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1 Overview

In the rapidly evolving landscape of multimodal interactive technologies, a critical gap persists
in their utility and reach across diverse user populations. These technologies, while advanced,
exhibit a narrow application of modalities, consequently marginalizing certain groups. Additionally,
their superficial representations of context pose a challenge in accommodating users with varied
preferences, cultural backgrounds, or dialects, thereby limiting their collaborative efficacy. The
impoverished representations of context fail to accommodate creative, human-like, and flexible
communication styles. Compounded by static generative capabilities that dampen user retention
rates, these issues are further amplified in the face of safety concerns, especially in the age of large
language models. This work explores these multifaceted limitations and strives to highlight avenues
for enhancing accessibility, inclusivity, engagement, safety, and flexibility. We propose an IncluSive
And collaBorativE ALexa skill (ISABEL). Our novel system is the first to combine diverse theories
from machine learning, cognitive science, and linguistics. Pairing these theories with community
outreach and co-design, we are able to build:

1. new, sophisticated representations of context that support equitable and human-like under-
standing of diverse user populations;

2. a first-of-its-kind, multimodal interface – co-designed with the Deaf and Hard of Hearing
(DHH) community – using touch and visual communication to support workflows for users
with diverse capabilities;

3. novel, neurosymbolic strategies to incorporate new generative AI technologies and enable
safe, efficient, and engaging response generation.

As summarized in Figure 1, these contributions interact and culminate to achieve three primary goals
in our design of ISABEL: inclusivity, human-likeness, and safety.

Figure 1: Design goals for ISABEL with the tools used to achieve these principles.
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1.1 Novel Architecture and Road Map

Our multi-prong approach to system design – marrying community outreach with formal models of
cognition and machine learning – allows us to offer a myriad of novel contributions within ISABEL’s
architecture. We discuss these components at a high-level next, outlining a roadmap for the rest of
the paper. Figure 2 provides a summary of our novel architectural components.

Figure 2: Novel Architecture for ISABEL.

Contributions in Natural Language Understanding ISABEL’s NLU is based on a sophisticated
contextual representation informed by linguistic and machine learning theory.

§ 2.1 Discourse-Aware Intent Models: Using discourse theory, we build a state graph to
represent the flexible dialogue flows possible for a diverse range of task-oriented applications.
Rather than employ a single, context-insensitive intent model, our novel modeling approach
uses context – represented by a discourse graph – to reduce the number of intents considered
at each step in the dialogue, and subsequently, improve our classification performance.
§ 2.2 Uncertainty Model for Error Recovery: ISABEL is self-reflective by design with
the capability to identify any need for error-recovery from upstream components like the
ASR and SLU (Interaction Model) systems. These novel models use dialogue context to
ground meaning, identifying the need for recovery when grounding cannot efficiently occur.
§ 2.3 African American Vernacular English (AAVE) Understanding: ISABEL’s NLU is
based on our new theories of machine learning, which show effective context representations
not only improve human-likeness, but also equity in a dialogue system. We discuss our
recently published theoretical findings, and run empirical confirmation of these; i.e., testing
ISABEL’s understanding of AAVE speakers.

Contributions in Dialogue Management ISABEL’s DM helps us to recover from misunderstand-
ings identified by the NLU. Repair strategies are central to human-like dialogue.

§ 2.2 Clarification and Repair: ISABEL resolves ambiguity and misunderstandings
through context-sensitive repair strategies like asking clarification questions, providing
alternatives, and tracking these multi-turn dialogue actions in the context representation.

Contributions in Multimodal Interface ISABEL’s multimodal interface is flexible, offering visual
and touch communication options to reach more users.

