward Pass@1% ↑ ECE ↓ AUROC ↑

L1 67.8± 0.7 0.12± 0.01 0.72± 0.01
Sample_L1 68.3± 0.7 0.16± 0.01 0.68± 0.01
L2 67.5± 0.7 0.31± 0.01 0.62± 0.01
Brier 67.5± 0.7 0.17± 0.01 0.72± 0.01
KL 66.5± 0.7 0.15± 0.01 0.69± 0.01
Sample_KL 67.1± 0.7 0.11± 0.01 0.74± 0.01

Table 3: Comparison of different confidence reward
functions on accuracy and calibration metrics, averaged
across all datasets.

Rollout Size Pass@1% ↑ ECE ↓ AUROC ↑

4 67.2± 0.8 0.10± 0.01 0.68± 0.01
8 67.8± 0.7 0.12± 0.01 0.72± 0.01

16 66.7± 0.7 0.10± 0.01 0.69± 0.01
32 68.3± 0.5 0.17± 0.01 0.65± 0.01

Table 4: Comparison of different rollout sizes with L1
confidence reward on accuracy and calibration metrics,
averaged across all datasets.

architectures. In terms of reasoning performance,
both RLVR and RLCC-L1 substantially improve
capabilities for smaller models, with the exception
of Qwen2.5-32B, which already exhibits strong
baseline performance. For calibration, RLCC-L1
consistently reduces ECE by a large margin across
all models, while RLVR yields only slight ECE
reductions or even degradations.

5.4.2 Different Reward Functions

We compare the performance of RLCC with differ-
ent confidence rewards in Table 3. It can be con-
cluded that RLCC training with these confidence
rewards achieve comparable performances in terms
of accuracy and confidence calibration, except for
the L2 reward, which has a much higher ECE than
the others. We hypothesize that this phenomenon
stems from instabilities during training. Specif-
ically, although the overall reward plateaus, the
model continues to adjust among different rewards.
As we adopt a fixed stopping step across all config-
urations, the selected checkpoint may not represent
the optimal point for the L2 reward. Interestingly,
even Sample_L1 is not a proper function (Damani
et al., 2025) (which means that theoretically the
highest reward is not attained at yc = p in Equa-
tion (2)), training with it can still achieve similar
performance as other proper functions. Among all,
we recommend L1 reward as it achieves a better
balance between Pass@1 and ECE.
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Figure 3: Training process of Qwen2.5-7BI with different reward configurations: RLVR, Brier (RLCC with Brier
score), and L1 (RLCC with L1 confidence reward) on DeepMath500, with 8 sampled answers per question.
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Figure 4: Comparison of Pass@1 and ECE across sev-
eral models trained with different reward configurations,
averaged across all datasets. Detailed results on each
dataset are provided in Appendix E.

5.4.3 Impact of Rollout Size
Table 4 presents the performance of different roll-
out sizes in GRPO training with L1 confidence re-
ward. Contrary to the expectation that larger rollout
sizes would monotonically improve both accuracy
and calibration through increased exploration di-
versity and better probability estimation, the results

reveal a more nuanced relationship. Rollout size 32
achieves the highest Pass@1 (68.3%) but exhibits
degraded calibration metrics (ECE: 0.17, AUROC:
0.65). Conversely, rollout size 16 attains the best
calibration metrics (ECE: 0.10, AUROC: 0.69), yet
suffers a slight drop in Pass@1 to 66.7%. Rollout
size 8 demonstrates a favorable balance, achieving
competitive Pass@1 while maintaining strong cal-
ibration. This indicates that the proposed method
is not sensitive to rollout size, even with a small
rollout size like 4 could perform well.

6 Conclusion

We introduced COREA, a collaborative reason-
ing framework in which an SLM is trained with
RL to calibrate its confidence estimates and strate-
gically defer challenging questions to an LLM
when uncertain. Through extensive experiments,
we demonstrated that the proposed RLCC train-
ing method simultaneously enhances the SLM’s
reasoning capabilities and aligns its confidence
scores across multiple SLM backbones and model
scales. These improvements generalize effectively
to both mathematical and non-mathematical rea-
soning tasks. Furthermore, COREA demonstrated



superior performance-cost tradeoffs compared to
strong baselines. By intelligently deferring ques-
tions to the LLM based on calibrated confidence
scores, our approach achieved substantial cost re-
ductions of 7% ∼ 22% while maintaining accuracy
within 2 percentage points of the baseline LLM.
These results highlight that well-calibrated confi-
dence serves as a powerful mechanism for enabling
practical and efficient SLM-LLM collaboration in
real-world deployment scenarios.

