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ABSTRACT
Commercial search engines use different semantic models to aug-
ment lexical matches. These models provide candidate items for
a user’s query from a target space of millions to billions of items.
Models with different inductive biases provide relatively differ-
ent predictions, making it desirable to launch multiple semantic
models in production. However, latency and resource constraints
make simultaneously deploying multiple models impractical. In
this paper, we introduce a distillation approach, called Blend and
Match (BM), to unify two different semantic search models into a
single model. We use a Bi-encoder semantic matching model as
our primary model and propose a novel loss function to incorpo-
rate eXtreme Multi-label Classification (XMC) predictions as the
secondary model. Our experiments conducted on two large-scale
datasets, collected from a popular e-commerce store, show that our
proposed approach significantly improves the recall of the primary
Bi-encoder model by 11% to 17% with a minimal loss in precision.
We show that traditional knowledge distillation approaches result
in a sub-optimal performance for our problem setting, and our BM
approach yields comparable rankings with strong Rank Fusion (RF)
methods used only if one could deploy multiple models.
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1 INTRODUCTION
Retail search engines are primarily keyword-based information
retrieval (IR) systems comprising two main operations—matching
and ranking [32]. When a customer issues a query, several matching
systems work in parallel to filter millions of items into a candidate
matchset that is relevant to the query. The recall-focused match-
set can have thousands of items (products) which are then ranked
based on the match quality of each item to the query [23]. Lexical
algorithms like Okapi-BM25 [36, 37] score a query-product pair
as a weighted sum of overlapping keywords. These approaches do
not capture customer behavior signals (click, purchase, stream, etc.)
and thus do not capture customer preferences [4, 26]. They are also
brittle to morphological variation and spelling errors. Most com-
mercial search engines thus deploy semantic matching in addition
to lexical matching. This general schema is presented in Figure 1.
In order to increase the coverage of relevant items in the matchset
(i.e., recall), lexical and semantic models that generate a diverse
matchset are deployed in parallel. However, the cost and efficiency
constraints for real-world deployments limits the choices on the
number of models that can be deployed.

Semantic matching learns representations of queries and prod-
ucts based on customer behavior and hence imputes products that
customers prefer. Semantic matching can be implemented using
Bi-encoders—two-tower models with one arm each for the query
and product representation, with a final shared space to determine
the similarity of the pair [22, 33, 43]. Semantic matching can also
be implemented using eXtreme Multi-label Classification (XMC)
systems. For fast inference, most XMC algorithms with textual in-
puts use sparse TF-IDF features and leverage different partitioning
techniques on the label space to reduce complexity. In particular,
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Figure 1: General Schema of Product Search.

Prediction of Enormous Correlated Output Spaces (PECOS) [45]
partitions the label (product) space by clustering the labels into
hierarchically granular clusters in an 𝑚-ary tree structure. Fast
linear classifiers at each node select the branches to explore.

Since semantic models deal with hundreds of millions to billions
of products, they are extremely large in their memory footprint.
This limits the number of models that can be deployed in parallel.
To our knowledge, large scale commercial systems deploy only
one of these two model types. On the other hand, because the two
approaches formulate the semantic matching problem differently,
they have different inductive biases and thus predict a different set
of (relevant) items.

In order to capture the most relevant products from the output
of both Bi-encoders and PECOS, we propose a distillation mech-
anism called blending that uses the output of one model to teach
the other model. Most distillation approaches focus on simplifying
the student architecture and even multi-teacher distillation usu-
ally assumes similar inductive biases of the teachers and students
[17, 20, 35]. We show, through offline as well as crowd-sourced
evaluations, that blended model is able to substantially improve
over the recall of the Bi-encoder model by 11% to 17% with a negli-
gible loss in precision. Our experiments show that, for our problem
setting, the existing knowledge distillation approaches provide sub-
optimal rankings. We also compare our blended model with strong
Rank Fusion methods and show that our blended model provides
comparable ranking performance, while only a single model needed
for deployment. Rank Fusion methods on the other hand, would re-
quire deploying multiple models and hence is not a practical option
for us.

In summary, the main contributions of this paper constitute:

• A blending architecture to combine two different formula-
tions of semantic matching into a single model,

• Extensive experiments and analyses to show that our method
is able to deliver the best of both worlds.