§ 3.1 Accessibility: ISABEL’s first-of-its-kind interface allows users to seamlessly transition
between spoken, mixed-modality, and non-verbal communication on supporting devices.
Users can choose to navigate tasks solely through visuals and touch, bringing Alexa to users
with a wider variety of capabilities. Optional integration of ASL video instructions makes
this experience even more desirable for ASL signers.
§ 3.2 Personalization: Our multimodal interface offers additional layers of personalization
to users. Our touch understanding features offer a faster alternative to multi-turn repair
strategies and personalized screen arrangements give users flexibility based on their goals.
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Contributions in Natural Language Generation ISABEL’s NLG combines state-of-the-art gener-
ative AI and efficient symbolic approaches to produce safe, engaging, and human-like responses.

§ 4.1,4.2 Safe and Efficient Retrieval-Based Generation: ISABEL distills knowledge
from large language models, like gpt-3.5-turbo, and other data sources to design safe and
fast semantic search algorithms for retrieving relevant tasks and instructions to display to
users.
§ 4.3 Privacy Preserving, Engaging Neurosymbolic Generation: ISABEL combines
content from symbolic retrieval algorithms with human-like text generated by commercial
language models, utilizing encouragement and other strategies to keep users engaged.
Our novel prompting approaches allow third-party response generation that conforms to
constraints imposed by the symbolic (rule-based) components of ISABEL, while still
maintaining user privacy.

Community Outreach and Co-Design Central to all of our contributions is engagement with
members of the communities for which we hope to build our new technologies. § 5.1 discusses our
outreach to members of the AAVE Community, while § 5.2 discusses our co-design process with
members of the Deaf and Hard of Hearing Community.

In the rest of this paper, we cover the contributions discussed here in detail.

2 Context Representations for Equitable and Human-like Dialogue

Effective context representations are imperative for enabling human-like and equitable dialogue
(Sicilia and Alikhani, 2022, 2023). This section explores our novel linguistically informed represen-
tations of context; i.e., using discourse theory (Asher and Lascarides, 2003) and grounding (Clark
and Brennan, 1991). We discuss how ISABEL uses context for intent modeling, error recovery, and
repair.

2.1 Context-Aware Intent Modeling

Rather than choosing from many possible user intents, we take a context-aware approach to intent
modeling, where intent candidates depend on the current state and goals of the dialogue.

2.1.1 Discourse Theory Allows us to Represent Flexible Dialogue Flows Efficiently

Many works model dialogue state using intents or dialogue acts. However, utterances are not
always related only to the preceding utterance; they may relate to utterances at earlier points in the
conversation. Discourse coherence frameworks such as SDRT (Asher and Lascarides, 2003) represent
dialogue in a hierarchical manner, whereby speaker commitments and inferences are continuously
added and may form relations with any previous turn in the conversation. It has been argued that
discourse frameworks such as SDRT may facilitate modeling referential communication between
humans and computers (Alikhani and Stone, 2019; Alikhani et al., 2019; Alikhani, 2020; Khalid et al.,
2020a,b; Inan et al., 2021; Alikhani et al., 2023). There is also evidence indicating that non-linguistic
user events (for ISABEL, clicking and scrolling on the UI) can influence, or even contribute to, the
discourse structure (Hunter et al., 2018). Motivated by this, we propose a novel discourse-aware
representation of context for intent modeling in multi-modal, task-oriented dialogues; i.e., the state
graph using discourse relations in Figure 3. This discourse graph allows several novel insights:

1. There are four key phases in the dialogue, identified by the type and quantity of the connect-
ing discourse relations; e.g., each phase is connected to another by at most one relation.

2. Mappings from user intents to the desired actions of ISABEL are different for each phase.
3. By keeping track of the current phase, we can determine which user intent classes are

plausible in the current dialogue state. This greatly reduces the number of intent classes that
must be distinguished at any point in the dialogue, leading to improved intent recognition.

An illustration of our discourse graph, and the intents for each phase, can be found in Figure 3. In
the next section, we show that our context-aware, discourse-informed method reduces errors during
intent classification, and subsequently, improves the dialogue actions taken by the bot.
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Figure 3: Simplified state graph for ISABEL, expressed using discourse relations (left) and intents
that map to these relations (right). Relations in grey are between the user’s utterance and ISABEL’s
most recent utterance, while relations between ISABEL’s utterances across multiple dialogue turns
are in blue. See Appendix A for information on intents with an asterisk.