Limitations

While the proposed framework shows promising
results, several limitations remain. First, the ver-
balized confidence score after training still tend
to be discrete instead of continuous although the
prompt instructs the model to output a continu-
ous value in [0, 1]. This leads to a non-smooth
transition of accuracy and cost when we move the
confidence threshold. Second, in rare cases, the
RL training process can still encounter instabilities,
and the model can still balance among different re-
ward components even when the composite reward
converges. Hence, how to ensure all components
simultaneously converge is worth further study. Fi-
nally, we did not extensively discuss different SLM
and LLM combinations although we provided a dif-
ferent SLM-LLM pairing in the appendix, however,
the parameter count disparity between the SLM
and LLM has a significant impact on the cost gain.
This also hints that the cost reduction estimation
in this paper can be conservative, if LLM is sig-
nificantly larger than the SLM, the possible gain
could be much larger. These factors constrain the
current scope of the study and point to directions
for further investigation.
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Appendix

A Training Details

A.1 Training Details of Probe

Model Architecture. The Probe takes the average-
pooled hidden states from the last layer of the SLM
as input and outputs the probability that the SLM’s
answer is correct. We use a 2-layer MLP with
dimensions (2048, 1024) for the two layers. The
final head is a sigmoid function.

Training Dataset. The Probe is trained to pre-
dict the RLVR-SLM’s correctness. We first use
RLVR-SLM to generate a response for each ques-
tion in DeepMath16K, then evaluate the correctness
of each response as the ground truth. Specifically,
each item in the training dataset is formatted as
((question, answer), correctness). We use a 9:1
train-eval split.

Training Details. We conduct training on
an AWS p5en.48xlarge instance equipped with
8×H200 GPUs. We use a per-device batch size
of 32 and a learning rate of 5 × 10−5 with the
AdamW optimizer. We train for 20 epochs until
the loss plateaus on the evaluation dataset.

A.2 Training Details of Router

Model Architecture. The Router is used to decide
whether to allocate a question to the SLM or the
LLM. It evaluates the probability that the SLM can
answer the question correctly. To achieve this, we
use the same base model as the SLM to serve as the
Router. We find that directly prompting the SLM
to make the prediction is highly inaccurate, so we
use supervised fine-tuning to align the Router’s
predictions.

Training Dataset. The Router is trained to esti-
mate the RLVR-SLM’s accuracy on each question.
We first use RLVR-SLM to generate 8 responses
for each question in DeepMath16K, then compute
the accuracy as the ground truth for the question.
The prompt is: "Question: {Question} Instruction:
Estimate and output the probability (0.0-1.0) that
a small language model (≤10B) can answer the
question correctly." We then convert the dataset
into the ShareGPT format.

Training Details. We conduct training on an
AWS p5en.48xlarge instance. We use LLaMA-
Factory (Zheng et al., 2024) as the training frame-
work. The per-device batch size is 8, gradient accu-
mulation steps is 4, and the learning rate is 5×10−5

with the AdamW optimizer. We train for 2 epochs

until the loss plateaus on the evaluation dataset.

B Sample Output

We use the following model abbreviations through-
out this paper: The "I" suffix indicates instruction-
tuned model variants (e.g., 7BI = 7B-Instruct).

• Qwen2.5-7BI: Original Qwen2.5-7B-Instruct
model without additional training.

• RLVR-Qwen2.5-7BI: Qwen2.5-7B-Instruct
trained with reinforcement learning with veri-
fiable reward (RLVR).

• L1-Qwen2.5-7BI: Qwen2.5-7B-Instruct
trained with RL with an additional L1
confidence reward.

Figures 5–8 show the responses of Qwen2.5-7BI,
RLVR-Qwen2.5-7BI, and L1-Qwen2.5-7BI on a
DeepMath500 problem, respectively. As demon-
strated, Qwen2.5-7BI produces an incorrect answer,
while both RLVR-Qwen2.5-7BI and L1-Qwen2.5-
7BI solve the problem correctly, demonstrating
the effectiveness of RL training in improving the
model’s reasoning ability.

Additionally, Qwen2.5-7BI fails to follow the
instruction to output the confidence score in the
required format. In contrast, both RLVR-Qwen2.5-
7BI and L1-Qwen2.5-7BI successfully output
scores in the correct format. However, without con-
fidence calibration, RLVR-Qwen2.5-7BI produces
an overconfident score of 1.0, similar to Qwen2.5-
7BI. Conversely, L1-Qwen2.5-7BI’s confidence
score of 0.8 is better aligned with the model’s true
accuracy of 0.75, demonstrating the effectiveness
of the confidence reward term in improving confi-
dence calibration.