2 RELATEDWORK
Our study is related to model compression and ranking distillation
from the information retrieval domain. In this section, we briefly
review the literature in these domains.

2.1 Model Compression.
More accurate but complex models are difficult to deploy due to
high inference time and resources. Model compression methods like
pruning, quantization, and Knowledge Distillation (KD) mitigate
this problem [5, 11, 18]. KD typically trains a (small) student model
to replicate another model’s outputs (a teacher, typically a larger
and stronger model). Hinton et al. [19] show that for classification,
obtaining softer probabilities of teacher models’ logits results in
better distillation. DistillBERT[39] employs a similar idea for a pre-
trained BERT[15] model and provides 97% of BERT capabilities
with increased speed and a smaller model size. You et al. [44] and
Liu et al. [30] extend KD by incorporating multiple teachers in
the framework. Most similar to our BM approach is Geras et al.
[17], who introduce “model blending” as a variant of KD to blend a
LSTM model predictions into a CNN. For blending, the teacher and
student models are similar in complexity but different in inductive
bias.

2.2 Ranking Distillation (RD).
A few studies extend findings from general model compression to
ranking models, i.e., search and recommendation. Chen et al. [10]
use listwise learning-to-rank in DarkRank distillation for image
retrieval. Tang and Wang [41] reduce the neural recommendation
systems’ embedding size with the student model for RD with a
pointwise loss function. Cohen et al. [13] aim to compress and
approximate learning-to-rank ensemble methods using a simple
feed-forward neural network, arguing on the universal function
approximation capabilities of neural models. More recently, Kang
et al. [25] propose a framework for transferring a teacher model’s
predictions and latent knowledge to a student using a listwise
loss function. Vakili Tahami et al. [42] study the impact of KD on
BERT-based retrieval models for chatbots. Lee and Kim [27] correct
failures of the student model in recommenders by employing the
discrepancy between the teacher and student model predictions.
Choi et al. [12] study multi-teacher distillation for BERT-based
cross-encoder and bi-encoder retrieval models to train more effi-
cient bi-encoders. Reddi et al. [35] provides a unified framework
for existing methods and propose RankDistil aiming to preserve
the top-k rankings by matching the order of items of student and
teacher, while penalizing items ranked low by the teacher. Hofstät-
ter et al. [20] study distillation of different ranking architectures,
similar to our work, by proposing a pairwise margin focused Mean
Squared Error (MSE) loss function, i.e.,Margin-MSE. Similar to their
experiments, we report pointwise MSE and pairwise Margin-MSE
as two RD-based indicative reference points for comparisons.

3 BACKGROUND
Here, we briefly describe the architecture of two semantic matching
models we use, i.e. PECOS and Bi-encoder with Triplet Loss or BETL.
The Bi-encoder and PECOS models that we use have been shown to
improve search results in commercial systems [7, 33]. Both models
are trained on sets of (query, product) pairs, where a pair is admitted
to training data if a customer response beyond a search impression
(e.g. a click or purchase) is observed for the product after issuing
the query. We note that both models were designed to meet the
memory and latency requirements and it is out of the scope of our
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Figure 2: The Model Architecture of PECOS and BETL and the General Schema of Hard Negative Mining.

study to benchmark and compare resource consumption. We refer
the reader to original papers [7, 33] for such comparisons.

3.1 Prediction in Enormous and Correlated
Output Spaces (PECOS)

PECOS is an XMC that deals with its extremely large label (product)
space by successively partitioning it into smaller and smaller clus-
ters [6, 9, 40, 45]. PECOS represents a product as an aggregation
of its associated queries. It then clusters the product space into a
hierarchical𝑚-ary tree such that at each level, the products in a
node are partitioned into𝑚 equal-sized child clusters (Figure 2a).
Fast linear One-vs-Rest (OVR) classifiers are used at each level to
determine the relevance of a cluster to a query. To meet latency
constraints, PECOS uses sparse TF-IDF features of the input queries
as detailed by Chang et al. [6]. For inference, PECOS uses beam
search for traversing through the tree by choosing the top 𝑏 child
nodes at each level.