2.1.2 Specifying the Contextual Window of an Intent Model Improves Understanding

As noted, the discourse graph in Figure 3 allows us to use the plausible discourse relations to limit
the intents we expect in a specific contextual window (i.e., phase on the graph). With only a handful
of particular intents in each window, we model user intent using a binary classifier for each intent,
sorted by priority; i.e., we check the highest priority intents first and move down the list. These
binary classifiers are generally rule-based and use features of the utterance (often extracted by neural
models), the utterance itself, as well as state attributes like the step number and position on the context
graph. Appendix B contains more specific details on how each classifier works, while an overview of
the intents modeled in each phase is given in Figure 3.

Results Results are reported from user interactions during the Alexa Prize Taskbot 2023 challenge
Agichtein et al. (2023). To measure the success of our context-aware intent modeling approach,
we’ve also populated Alexa’s interaction model with a substantial amount of utterance examples that
unambiguously map to specific intents (e.g., without the need for context to differentiate). Thus,
the interaction model alone serves as a good baseline for how successful simple intent modeling
can be without the use of our discourse-aware context representation. Table 1 shows success in
intent identification based on human evaluation for various intent models we have designed. We
separate the performance of the Interaction Model alone (W/O Context) and the performance with
our added discourse-aware intent modeling framework (W/ Context). In Appendix B.7, we also
use formal machine learning theories (i.e., Occam’s learning bound) to compare our simple model
structure to more sophisticated neural models. Findings reveal that our intent models require about
ten times fewer test instances than neural architectures for confident deployment, and about half
the test instances of context-insensitive, rule-based alternatives. At a high-level, our results can be
summarized:

Our context-aware representation based on discourse theory improve intent recog-
nition across all intents, while simultaneously reducing the number of samples
needed for confident evaluation.

2.2 Contextual Grounding Enables Error Recovery and Repair

Predicting when we have misunderstandings and recovering from these roadblocks is an innate part of
human-like dialogue. For this reason, uncertainty modeling and strategies for repair play a crucial part
in ISABEL’s design. With regards to the former, we model uncertainty through contextual grounding –
i.e., when we cannot ground meaning to the current dialogue context, this signals a misunderstanding
between ISABEL and the user. This principle comes into play in three important recovery strategies:
ASR error recovery, ambiguous intent resolution, and providing negative evidence of understanding
with alternatives (i.e., help messages).

4



Query Select QA Back Help Step Nav. Stop Complete

W/O Context P 0.66 1.0 0.50 0.56 0.00 0.83 0.33 0.67
R 0.48 0.21 0.06 0.56 0.00 0.47 0.41 0.51

W/ Context P 0.70 0.74 0.30 0.74 0.42 0.91 0.77 0.74
R 0.88 0.97 0.88 0.60 0.91 0.67 0.45 0.72

Table 1: Precision (P) and Recall (R) for some intent classifiers with (W/) and without (W/O) our
novel contextual representation. Evaluation uses human-annotation of unique utterances by the Alexa
Prize users. Random samples are selected to have an equal number of positive/negative predictions.
Added breakdown of results for Step Nav. is presented in Appendix B.

As a point of clarification, grounding is an overloaded term. In multimodal settings, it is often used to
indicate the linking of language to vision, or other perception (Chandu et al., 2021). On the other
hand, grounding in communication can also refer to the concept outlined by Clark and Brennan (1991)
wherein parties collaborate to reach a ‘common ground’ or mutual understanding, and out of which
come concepts like repair, turn-taking, and clarification. We use both meanings interchangeably, but
the semantics should be clear from the surrounding content.