C Main Results for Each Dataset

Tables 5–10 compare the performance of differ-
ent systems on DeepMath500, Math500, GSM8K,
OlympiadBench, GPQA, and CommonsenseQA,
respectively. The confidence threshold is set to
match the Baseline LLM’s pass@1 for each dataset.
The results align with our main paper findings:
except for GPQA, COREA achieves significant
cost reductions with only marginal accuracy drops
compared to the baseline LLM. Compared to other
collaborative systems, COREA achieves a supe-
rior accuracy-cost balance. On GPQA, the pass@1
drop is slightly larger (-5.1%) due to less well-
calibrated confidence scores.



Question

Given that a > b > c > d, find the maximum integer value of n such that

1

a− b
+

1

b− c
+

1

c− d
≥ n

a− d
.

Please reason step by step, and put your final answer within \boxed{}, then output the confidence
(0.0 ∼ 1.0) that your answer is correct within \confidence{}.
(Ground Truth Answer: 9)

Qwen2.5-7BI

To find the maximum integer value of n such that the inequality

1

a− b
+

1

b− c
+

1

c− d
≥ n

a− d

holds for all a > b > c > d, we start by considering the properties of the terms involved. Let’s
denote x = a − d, y = a − c, z = a − b, and w = b − c. Since a > b > c > d, we have
x > y > z > w > 0. The inequality then becomes

1

z
+

1

w
+

1

z − w
≥ n

x
=

n

y + z
.

To find the maximum possible value of n, we need to analyze the expression on the left side. Let’s
consider a specific case where a− d = 4, a− c = 3, a− b = 2, and b− c = 1. In this case, x = 4,
y = 3, z = 2, and w = 1, so the inequality is

1

2
+

1

1
+

1

2− 1
≥ n

3 + 2
=

n

5
.

Simplifying the left side, we get

1

2
+ 1 + 1 =

1

2
+ 2 =

5

2
.

Therefore, the inequality becomes
5

2
≥ n

5
,

which simplifies to

n ≤ 25

2
= 12.5.

Since n must be an integer, the maximum possible value of n is 12.

Figure 5: Question and Response of Qwen2.5-7BI.

D A Different SLM+LLM Paring

In this section, we evaluate a 1.5B + 32B model
pairing. Specifically, we utilize Qwen2.5-1.5B-
Instruct as the base SLM and Qwen2.5-32B-
Instruct as the base LLM, training both with the
RLCC-L1 algorithm. Results are presented in Ta-
ble 11.

We select the checkpoint at step 30 rather than
step 150, as we observed that the SLM gradually
becomes underconfident during training, eventu-
ally returning 0 as the confidence score in most
cases. At step 30, the model achieves better con-
fidence calibration while maintaining comparable
reasoning ability.

As shown, COREA remains effective for OOD



Qwen2.5-7BI continued

To confirm that n = 12 is indeed the maximum value, we need to check if the inequality holds for
n = 12 in general. We rewrite the inequality as

1

a− b
+

1

b− c
+

1

c− d
≥ 12

a− d
.

Using the Cauchy-Schwarz inequality in the form(
1

a− b
+

1

b− c
+

1

c− d

)
((a− b) + (b− c) + (c− d)) ≥ (1 + 1 + 1)2 = 9,

we get (
1

a− b
+

1

b− c
+

1

c− d

)
(a− d) ≥ 9.

This simplifies to
1

a− b
+

1

b− c
+

1

c− d
≥ 9

a− d
.

Since 9
a−d < 12

a−d , the inequality 1
a−b +

1
b−c +

1
c−d ≥ 12

a−d is indeed satisfied for n = 12.
To check if n = 13 works, we consider the case where a = 4, b = 3, c = 2, and d = 1. Then the
inequality becomes

1

1
+

1

1
+

1

1
≥ 13

3
,

which simplifies to

3 ≥ 13

3
,

or
9 ≥ 13,

which is false. Therefore, n = 13 does not work.
Thus, the maximum integer value of n is 12 . The confidence in this answer is 1.0.

Figure 6: Response of Qwen2.5-7BI continued.