3.2 Bi-encoder with Triplet Loss (BETL)
The Bi-encoder architecture formulates the relevance problem as a
metric learning task. We use a Bi-encoder model similar to Nigam
et al. [33], but instead of the two-part hinge loss, we use a triplet loss
function inspired by the work of Lu et al. [31]. To distinguish our
model, we name it Bi-encoder with Triplet Loss or BETL (Fig.
2b). We use the following two-step procedure to train the model:

(1) Warm-up. We first train the model using pointwise Mean
Squared Error (MSE) loss (Eq. 1). For every positive query-
product pair, we randomly sample 3 negative products. 𝑁 is the
sum of 𝑁 + positive examples and 𝑁 − randomly sampled nega-
tive examples. Let 𝑦𝑖 be the model score for 𝑖-th query-product
pair.

𝐿𝑊 =
1

𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2 (1)

(2) Train. Next, we train the model with a pairwise loss (Eq. 2).
For every query 𝑄𝑖 and its corresponding product 𝐷+

𝑖
, in the

data, we sample hard negative products 𝐷−
𝑖
on-the-fly while

training (Figure 2c). 𝑦+
𝑖
and 𝑦−

𝑖
are model predictions for 𝐷+

𝑖

and 𝐷−
𝑖
, respectively. 𝑁 + is the number of positive examples.

𝐿𝑇 =
1

𝑁 +

𝑁 +∑︁
𝑖=1

log (1 + 𝑒 (𝑦
−
𝑖 −𝑦+

𝑖 ) ) (2)

Using the dense representation of both query and product title,
we impute relevance as cosine similarity. For inference, we use
the FAISS library [24] to build a KNN index and use approximate
nearest neighbor methods to rank the closest 𝑘 products for a query.

3.3 PECOS vs BETL
We summarize pros and cons of these two models for semantic
matching as follows:

(1) PECOS training is 2-6x faster and requires cheaper hardware
(only CPU) compared to BETL.

(2) Since PECOS uses clustering, model refreshes require fre-
quent retraining from scratch, whereas BETL can incorporate
new data with only index refreshes. Due to this PECOS also
requires more frequent retraining.

(3) Since PECOS clusters labels (products) it sees in training,
PECOS’ prediction space is limited to only those products.
BETL incorporates new products by forming a representa-
tion from text descriptions in the Bi-encoder’s embedding
space and thus is extensible to products not used during
training.

(4) It is easier to distribute the KNN indexes across multiple
servers, enabling arbitrarily fast inference speeds. PECOS
on the other hand requires the entire tree to be present on a
single server to facilitate beam search.

(5) Empirically, PECOS is better at capturing customer behavior
(i.e. it has better recall), while BETL is better at making
semantic connections between queries and products and
hence can surface relevant products that are not reflected in
customer behavior (i.e. it has better precision).

4 BLEND AND MATCH (BM)
Both BETL and PECOS models are powerful yet efficient models.
Their problem formulations are totally different and combining
their predictions can create a more robust semantic matching com-
ponent. For example, in a preliminary analysis, we found that only
about a third of the top-𝑘 predictions from PECOS and BETL are



in common. However, as described, latency and memory concerns
make simultaneously deploying both models impractical. Hence,
we propose to blend these into a single model.

The general schema of our BM training is provided in Fig. 3. We
select BETL as the Primary and PECOS as the Secondary model. Our
choice is mainly due to BETL’s advantages of simpler architecture,
maintenance, and deployment. We aim to teach PECOS predictions
to BETL and achieve precision and recall measurements similar to
the better individual model.

We enhance the primary model training such that it can incor-
porate the predictions of the secondary model along with the true
labels. Our task is similar to the existing distillation methods with
the key differences being that (a) we do not aim to reduce model
size, and (b) the primary (cf. “student”) model does not need to
have the same formulation or architecture as the secondary (cf.
“teacher”). In our case, the primary model is a fully trained (BETL)
model, which we then teach to blend PECOS predictions using an
enhanced loss function.

Most distillation works use MSE as the compression loss func-
tion [17, 19, 20, 39]. This is generally effective when both the teacher
and student models have similar score distributions. In our case
though, due to different inductive biases of PECOS and BETL, their
score distributions diverge. Thus, when the primary (BETL) model
tries to learn the loss distribution of the secondary (PECOS) model,
it leads to a loss in performance akin to catastrophic forgetting [3].
Instead, we design a pairwise triplet loss function to blend PECOS
predictions into our BETL training.