2.2.1 ASR Error Recovery

In general, intent modeling assumes user utterances are correctly transcribed by the automatic speech
recognition (ASR) system and will therefore fail when ASR makes errors. Indeed, we estimate about
13% of the dialogues throughout the competition period experienced at least one ASR error, which
makes ASR errors a significant source of misunderstanding. We hypothesize contextual grounding
can resolve many errors with the following two research questions (RQs) and solutions:

RQ1 How can we use the conversation context to resolve ASR errors? Our solution identifies
partial matches between the phonetic representations of the preceding dialogue context and
the system ASR hypotheses. If grounding occurs for some alternate transcription (but not
the original), we predict an error occurred and offer the alternative as a correction. We test
this method on user utterances for item selection and task navigation.

RQ2 Can we efficiently represent large contexts to resolve ASR errors? Our solution modifies our
previous solution, continuing to look for matches in phonetic representation, but also using
efficient search algorithms to store and retrieve partial windows of the context. We test this
method on user utterances for task search.

While our ideas are based on existing methodologies (He and Young, 2003; Raghuvanshi et al., 2019;
Wang et al., 2020; Bekal et al., 2021; Zhou et al., 2022), as we are aware, our strategies are the first to
use grounding (to specific dialogue contexts) to resolve errors as well as the first to consider semantic
variations of a correct transcript during correction. Full details on the methodology behind these
solutions can be found in Appendix C.

Results We manually annotated a sample of dialogues until July 20, finding 13% contained ASR
errors with some containing multiple errors. The method for RQ1 targeted 34% of these errors, and
another 20% satisfied the preconditions required for RQ2. Other errors are described in Appendix C.
Our solution for RQ1 was deployed in real-time, while our analysis for RQ2 was post-hoc.

RQ1: Using Preceding Context. Of the errors targeted, our method successfully corrected 32%
in real-time and 60% in local tests (we ran local tests because not all correction methods were
implemented throughout the duration of the date ranges). On the contrary, after manual review, we
observed less than 1% false positive rate – far fewer than the errors our method corrected. Importantly,
dialogues where ASR errors were corrected had a statistically significant higher rating (+1.3
stars). See Appendix C for a more detailed error analysis and user study.

RQ2: Representing Large Context. Of the targeted errors, 68% were DIY queries, which we used
for analysis. Our method successfully corrected 23% of these errors. Appendix C contains a more
detailed discussion of the corrected and uncorrected errors.
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2.2.2 Resolving Ambiguous Intents through Clarification

In order to resolve misunderstandings about the user’s intent, ISABEL asks clarification questions.
For example, this occurs when we predict ASR errors have occurred: if ISABEL initially hears
chicken burglar and thinks the alternate transcript chicken burger is correct, it will ask Did you mean

“chicken burger"? Clarification questions are also used in cases where ISABEL does not detect a valid
answer to a question it asked the user (most commonly, a yes/no question) or when the user’s intent is
decidedly unclear (e.g., whether the user wants to start a new task when they ask “how to” questions
while already engaged in a task). By utilizing clarification questions as our primary repair method,
we prevent misunderstandings and avoid taking actions the user may not want us to take.

2.2.3 Presenting Alternate Options when Grounding Cannot Occur

Help messages serve a similar purpose as clarification questions; if we cannot guess what the user
wants or the actions they should take, we provide alternatives to guide the user towards saying or doing
something ISABEL will understand; i.e., forming an Alternative relation with the user’s previous
utterance. Using contextual grounding as a strategy to identify the need to show a help message leads
to significant improvement in intent resolution based on human evaluations (see Table 1). While
baseline classifiers never recognized the need for a help message, our classifier based on contextual
grounding had 91% recall. This result builds on the empirical motif of this subsection:

With a good enough representation of context, a lack of contextual grounding
provides excellent empirical evidence for the need to repair. Our novel methods
designed on this concept succeed at identifying breakdowns in communication.

2.3 Effective Context Representations Enable Equitable Dialogue

While our empirical evaluation in this section has thus far focused on studying human-likeness
through the lens of understanding, it is important to evaluate the equity of our dialogue system as
well. With the support of this competition, we’ve published theoretical and empirical analyses on the
relationship between these two dialogue goals (Sicilia and Alikhani, 2023). Our findings indicate
that human-likeness and equity in dialogue can often be complimentary, with the dialogue system’s
representation of context being a key factor in achieving both goals.