Non-Math, achieving substantial cost reduction (–
42.4%) with only a modest accuracy drop (–3.8%).
However, compared to the 7B+32B results (Ta-
ble 1), the 1.5B+32B system suffers more sub-
stantial performance degradation on DeepMath500
and OOD Math despite achieving greater cost re-
ductions. Analysis reveals that the 1.5B SLM’s
confidence is more poorly calibrated than that of
the 7B model—specifically, it tends to exhibit
overconfidence on problems beyond its capability.
This suggests that beyond weaker reasoning ability,
smaller models may also demonstrate diminished
self-awareness. We plan to investigate the scaling
laws of model self-awareness in future work.

E Detailed Confidence Calibration
Results

Figure 9 shows the Pass@1 accuracy and Expected
Calibration Error (ECE) of different base models
on each evaluation dataset. These results indicate
that RL training effectively improves the model’s
reasoning capability across all in-domain and out-
of-domain evaluation datasets, with the exception
of the Qwen2.5-32BI model, whose reasoning abil-
ity is already sufficiently strong that further im-
provement is limited.

However, RL training without confidence reward
fails to calibrate the model’s confidence predictions
with its true accuracy performance, and in some
cases even degrades calibration, as observed in the
Math500, OlympiadBench, and CommonsenseQA
with Qwen2.5-32BI. In contrast, incorporating a



RLVR-Qwen2.5-7BI

To find the maximum integer value of n such that the inequality

1

a− b
+

1

b− c
+

1

c− d
≥ n

a− d

holds for any a > b > c > d, we need to analyze the expression and find a suitable value for n.
We will use the method of substitution and simplification to derive the value of n.
First, let’s consider the case where a, b, c, and d are equally spaced. This will help us to find a
potential value for n. If we assume a = d+ 3x, b = d+ 2x, and c = d+ x, then the differences
are a− b = x, b− c = x, and c− d = x. Substituting these into the inequality, we get:

1

x
+

1

x
+

1

x
≥ n

3x
.

This simplifies to:

3

x
≥ n

3x
.

By canceling x from both sides (assuming x > 0), we get:

3 ≥ n

3
=⇒ n ≤ 9.

This tells us that the maximum possible value for n is 9. Now, we need to verify that n = 9 is
indeed the maximum value that satisfies the inequality for all a > b > c > d. To do this, we can
use the method of inequalities and specifically the Cauchy-Schwarz inequality in the form of the
Titu’s lemma (also known as the Engel’s form of the Cauchy-Schwarz inequality):

12

a− b
+

12

b− c
+

12

c− d
≥ (1 + 1 + 1)2

(a− b) + (b− c) + (c− d)
=

9

a− d
.

This inequality shows that the left side is always at least 9
a−d , which confirms that the maximum

value of n is indeed 9.
Therefore, the maximum integer value of n is 9. The confidence in this answer is very high, as it is
derived from a general inequality and a specific case analysis.
The final answer is:

9

The confidence in this answer is:
\confidence{1.0}

Figure 7: Response of RLVR-Qwen2.5-7BI.

confidence reward into RL training enables the
model to effectively align its confidence with true
accuracy, as evidenced by significant ECE reduc-
tions across all base models and datasets.

F Results of Different Confidence Reward
Functions on Each Dataset

Tables 12 and 13 present detailed accuracy and
calibration results for each dataset. As observed,

except for L2, all other confidence reward func-
tions achieve comparable pass@1, ECE, and AU-
ROC across the six datasets. This indicates that
L1, Sample_L1, Brier, KL, and Sample_KL are
all effective in the RL training algorithm. Among
these functions, we recommend L1 as it demon-
strates the strongest balance between accuracy and
calibration.



L1-Qwen2.5-7BI

To solve the inequality
1

a− b
+

1

b− c
+

1

c− d
≥ n

a− d
,

we need to find the maximum integer value of n such that the inequality holds for all a > b > c >
d.
Step 1: Simplify the Problem First, let’s consider the case when the terms in the inequality are
equal. This will help us find an upper bound for n. If we assume a− b = b− c = c− d, then we
can simplify the inequality.
Step 2: Assume Equal Differences Let a− b = b− c = c− d = x. Then, we have:

a = d+ 3x.

Step 3: Substitute and Simplify Substitute these values into the inequality:

1

x
+

1

x
+

1

x
≥ n

3x
.

This simplifies to:
3

x
≥ n

3x
.

Step 4: Solve for n We can cancel x from both sides of the inequality (since x > 0):

3 ≥ n

3
.

Multiplying both sides by 3 gives:
9 ≥ n.