𝐿𝐵𝑀 = (1 − _)𝐿𝑇 + _𝐿𝐵

𝐿𝑇 =

𝑁 +∑︁
𝑖=1

log (1 + 𝑒 (𝑦
−
𝑖 −𝑦+

𝑖 ) )

𝐿𝐵 =

𝑁 +∑︁
𝑖=1

log (1 + 𝑒
(𝑦+

𝑖 −𝑦+
𝑝𝑖 )2 )

(3)

where 𝑦+
𝑖
and 𝑦−

𝑖
are as defined in Eq. 2 and 𝑦+

𝑝𝑖
is the PECOS

prediction score for the original positive example. 𝐿𝑇 is the original
loss from Eq 2 that maximizes the distance between a positive and
hard negative product, 𝐿𝐵 is the blending loss that minimizes the
distance between the primary and secondary models’ predictions
for a positive product, and _ ∈ [0, 1] is the interpolation parameter
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Figure 3: Blend and Match (BM) Training.

between them. We refer to this blended BETL model trained using
an interpolation of losses on PECOS predictions as BM-BETL.

5 EXPERIMENTS
In this section we present experimental set-up and results, designed
to compare the performance of BM-BETL against BETL and PECOS.

5.1 Experimental Setup
Dataset.We collect query-product pairs using behavioral data from
de-identified search logs of an English speaking and a non-English
speaking store of a popular retailer. Our collected data represents
one year of search logs resulting in 43.6million query-product pairs
for the English speaking store and 78.8 million pairs for the non-
English speaking store. We randomly sample 5% of each store’s
data for our evaluation. We ensure that none of the queries in the
evaluation set occur in the training set.
Training PECOS and BETL. Bothmodels use the same vocabulary
of the most frequent 250k word unigrams, 50k word bigrams and
100k character trigrams. For BETL, we use FAISS [24] to search for
the top-𝑘 nearest products for a query in the trained embedding
space. We train PECOS with default parameters,1 except we tune
the maximum leaf size (English-store:100, non-English store:64)
and beam size (English-store:50, non-English store:75). We train
PECOS on a single machine with 96 vCPUs and 768GB of memory.
We train BETL and BM-BETL on a single machine with 768GB
memory and 8 NVIDIA V100 GPUs in a distributed fashion with
a batch size of 256. We train and evaluate both PECOS and BETL
models using the same training and evaluation set.
Training BM-BETL. During distillation it is customary to use
all outputs from the teacher model to train the student model.
However, we find that doing so during blending degrades the model
performance. We also find that using only the relevant products
(query-product pairs associated via behavior) to teach the BM-BETL
model yields better performance than using all predictions. We
hypothesize that online hard-negative sampling is much better at
creating separation between relevant and irrelevant products and
the negative predictions are not needed (see Section 7.4 for details).
For relevant products not in the top-100, we use a fixed value of
25𝑒−4 rather than the actual score which may be lower. Finally, we
use _ = 0.5 (see Eq. 3), i.e., equal importance to both 𝐿𝑇 and 𝐿𝐵
(see Section 7.1).
Baselines. For our model comparison, we use two common loss
functions used in traditional distillation approaches:

• PointMSE. A pointwise MSE loss function is a standard dis-
tillation loss function already used by many other studies for
ranking models [12, 20, 42]. Our implementation is similar
to the baseline used by Hofstätter et al. [20].

𝐿𝑃𝑀𝑆𝐸 = MSE(𝑦+𝑖 − 𝑦+𝑝𝑖 ) +MSE(𝑦−𝑖 − 𝑦−𝑝𝑖 ) (4)

• MarginMSE. We implement the loss function proposed by
Hofstätter et al. [20] for optimizing the margin between the
scores of the relevant and the non-relevant sample items
per query. The loss function utilize the margin between
the positive and negative samples of the teacher model and

1https://github.com/amzn/pecos

https://github.com/amzn/pecos


Table 1: BM-BETL shows large gains in recall over BETL with
a small loss in precision metrics. All highlighted improve-
ments (in green) are significant at 𝛼 = 0.05 in a pairwise
two-sample t-test.