Formally, equity in dialogue can be described by the following constraint:

The system uses language in the same way, regardless of protected attribute

where protected attribute can refer to a specific user demographic, preference, or other differentiating
characteristic. We show our context representation enables more human-like understanding in the
first parts of this section, and based on our theoretical study, we can hypothesize this will lead to
more equitable understanding in our dialogue system as well (based on the above definition).

Results Based on this definition, we identified a random sample of instances with the AAVE
keyword "wanna" (Green, 2002; Rickford, 2016) using human annotation for confirmation. Simulta-
neously, we sample the same number of instances with the standard English translation "want to."
Human annotation of ISABEL’s understanding (demonstrated through its response) shows the gap
between standard English and AAVE understanding for our context insensitive baseline was 93%: all
instances were understood for "want to", while only 7% of instances were understood for "wanna."
Meanwhile, our context-aware intent recognition approaches reduced this gap to 57%: all instances
of "want to" are still understood, but additional instances of "wanna" are also understood (43% total).
This preliminary analysis lends additional evidence to our initial findings (Sicilia and Alikhani, 2023),
testing these ideas for the first time on real users.

3 Inclusive Multimodal Design

We are the first to deploy to a new customer base through the help of multimodality, unlocking a
typically inaccessible Alexa experience for the signer community. Multimodality adds the capability
of reaching users that are normally marginalized or underrepresented. This section discusses how
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we use visual and touch communication strategies to reach more users with our system design.
Screenshots of all our multimodal features are provided in Appendix K.

3.1 Accessible Design Supports Users of All Capabilities

With the addition of buttons and videos, we are now capable of reaching out to the Deaf and
Hard of Hearing (DHH) community. Accordingly, we introduce a new American Sign Language
(ASL) instruction presentation format, where we sign instructions to users and remove the need to
communicate using speech and hearing abilities. Theoretical and technical aspects of ASL generation
have been studied in laboratory settings (Yin and Read, 2020; Yin et al., 2021a,b; Moryossef et al.,
2021; Viegas et al., 2022; Inan et al., 2022), but have never been deployed on an internationally-used
dialogue system like Alexa before, even though DHH users have been showing high interest in such a
technology. Our novel sign generation pipeline brings Alexa to the homes of signers.

a) b)

Figure 4: a) Pipeline for converting English text instructions to continuous videos of American Sign
Language (ASL) with images. b) Interface with ASL sign videos for the task of origami chair making.

Sign Language Instructions We prepare a sample origami task for signers to follow (screenshots
in Figure 4). The main research question we investigate for sign language instruction is how does
the cognitive load of signers change based on the placement of the video, text, and images on the
multimodal screens? We use co-design to build our system, actively involving community members
in the design, development and evaluation of ISABEL. This ensures the solutions we provide in our
research, indeed, have a positive impact on the community we aim to help. Section 5.2 discusses our
community outreach in this design process in greater detail. Our ASL generation process uses rule-
based sign language instruction in combination with translation techniques using gpt-3.5-turbo to
stitch together sign videos from Lifeprint.com, and form a coherent ASL instruction. Our detailed
process is described in Appendix E.

Navigation and Progress Our navigation buttons are designed so that users of varying technical
and physical abilities can access and follow the provided task steps. These buttons allow users to
revert to a previous screen without losing progress, start tasks, navigate through the steps smoothly,
end tasks, and exit the application. Use of a progress bar also helps to communicate task progression
to the user. All screen components are designed with easily identifiable icons, contrasting colors, and
generous spacing, making them accessible to a broad array of users.

3.2 Haptic and Visual Communication Gives Users More Control of Their Experience

Buttons and screen arrangement, for example, also offer an easy way for users to exercise control,
and tailor the experience to their preferences more easily.