Step 5: Verify the Maximum Value We need to verify that n = 9 is indeed the maximum value that
satisfies the inequality for all a > b > c > d. To do this, we use the Cauchy-Schwarz inequality in
the form of the Titu’s lemma (also known as the Engel’s form of the Cauchy-Schwarz inequality).
Step 6: Apply Titu’s Lemma Titu’s lemma states that for any real numbers xi and positive real
numbers yi:

x21
y1

+
x22
y2

+ · · ·+
x2k
yk

≥ (x1 + x2 + · · ·+ xk)
2

y1 + y2 + · · ·+ yk
.

Applying Titu’s lemma to our inequality, we get:

1

a− b
+

1

b− c
+

1

c− d
≥ (1 + 1 + 1)2

(a− b) + (b− c) + (c− d)
=

9

a− d
.

Step 7: Conclusion From the application of Titu’s lemma, we see that the inequality holds with
n = 9. Therefore, the maximum integer value of n is indeed 9.

9

\confidence{0.8}

Figure 8: Response of L1-Qwen2.5-7BI (our approach).

G Rollout Size Results on Each Dataset

Tables 14 and 15 present detailed results across
different rollout sizes for each dataset. The metric

differences are marginal when increasing rollout
size from 4 to 32, indicating that our RL training
method is robust to rollout size selection. From
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Figure 9: Comparison of Pass@1 and ECE across several models trained with different reward configurations on
DeepMath500, Math500, GSM8K, OlympiadBench, GPQA, OlympiadBench, respectively.



System Pass@1% SLM Cost LLM Cost Total Cost LLM%

Standalone
SLM 42.7 4423 0 4423 0
RLVR-SLM 57.6 2511 0 2511 0
Brier-SLM 55.7 3490 0 3490 0
L1-SLM* 56.6 3766 0 3766 0
Baseline LLM 69.0 0 14882 14882 100

Collaborative
SLM-Verb 60.3 (-8.6) 4423 7171 11594 (-22.1%) 43.6
RLVR-SLM-Verb 57.6 (-11.4) 2511 160 2672 (-82.0%) 1.0
RLVR-SLM-AvgProb 57.6 (-11.4) 2511 0 2511 (-83.1%) 0
RLVR-SLM-Probe 63.3 (-5.7) 2511 7051 9562 (-35.7%) 41.7
Router+RLVR-SLM 61.4 (-7.5) 1503 6040 7659 (-48.5%) 35.6
Brier-SLM-Verb 66.3 (-2.7) 3490 11765 15254 (+2.5%) 72.5
COREA * 67.5 (-1.5) 3766 10116 13882 (-6.7%) 59.9

Table 5: Performance comparison across different systems on DeepMath500. Pass@1, SLM Cost per question, LLM
Cost per question, Total Cost per question, and LLM usage percentage (LLM%) are reported. In all collaborative
systems, the Baseline LLM’s Pass@1 serves as the confidence threshold. Values in parentheses indicate the
difference from the Baseline LLM. COREA (L1-SLM-Verb) utilizes L1-SLM and verbalized confidence. *
indicates our method.

a training efficiency perspective, we recommend
using a rollout size of 4 or 8.



System Pass@1% SLM Cost LLM Cost Total Cost LLM%

Standalone
SLM 54.1 3113 0 3113 0
RLVR-SLM 70.5 2125 0 2125 0
Brier-SLM 74.4 2627 0 2627 0
L1-SLM* 72.4 3020 0 3020 0
Baseline LLM 81.2 0 11499 11499 100

Collaborative
SLM-Verb 77.2 (-4.0) 3113 5409 8522 (-25.9%) 42.1
RLVR-SLM-Verb 70.8 (-10.4) 2125 212 2337 (-79.7%) 1.5
RLVR-SLM-AvgProb 70.5 (-10.7) 2125 0 2125 (-81.5%) 0
RLVR-SLM-Probe 77.5 (-3.7) 2125 5126 7252 (-36.9%) 32.4
Router+RLVR-SLM 74.4 (-6.8) 1459 4031 5603 (-51.3%) 25.8
Brier-SLM-Verb 81.0 (-0.2) 2627 8705 11332 (-1.5%) 63.6
COREA * 80.0 (-1.2) 3020 6591 9610 (-16.4%) 43.1

Table 6: Performance comparison across different systems on Math500. Pass@1, SLM Cost per question, LLM Cost
per question, Total Cost per question, and LLM usage percentage (LLM%) are reported. In all collaborative systems,
the Baseline LLM’s Pass@1 serves as the confidence threshold. Values in parentheses indicate the difference from
the Baseline LLM. COREA (L1-SLM-Verb) utilizes L1-SLM and verbalized confidence. * indicates our method.