English-store non-English store
Model P@16 R@100 P@16 R@100
PECOS 0.5316 0.6244 0.8187 0.7657
BETL-WU 0.5163 0.3634 0.6215 0.4779
BETL 0.6200 0.5415 0.8484 0.5998
PointMSE 0.0091 0.0470 0.3391 0.0919
MarginMSE 0.2584 0.5436 0.7941 0.5991
BM-BETL 0.6147 0.6006 0.8359 0.7012

△ BM-BETL Improvement
vs. BETL -0.85% 10.91% -1.47% 16.91%
vs. PECOS 15.63% -3.81% 2.10% -8.42%
vs. MarginMSE 137.89% 10.48% 5.26% 17.04%

has been shown to perform better than other existing loss
functions when the architecture of the models are different.

𝐿𝑀𝑀𝑆𝐸 = MSE(𝑦+𝑖 − 𝑦−𝑖 , 𝑦
+
𝑝𝑖 − 𝑦−𝑝𝑖 ) (5)

Evaluation Metrics.We measure the ranking performance with
behavior-based recall metrics following other similar studies [8, 43],
using historical purchase activity as the gold label. Using historical
purchase activity data for performance evaluation might suffer
from display bias—relevant products may not have been purchased.
In order to estimate precision without display bias, we instead
use crowd-sourced judgements to map each prediction as Relevant
or Irrelevant; precision is the percentage of predictions that are
Relevant.

𝑃@𝑘 =
1

𝑘

𝑘∑︁
𝑖=1

𝑖𝑠𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 (𝑦𝑖 ) (6)

where 𝑖𝑠𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 (𝑦𝑖 ) ∈ {0, 1} is the crowd-sourced decision on
whether the predicted product 𝑦𝑖 at rank 𝑖 is relevant(1) or not(0).

𝑅@𝑘 =
1

|𝑌 |

𝑘∑︁
𝑖=1

𝐼 (𝑦𝑖 , 𝑦𝑖 ) (7)

where 𝐼 (𝑦𝑖 , 𝑦𝑖 ) ∈ {0, 1} is the indicator function indicating if the
predicted product 𝑦𝑖 matches the purchased ground truth product
𝑦𝑖 and Y is the set of purchased products (ground truth) for a given
query.

We are particularly interested in the precision of the 16 prod-
ucts appearing on the first page of results and on the 100 products
retrieved overall, thus we report P(recision)@16 and R(ecall)@100
in subsequent sections2. Since manual evaluation is expensive and
time-consuming, we randomly sample 200 queries and crowd-
sourced the top-16 products of each model for each query.

2We note that other metrics such as mean Average Precision (mAP) and Recall@{1,
5, 16, 20, 100} follow the similar patterns. For simplicity we only report the most
important measurements.

5.2 Experimental Results
Table 1 presents our main results. PECOS has a better recall with
R@100 at 0.6244 and 0.7657 for the English and non-English stores
respectively against 0.5415 and 0.5998 for BETL. On the other hand,
BETL has better precision with P@16 at 0.6200 and 0.8484 against
0.5316 and 0.8187 for PECOS in the two stores. The aim of our
model is to improve the recall of BETL (the production model)
without affecting its precision. All improvements shown in green
are significant at 𝛼 = 0.05 in a pairwise two-sample t-test. The
blended model BM-BETL beats BETL in recall, achieving R@100 of
0.6006 (10.91% significant relative improvement) and 0.7012 (16.91%
significant relative improvement) for the English and non-English
stores, respectively. The loss in precision (P@16) from BETL is
relatively small as compared to recall improvements: -0.85% and
-1.47% respectively and not significant at 𝛼 = 0.05. For comparison,
we also show that our model beats PECOS in precision significantly
in the English-store, though recall is not significantly affected.

We also report the BETLwarm-up checkpoint results (BETL-WU)
and as it can be seen, the in-batch hard negative mining with triplet
loss is effective in improving the model’s performance. Comparing
BM-BETL results with both distillation baselines suggests that for
our problem setting existing distillation approaches are not helpful.
PointMSE results show a drastic performance drop for both stores,
indicating catastrophic forgetting. Interestingly MarginMSE results
show slight changes in recall values while a significant drop in the
precision of top-ranked relevant products.

6 BM VS. RANK FUSION (RF)
Rank Fusion (RF) [2, 16, 21, 28, 29, 34] is a family of methods used to
aggregate the ranked results of different systems in order to provide
robust results to the user. These methods require inference-time
predictions from both PECOS and BETL in order to aggregate them.
We cannot deploy both PECOS and BETL simultaneously, but we
compare our blended model to few well-known RF methods to see
how they perform against a theoretical ideal.