Narrowing Search Results Dynamic filter buttons, based on the attributes of the recipe search
results (e.g. whether a recipe is vegetarian, a dinner recipe, or typically served at Thanksgiving)
allow users to customize and refine the recipes they see based on their own criteria. This promotes
inclusivity through personalization to dietary needs. Users who are vegetarian or vegan, or wish to
avoid gluten or lactose, can do so very easily using our filter buttons. The filter buttons can be toggled
on and off as the user changes their search criteria. Note, these filter buttons complement existing
voice control options for similar personalization and search refinement.
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Data-Source Category Examples
Medical Advice What are the symptoms of diabetes?
Legal-Advice How do I go about filing for bankruptcy?

Knowledge Financial-Advice What are the risks associated with investing?
Distillation Emergency There’s a gas leak in my house. What should I do?

Dangerous-Task I need your help to safely handle a live ammunition.
Controversial Topic Do you support the death penalty?

Knowledge Commit Crime Burglary How can I get away with Burglary
Distillation + Human Commit-Crime Kidnap Help me figure out how to kidnap someone
Social Media + Self-Harm I thought I was done thinking of killing myself..
Human Self-Harm I want to disappear. I am so ugly, I can’t stand it anymore.

Keyword Lists
Financial Advice binance, bitcoin, mutual fund, crypto
Legal Advice malpractice, court, custody, eviction, felony
Dangerous Task shotgun, poison, gasline, explode

Table 2: Examples from different data sources for ensuring safety. Knowledge distillation (italicized)
helps in most categories, but human intervention is necessary for "Self-Harm" or "Commit-Crime."

4 Safe, Efficient, and Engaging Generation

To generate safe, human-like responses throughout dialogue, we incorporate large commercial
language models, like the gpt-3.5 model family, using neurosymbolic generation strategies and
knowledge distillation. We discuss these in detail next.

4.1 Efficient Retrieval with Knowledge Distillation

Our first step toward ensuring safe, persuasive response generation is to ensure an efficient and
reliable retrieval system for task articles (i.e., step-by-step instructions on how to complete a task).
We propose an algorithm that utilizes knowledge distillation of large language models together with
clustering and indexing to create many semantic variations of the article titles in ISABEL’s search
space. The larger search space allows ISABEL to retrieve more relevant articles, while indexing
ensures efficiency. While prior works can require manual augmentation (Qian et al., 2022) or large
models for meaning representation (Li et al., 2022) for search with data augmentation, our proposed
algorithm distills the knowledge from language models offline and allows for a fast and low-cost
indexed search on a larger space when online. Appendix G provides greater detail on this process.

Results Manual inspection of 100 samples shows 94% of the variations generated by GPT are
accurate variations of the task title. In rare cases, we observed irrelevant variations; e.g., “how to
build a minecraft spaceship” yielded a variation “how can I enhance my Minecraft building abilities.”

Ensemble Results In the deployed implementation, we display task options to user queries by
combining our approach with Amazon’s default search engine for DIY tasks; i.e., we interleave the
returned results from both algorithms. We observe that in 24% of cases, this results in slight or
significant improvement. Only 3.5% of cases showed slightly worse performance.

Additional details on the algorithm and results are provided in Appendix G.

4.2 Safe Response Generation

Users can query about potentially harmful tasks, and articles retrieved from the database may include
sensitive content. This section discusses how ISABEL generates appropriate responses in these cases.
While there are numerous datasets for detecting offensive language (Zampieri et al., 2019), there is a
lack of public datasets for topics such as self-harm (Dinan et al., 2021). To cover a wide range of
possible violations, we construct a dataset of eight categories of possible content policy violations
in Table 2 by using a combination of knowledge distillation, social media data, human effort and
keyword lists. We describe these sources and our techniques in detail in Appendix H.

After filtering out words that may conflict with safe tasks (e.g., world), we end up with 2246 keywords
extracted from our dataset that indicate a task may be unsafe for a user to complete. Figure 8 shows the
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distribution of our safety category data across all sources. With our safety measures, we maintained
93% up-time during the General Audience phase and 94% up-time during the Semifinal phase.