System Pass@1% SLM Cost LLM Cost Total Cost LLM%

Standalone
SLM 81.7 1388 0 1388 0
RLVR-SLM 90.9 1348 0 1348 0
Brier-SLM 90.9 1369 0 1369 0
L1-SLM* 90.3 1487 0 1487 0
Baseline LLM 95.6 0 6073 6073 100

Collaborative
SLM-Verb 92.1 (-3.6) 1388 1280 2667 (-56.1%) 19.4
RLVR-SLM-Verb 92.1 (-3.5) 1348 1623 2972 (-51.1%) 25.1
RLVR-SLM-AvgProb 92.2 (-3.4) 1348 525 1874 (-69.1%) 8.4
RLVR-SLM-Probe 92.8 (-2.9) 1348 646 1994 (-67.2%) 9.0
Router+RLVR-SLM 91.2 (-4.4) 1324 104 1532 (-74.8%) 1.5
Brier-SLM-Verb 95.4 (-0.3) 1369 3392 4761 (-21.6%) 51.1
COREA * 94.2 (-1.4) 1487 1204 2691 (-55.7%) 17.1

Table 7: Performance comparison across different systems on GSM8K. Pass@1, SLM Cost per question, LLM Cost
per question, Total Cost per question, and LLM usage percentage (LLM%) are reported. In all collaborative systems,
the Baseline LLM’s Pass@1 serves as the confidence threshold. Values in parentheses indicate the difference from
the Baseline LLM. COREA (L1-SLM-Verb) utilizes L1-SLM and verbalized confidence. * indicates our method.



System Pass@1% SLM Cost LLM Cost Total Cost LLM%

Standalone
SLM 23.4 4671 0 4671 0
RLVR-SLM 35.2 2916 0 2916 0
Brier-SLM 36.0 3960 0 3960 0
L1-SLM* 36.5 4424 0 4424 0
Baseline LLM 47.0 0 17167 17167 100

Collaborative
SLM-Verb 42.5 (-4.5) 4671 10778 15449 (-10.0%) 59.8
RLVR-SLM-Verb 35.7 (-11.3) 2916 361 3277 (-80.9%) 1.4
RLVR-SLM-AvgProb 35.2 (-11.8) 2916 0 2916 (-83.0%) 0
RLVR-SLM-Probe 41.6 (-5.5) 2916 9519 12434 (-27.6%) 51.4
Router+RLVR-SLM 41.6 (-5.4) 1293 9800 11236 (-34.6%) 54.2
Brier-SLM-Verb 44.9 (-2.1) 3960 12572 16532 (-3.7%) 65.2
COREA * 44.3 (-2.7) 4424 12677 17101 (-0.4%) 65.6

Table 8: Performance comparison across different systems on OlympiadBench. Pass@1, SLM Cost per question,
LLM Cost per question, Total Cost per question, and LLM usage percentage (LLM%) are reported. In all
collaborative systems, the Baseline LLM’s Pass@1 serves as the confidence threshold. Values in parentheses indicate
the difference from the Baseline LLM. COREA (L1-SLM-Verb) utilizes L1-SLM and verbalized confidence. *
indicates our method.

System Pass@1% SLM Cost LLM Cost Total Cost LLM%

Standalone
SLM 21.6 3927 0 3927 0
RLVR-SLM 29.5 2451 0 2451 0
Brier-SLM 32.8 3282 0 3282 0
L1-SLM* 34.2 3775 0 3775 0
Baseline LLM 43.4 0 13420 13420 100

Collaborative
SLM-Verb 22.9 (-20.4) 3927 630 4557 (-66.0%) 4.1
RLVR-SLM-Verb 29.7 (-13.7) 2451 108 2559 (-80.9%) 0.6
RLVR-SLM-AvgProb 29.5 (-13.9) 2451 0 2451 (-81.7%) 0
RLVR-SLM-Probe 39.7 (-3.7) 2451 9302 11753 (-12.4%) 65.5
Router+RLVR-SLM 35.1 (-8.3) 1407 5810 7463 (-44.4%) 42.6
Brier-SLM-Verb 39.0 (-4.3) 3282 7808 11090 (-17.4%) 54.0
COREA * 38.2 (-5.1) 3775 6734 10509 (-21.7%) 45.8

Table 9: Performance comparison across different systems on GPQA. Pass@1, SLM Cost per question, LLM Cost
per question, Total Cost per question, and LLM usage percentage (LLM%) are reported. In all collaborative systems,
the Baseline LLM’s Pass@1 serves as the confidence threshold. Values in parentheses indicate the difference from
the Baseline LLM. COREA (L1-SLM-Verb) utilizes L1-SLM and verbalized confidence. * indicates our method.