CombSum (sum of normalized scores from individual retrieval
systems) and CombMNZ (multiplies CombSum score by the num-
ber of non-zero relevance scores) are widely used score-based ap-
proaches [16]. CombMIN and CombMAX return the min and max
normalized score across systems respectively. We also test rank-
based approaches — Reciprocal Rank Fusion (RRF) (sums of re-
ciprocal rank for an item over each ranking [14]), Vector Space
Model (VSM) (uses nearest neighbors [38]) and Rank-Biased Cen-
troid (RBC) (centroid over a set of rankings from query variations
for a topic [1]).

Table 2 presents P@16, computed using crowd-sourced judge-
ments and R@100, computed using a random sample of queries of
50K queries, for the RF methods in the English store. We conduct
pairwise two-sample t-tests of each method (including PECOS and
BETL) with our BM-BETL predictions. At 𝛼 = 0.05, there is no
significant difference between the P@16 of most of the RF methods
compared to BM-BETL, indicating that our blended model performs
as well as any RF method. Since RRF and RBC directly incorporate
PECOS ranks, we see that they perform better than BM-BETL in
terms of R@100. Similarly, CombMIN seems to benefit from nor-
malized score distributions, though we cannot guarantee which of



Table 2: BM-BETL comparison with Rank Fusion. Significant difference at 𝛼 = 0.05 in a two-tailed paired t-test with BM-BETL
is indicated by †.

CombSUM CombMNZ CombMAX CombMIN RRF VSM RBC BETL PECOS BM-BETL
P@16 0.6200 0.6200 0.6200 0.6059 0.5997 0.5681† 0.5988 0.6200 0.5316† 0.6147
R@100 0.5853† 0.5853† 0.5879† 0.6611† 0.7398† 0.5331† 0.7369† 0.5643† 0.6555† 0.6071

the Comb* methods would perform the best for arbitrary models.
However, all RF methods need two (or more) models to be deployed
simultaneously. BM-BETL achieves similar performance using a
single model.

7 FURTHER ANALYSIS
In this section, for simplicity, we present our results only for the
English store, noting that the non-English store follows similar
trends.

7.1 _ Sensitivity Analysis
_ represents the importance given to the blending loss during the
teaching phase (refer to Eq. 3). BETL-BM consists of blending a
BETL model with an enhanced loss function.

Fig. 4 shows R@100 for different _. With _ = 0.0 the function
has not changed from BETL, thus the saturated model is insensitive
to further training exposure, and no improvement is seen. With
_ = 1.0 performance degrades drastically, indicating catastrophic
forgetting due to the distribution shift in the relevance values. The
best performance is found at _ = 0.5, where BETL is able to learn
from PECOS without major disruption.

7.2 Smoothing PECOS Predictions
We study if PECOS score softening can provide better dark knowl-
edge and help the blending performance [19]. Softmax softening
is defined in Eq. 8. At temperature 𝑇 = 1.0 there is no smoothing,
while𝑇 = ∞ results in a uniform distribution with all labels equally
likely. Normally, 𝑇 is set to a value slightly over 1.0.
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Figure 4: _ sensitivity analysis

Table 3: BM-BETL offline evaluation with smoothing out
PECOS predictions during training with _ = 0.5

PECOS Smoothing R@100
Original Scores 0.6006
Smoothing Scores with 𝑇 = 2.0 0.5783
Smoothing Scores with 𝑇 = 5.0 0.5764
Smoothing Scores with 𝑇 = 20.0 0.5763
Reciprocal Ranking as the Score 0.5877

𝑝𝑖 =
𝑒 (𝑧𝑖/𝑇 )∑
𝑗 𝑒

(𝑧 𝑗 /𝑇 ) (8)

Table 3 presents the R@100 for different values of 𝑇 . In addition
to temperature, we also smooth with PECOS reciprocal rankings
( 1
rank ) as the score instead of the model’s score. All of our results
suggest that smoothing the secondary model’s original score results
in sub-optimal performance. We hypothesize that this is due to
the differences between ranking and classification problems as
well as blending vs. distillation. In a blending scenario similar to
distillation, i.e., when both the models have similar form (say both
are Bi-encoders with different architectures), smoothing the score
distributions may provide better results. For an arbitrary secondary
model though, we think it is preferable to not use smoothing.