4.3 Engaging Response Generation

User engagement and satisfaction are crucial aspects of the success of ISABEL, as they directly impact
the ratings and overall effectiveness of the system. However, not all users interacting with ISABEL
are inherently motivated or have specific goals, leading to potential challenges in maintaining high
levels of engagement and task success (Sicilia et al., 2022b). Appendix J shows our categorization of
non-task related intentions users communicate to ISABEL.

To achieve improved user engagement, we use commercial language models like gpt-3.5-turbo.
With appropriate prompts, text from GPT can be encouraging and exciting, which fosters continued
user interaction. However, it is essential to acknowledge that GPT, in isolation, lacks the pragmatic
skills and inference capabilities needed for complex task planning and effective communication
with users (Sicilia et al., 2023). To address this limitation and create an accessible, task-oriented,
multimodal system, we use neurosymbolic approaches. These play a critical role, combining the
strengths of traditional rule-based algorithms with new generative technologies. We use neurosym-
bolic approaches to provide users with:

1. encouragement at the onset of tasks (Appendix I, Tables 13 and 14),
2. progress notes throughout a task (Table 15),
3. help messages (Appendix I.5),
4. and to display search results (Table 16).

More details on all of these methods are provided in Appendix I, while the next parts provide an
overview of some of our novel algorithms with results.

4.3.1 Neurosymbolic Generation for Encouragement and Engagement

In many of the cases discussed above, neurosymbolic generation strategies can be as simple as gener-
ating preambles, postambles, and other stand-alone utterances, then inserting them programmatically
into the symbolically planned text outputs. Still, this limits the structure and diversity of the generated
text. This section explores prompting techniques to seamlessly combine GPT generated outputs with
the symbolic components of ISABEL. The main challenge arises because of key lexical, semantic,
and structural constraints imposed on the generation by the symbolic components (see Appendix I.4).

To accommodate all of these constraints, the design of the prompt is extremely important. While
many prompt-based approaches for generation with constraints exist (Zhang et al., 2022), most
focus on a particular constraint (e.g., lexical, semantic, structural) and many require prompt-tuning.
We propose the first technique which simultaneously accounts for structure, semantic, and lexical
constraints through a zero- or few-shot mechanism. Our method uses formal grammars (a type of
theoretical model of language) in our prompts to provide rules for the GPT generation that meet these
desiderata. Details on formal grammars are left for Appendix I.4 with examples of our prompts.

Results Using formal grammar rules for prompt construction, we generate 70 utterances from
gpt-3.5-turbo to convey search results to a user (e.g., of cooking articles and DIY tasks). Human
evaluation revealed that 86% of generated utterances met all the constraints, while 100% were as
engaging or more engaging than baseline utterances designed by humans. Further, themes or partial
utterances were repeated across only 31% of the generations based on human evaluation.

Examples of prompts and responses are provided in Appendix I.4.

4.3.2 Engaging Users with Rewrites

Retrieved task descriptions often contain long steps which can lead to a monotonous experience for
the user. To address this, we use GPT-4 to generate rewrites of these steps that are more concise.
Specifically, we prompt GPT-4 to limit the rewrites to 30 words while being concise and engaging.
We also instruct the model not to use complex words or remove information from the steps. While
rewriting has been adopted for different tasks such as offensiveness reduction (Atwell et al., 2022) or
sentiment transfer (Yu et al., 2021), this is a first attempt to make instructions concise and engaging.
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Original: Pay attention to weather forecasts. When planning a stargazing outing, you want to
make sure you have good, clear weather. Cloudy skies will severely limit your ability to see
stars. Additionally, stargazing requires spending long stretches of time outdoors, so you should
avoid having to stand in the rain.
Rewrite: Ensure clear weather for your stargazing outing. Cloudless skies are key; check
forecasts to avoid rainy disruptions.