System Pass@1% SLM Cost LLM Cost Total Cost LLM%

Standalone
SLM 53.9 1298 0 1298 0
RLVR-SLM 74.5 1067 0 1067 0
Brier-SLM 74.8 1130 0 1130 0
L1-SLM* 75.9 1215 0 1215 0
Baseline LLM 81.7 0 5229 5229 100

Collaborative
SLM-Verb 58.3 (-23.4) 1298 597 1895 (-63.8%) 11.4
RLVR-SLM-Verb 74.8 (-6.9) 1067 58 1125 (-78.5%) 1.3
RLVR-SLM-AvgProb 74.6 (-7.1) 1067 68 1134 (-78.3%) 1.2
RLVR-SLM-Probe 77.4 (-4.3) 1067 1079 2145 (-59.0%) 20.6
Router+RLVR-SLM 76.5 (-5.2) 737 1614 2431 (-53.5%) 30.9
Brier-SLM-Verb 81.7 (+0.0) 1130 4626 5756 (+10.1%) 88.1
COREA * 81.3 (-0.4) 1215 3373 4589 (-12.3%) 63.8

Table 10: Performance comparison across different systems on CommonsenseQA. Pass@1, SLM Cost per question,
LLM Cost per question, Total Cost per question, and LLM usage percentage (LLM%) are reported. In all
collaborative systems, the Baseline LLM’s Pass@1 serves as the confidence threshold. Values in parentheses indicate
the difference from the Baseline LLM. COREA (L1-SLM-Verb) utilizes L1-SLM and verbalized confidence. *
indicates our method.

System DeepMath500 OOD Math OOD Non-Math

Pass@1% ↑ Avg Cost ↓ LLM% Pass@1% ↑ Avg Cost ↓ LLM% Pass@1% ↑ Avg Cost ↓ LLM%

Standalone
SLM 25.8 3422 0.0 41.5 2435 0.0 42.8 1558 0.0
L1-SLM 26.5 1311 0.0 35.3 1273 0.0 35.7 449 0.0
Baseline LLM 69.0 69450 100.0 79.6 47430 100.0 71.4 34663 100.0

Collaborative
SLM-Verb 68.7 (–0.3) 72495 (+4.4%) 99.3 79.1 (–0.5) 49692 (+4.8%) 99.0 71.3 (–0.1) 35492 (+2.4%) 98.4
COREA * 55.7 (–13.2) 46490 (–33.1%) 63.1 70.7 (–8.9) 28996 (–38.9%) 75.2 67.6 (–3.8) 19977 (–42.4%) 76.2

Table 11: Performance comparison of 1.5B SLM + 32B LLM pairing across different systems and datasets.
Pass@1, average cost per question (Avg Cost), and LLM usage percentage (LLM%) are reported. OOD Math
includes Math500, GSM8K, and OlympiadBench. OOD Non-Math includes GPQA and CommonsenseQA. In
all collaborative systems, the Baseline LLM’s Pass@1 serves as the confidence threshold. Values in parentheses
indicate the difference from the Baseline LLM. * indicates our method.

Method DeepMath500 Math500 GSM8K

Pass@1% ECE AUROC Pass@1% ECE AUROC Pass@1% ECE AUROC

SLM 41.7±1.5 0.57±0.02 0.47±0.02 52.8±1.2 0.47±0.01 0.48±0.02 81.3±0.5 0.19±0.01 0.52±0.00
RLVR 58.2±0.8 0.40±0.01 0.49±0.01 70.6±0.8 0.28±0.01 0.50±0.01 91.0±0.3 0.07±0.00 0.49±0.01

L1 56.3±0.9 0.11±0.01 0.77±0.01 71.5±0.6 0.11±0.01 0.81±0.01 90.5±0.3 0.07±0.00 0.78±0.01
Sample_L1 58.4±0.8 0.17±0.01 0.75±0.01 73.6±0.9 0.07±0.01 0.81±0.01 91.1±0.3 0.05±0.00 0.70±0.01

L2 54.8±1.1 0.22±0.02 0.63±0.01 72.6±0.9 0.39±0.01 0.67±0.01 89.7±0.2 0.53±0.00 0.67±0.01
Brier 55.9±1.1 0.12±0.01 0.73±0.01 73.8±1.1 0.15±0.02 0.81±0.01 90.8±0.2 0.20±0.00 0.80±0.01
KL 56.2±0.8 0.12±0.02 0.73±0.02 71.5±1.2 0.16±0.01 0.76±0.02 90.3±0.4 0.23±0.00 0.77±0.01

Sample_KL 54.9±1.2 0.13±0.01 0.75±0.01 74.0±0.7 0.11±0.01 0.86±0.01 90.3±0.5 0.08±0.00 0.81±0.01

Table 12: Comparison of different confidence reward functions on accuracy and calibration metrics for DeepMath500,
Math500, and GSM8K. Results are reported as mean ± standard deviation.