7.3 Compare with PECOS as a “Ground Truth”
Our objective for BM-BETL is to improve the recall of BETL. Since
PECOS has a higher recall, improving the recall of BETL will mean
that the predictions of BM-BETL will be more similar to PECOS
predictions than BETL predictions are to PECOS predictions. To see
if BM-BETL predictions have moved closer to PECOS predictions,
we consider PECOS ranking as truth data and evaluate BM-BETL
and BETL using these relevance labels. For relevance labels, we
considered top-100 PECOS rankings for the crowd-sourced eval-
uation set. To account for the distribution shift of the scores, we
used a relevance score of (101− 𝑟𝑎𝑛𝑘). As a result, product at rank
1 has a relevance 100, rank 2 → 99, and so on. This enabled us
to compare BETL and BM-BETL against PECOS using traditional
ranking evaluation metrics. Table 4 presents our results. As it can

Table 4: Compare with PECOS as “Ground Truth”

Model NDCG MAP Prec@16 R@100
BETL 0.2296 0.0692 0.3185 0.1578
BM-BETL 0.2573 0.0765 0.3630 0.1657



be seen, with the blended model we obtain ranking more similar to
PECOS according to all metrics when compared to BETL.

7.4 Usefulness of Irrelevants: an Ablation Study
We studied a variety of approaches to utilize our secondary model’s
predictions of products irrelevant to a query, along with relevant
products. However, the blendedmodel performance degradedwhen-
ever we used the irrelevant predictions. Here, we report a summary
of most important directions one could examine. We restrict the
irrelevant products explored to the top-k (𝑘 = 100) predictions
of the PECOS model. For every query 𝑄𝑖 and the corresponding
product relevant 𝐷+

𝑖
, we extract PECOS ranking score as 𝑦+

𝑝𝑖
and

for irrelevant product, 𝐷−
𝑝𝑖
, PECOS prediction is noted as 𝑦−

𝑝𝑖
. We

denote the Blended Models prediction as 𝑦𝐵𝑀+
𝑖

and 𝑦𝐵𝑀−
𝑖

for rele-
vant and irrelevant products. We define the following general loss
terms, in addition to 𝐿𝑇 (Eq. 2) and 𝐿𝐵 (Eq. 3).
• Blend loss term for relevant product sets:

𝐿𝐵𝑅 =
∑︁
𝑖

log (1 + 𝑒
(𝑦𝐵𝑀+

𝑖
−𝑦+

𝑝𝑖 )2 ) (9)

• Blend loss term for irrelevant product sets:

𝐿𝐵𝐼 =
∑︁
𝑖

log (1 + 𝑒
(𝑦𝐵𝑀−

𝑖
−𝑦−

𝑝𝑖 )2 ) (10)

A summary of alternative approaches we took for our BM frame-
work is given below.
(1) Replace.We replace online model-based hard negatives with

PECOS-predicted irrelevant products, To do so we randomly
assign one irrelevant product to every 𝐷+

𝑖
during batch data

preparation. The same loss, i.e. 𝐿𝐵𝑀 is used with the difference
that in 𝐿𝑇 we use model predictions for the irrelevant products.

(2) Sample. Similar to Replace, with the difference that for every
𝐷+
𝑖
, we sample a lower ranked product from PECOS rankings

weighted by their PECOS scores. The loss is similar to previous
scenario.

(3) Complement-R.We keep the online model-based hard nega-
tives and complement it with adding a PECOS based negative
product, for every query-product pair. Choosing negative prod-
uct is done similar to Sample.