Method OlympiadBench GPQA CommonsenseQA

Pass@1% ECE AUROC Pass@1% ECE AUROC Pass@1% ECE AUROC

SLM 23.2±1.0 0.76±0.01 0.48±0.01 21.2±1.0 0.71±0.01 0.49±0.03 54.7±0.9 0.39±0.01 0.52±0.01
RLVR 34.6±0.9 0.63±0.01 0.49±0.01 29.0±1.9 0.66±0.02 0.50±0.03 74.6±0.6 0.19±0.01 0.52±0.01

L1 36.9±1.0 0.11±0.01 0.77±0.01 34.5±1.2 0.15±0.02 0.54±0.02 75.9±0.6 0.19±0.01 0.63±0.01
Sample_L1 37.5±1.4 0.22±0.01 0.74±0.01 32.3±0.8 0.40±0.01 0.56±0.02 75.8±0.6 0.18±0.01 0.60±0.00

L2 36.5±0.5 0.10±0.00 0.60±0.01 32.2±1.6 0.04±0.01 0.54±0.02 76.9±0.9 0.28±0.01 0.60±0.01
Brier 35.6±0.8 0.10±0.01 0.77±0.01 32.9±1.2 0.11±0.01 0.54±0.02 74.9±0.6 0.22±0.01 0.62±0.01
KL 35.4±0.7 0.09±0.01 0.68±0.01 30.9±1.2 0.14±0.01 0.55±0.01 73.3±0.7 0.12±0.01 0.61±0.01

Sample_KL 36.3±1.2 0.09±0.01 0.82±0.01 32.8±0.9 0.18±0.01 0.55±0.02 73.8±0.5 0.12±0.01 0.63±0.01

Table 13: Comparison of different confidence reward functions on accuracy and calibration metrics for Olympiad-
Bench, GPQA, and CommonsenseQA. Results are reported as mean ± standard deviation.

Rollout Size DeepMath500 Math500 GSM8K

Pass@1% ECE AUROC Pass@1% ECE AUROC Pass@1% ECE AUROC

4 55.8±1.0 0.12±0.01 0.67±0.01 71.2±1.0 0.13±0.01 0.74±0.02 91.7±0.4 0.07±0.01 0.73±0.02
8 56.3±0.9 0.11±0.01 0.77±0.01 71.5±0.6 0.11±0.01 0.81±0.01 90.5±0.3 0.07±0.00 0.78±0.01
16 54.7±1.1 0.09±0.01 0.69±0.01 68.9±1.3 0.08±0.01 0.74±0.01 91.3±0.3 0.07±0.00 0.74±0.00
32 57.2±0.9 0.19±0.01 0.73±0.01 72.1±0.5 0.11±0.01 0.78±0.02 91.7±0.2 0.06±0.00 0.62±0.01

Table 14: Comparison of different rollout sizes with L1 confidence reward on accuracy and calibration metrics for
DeepMath500, Math500, and GSM8K. Results are reported as mean ± standard deviation.

Rollout Size OlympiadBench GPQA CommonsenseQA

Pass@1% ECE AUROC Pass@1% ECE AUROC Pass@1% ECE AUROC

4 35.2±0.9 0.07±0.01 0.63±0.02 29.0±1.1 0.20±0.01 0.56±0.02 75.4±0.9 0.11±0.01 0.69±0.01
8 36.9±1.0 0.11±0.01 0.77±0.01 34.5±1.2 0.15±0.02 0.54±0.02 75.9±0.6 0.19±0.01 0.63±0.01
16 33.3±1.0 0.08±0.01 0.69±0.01 31.7±1.2 0.24±0.01 0.55±0.02 75.6±0.5 0.09±0.01 0.66±0.01
32 34.2±0.7 0.20±0.01 0.80±0.01 34.0±1.4 0.42±0.02 0.53±0.02 77.5±0.3 0.21±0.00 0.55±0.01

Table 15: Comparison of different rollout sizes with L1 confidence reward on accuracy and calibration metrics for
OlympiadBench, GPQA, and CommonsenseQA. Results are reported as mean ± standard deviation.
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