𝐿𝐵𝑀𝐶 = _ × [𝛼 × 𝐿𝑇 + (1 − 𝛼) ×
∑︁
𝑖

log (1 + 𝑒 (𝑦
𝐵𝑀−
𝑖

−𝑦+
𝑖 ) )]+

(1 − _) × [𝛽 × 𝐿𝐵𝑅 + (1 − 𝛽) × 𝐿𝐵𝐼 ]
(4) Complement-S. Similar to Complement-R, with the difference

that choosing negative product is done similar to Sample. 𝐿𝐵𝑀𝐶

is used as the loss function.
(5) Semi-Relevant. Investigating some of the PECOS top-ranked

irrelevant products, we found that though they hadn’t elicited
customer behavior, manual evaluation still deemed these prod-
ucts as relevant. Based on this, we wanted to see whether con-
sidering such products as relevant (or relatively relevant) can
help the blended model to better generalize. As a result, we take
PECOS irrelevant products (above the threshold of 0.0025) as
semi-relevant and defined a “confidence score” when we paired
with the corresponding query. Considering 1.0 as the confidence
for relevant query-product pairs, we examined each of these

Table 5: PECOS False Positives Usefulness Analysis (_ = 0.5)

Exp. Scenario R@100
Original Loss 𝐿𝐵𝑀 0.6006

Replace 0.1365
Sample 0.0166
Complement-R, [𝛼 = 0.9, 𝛽 = 0.9] 0.5831
Complement-S, [𝛼 = 1.0, 𝛽 = 0.9] 0.5694
Semi-Relevant, [confidence= 0.0] 0.5289
Semi-Relevant, [confidence= 0.2] 0.5045
Semi-Relevant, [confidence= 0.5] 0.4606
Semi-Relevant, [confidence= 1

𝑟𝑎𝑛𝑘
] 0.5716

confidence values for our semi-relevant products: {0.5, 0.2, 0.0}.
We also examined using reciprocal rank as a dynamic confidence
score. This is similar to the RankDistil framework provided by
Reddi et al. [35]. For the loss function, every batch of data gets
a confidence vector 𝑐 and multiplied to the original BM loss
term—i.e., 𝐿𝐵𝑀𝑆𝑅 = 𝑐 × 𝐿𝐵𝑀 .
Table 5 presents our results. For simplicity, we do not present a

sensitivity analysis on different combinations of hyper-parameters
with our experiments. Instead we present the results of the best
hyper-parameter combination for each loss. Choosing hard nega-
tives via Sample drastically degrades performance and generally
Replace is a better solution. This is also true for Complement exper-
iments. As we see, weighting the loss terms with relevant products
(large 𝛼 and 𝛽) performs better than other approaches but not as
well as only using relevant samples. For the case of Semi-Relevant
hard negatives, we see that with higher confidence our results
degraded. This again indicates that the score distribution shift be-
tween the twomodels plays a part in the performance of the blended
model and it may be possible to tune hard-negative sampling and
loss functions based on secondary model. Since the PECOS and
BETL formulations are significantly different, we believe that our
techniques can be used for an arbitrary secondary model.

8 CONCLUSION
This work presents an approach to blend two distinct semantic
matching models into a single model. Our blending approach is
able to improve performance of the primary model with the help
of a secondary model. We show that our blended model, BM-BETL,
improves over R@100 of BETL with a slight loss in precision. We
similarly improve over P@16 of PECOS with a slight loss in recall.
This study allows one to incorporate the strengths of multiple
models into a single model that meets the memory and latency
requirements of modern retail stores.

Our experiments suggested that (a) With totally different for-
mulations of the semantic matching problem, existing knowledge
distillation approaches are not helpful, (b) PECOS relevant predic-
tions help bi-encoder training, (c) PECOS irrelevant predictions
adversely impact blending performance when compared to online
primary model-based hard negative mining, (d) Softening PECOS
predictions result in sub-optimal performance, (e) Blend loss needs



to be similar to the models’ original loss, and (f) Blending is able to
achieve the overall robustness of strong rank fusion baselines.

Our proposed approach is flexible enough to apply to most dis-
tillation scenarios. In the case of product search, we plan to extend
the proposed solution to a broader set of semantic matching (or
even lexical matching) models. Since the secondary model is not in-
tended to be deployed, any complex model can be used without the
latency concerns. As a result, blending and model distillation com-
binations along with multi-teacher frameworks can be extended
using our study. In addition, it would be interesting to blend the
set of features every secondary model constructs into the primary
model. For example, PECOS feature construction can be also added
to our bi-encoder model.

9 ETHICS STATEMENT
We only use query and product interaction data for our work. Any
identifiable user information is completely stripped before we can
access the data. As our method is ultimately used to retrieve a set
of products in an e-commerce store, incorrect predictions will not
cause harm to the user besides an unsatisfactory experience.
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