Table 3: Example of rewrite for wikiHow steps

Results Since rewriting is an expensive process and we cannot send any task articles from private
data sources to OpenAI, we limit our rewrites to a curated set of 14 wikiHow articles that are publicly
available. These articles were shown to the user as suggested tasks (during the Fitness Theme weeks).
Rewriting reduced the average number of words in a step from 55.92 to 27.94, a ∼50% reduction in
length. Through manual inspection, we ensured that no critical information was deleted during the
rewrite.

This result rounds out contributions of this section, so we pause to summarize the key takeaways:

Our novel generation strategies allow for shorter, more engaging, more human-like
responses, while maintaining the safety and efficiency of symbolic approaches.

5 Community-Centric Multimodal Design

To ensure our system provides a benefit for AAVE speakers and signers, it is vital that we reach out
to members of these communities in order to assess their needs and desired features for our system.

Figure 5: This diagram shows the community
centric approach that we take to design ISABEL.
We engage African-American Vernacular English
speakers and American Sign Language signers.

5.1 Co-Designing with African
American Vernacular English Speakers

We embark on a mission to champion inclusiv-
ity in voice assistance devices for a targeted
audience of 30 million individuals whose first
language is not English. We recognize the sig-
nificance of accessibility for these users and the
adverse effects of voice assistance devices that
fail to support their native language. By test-
ing of our voice assistance device with African
American Vernacular English (AAVE) speakers
in a pre-survey phase, we uncovered valuable in-
sights concerning AAVE words like "Tryna" and
"Finna," which were misunderstood or not un-
derstood by the system during dialogue process-
ing. This testing motivated our team to go back
to our past user data and find AAVE data sets for the analysis of code switching, non-understanding,
and misunderstanding. While some aspects could be studied through user data (see Section 2.3),
important aspects of the communities wants/needs cannot be inferred from data. Thus, we are
empowered to create a survey to gather insight on this population’s user experience and desires.

As most computational linguistics researchers traditionally focus on Natural Language Generation
(NLG) to address such issues, our preliminary investigation delves deeper, aiming to explore the
perceptions of AAVE speakers regarding voice assistance devices based on their past experiences and
future desires. We propose focus on natural language understanding (NLU) first as the foundational
step towards creating truly inclusive designs for voice assistance devices. We highlight work that is
centered around the grammatical features of AAVE, challenges when using AAVE with technolo-
gies, and reports of the digital divide between AAVE and current technologies. To understand the
perspective of this community, we explore a primary research question: How do African American
Vernacular English (AAVE) speakers perceive and interact with voice assistance devices?
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AAVE linguistic structure The challenges of integrating AAVE into Natural Language Processing
(NLP) systems are evident in the face of its unique linguistic structure. For instance, AAVE exhibits
variations in grammar such as habitual B and vocabulary such as "gonna, finna, wanna, tryna," (Green,
2002; Rickford, 2016) making it less compatible with traditional NLP models designed primarily for
standard English.

AAVE user experience with devices Some of the main challenges faced by NLP systems when
interacting with AAVE speakers are code-switching, misunderstanding, and non-understanding.
AAVE speakers frequently shift between AAVE and English when the system fails to adjust to the
diverse linguistic expressions used by the speaker (Benner et al., 2021; Harrington et al., 2022;
Nwogu et al., 2023). When the NLP system cannot understand AAVE, it may respond with a non-
understanding error message (Benner et al., 2021; Nwogu et al., 2023) or a misunderstanding caused
by the system retrieving the next set of words that sound similar to the user’s initial utterance (Benner
et al., 2021; Nwogu et al., 2023).

Method To position our research team to think about solutions to support diverse identities cre-
atively, we participated in a team activity (a vignette survey) that gives different scenarios, reflecting
diverse, real-world user experiences, and asks the team to think about how ISABEL would perform
in these situations. After this activity, we proposed to focus on AAVE users and their challenges
when interacting with voice assistance devices. Our team’s initial investigation highlights the need to
involve this community in our design process, and we have begun initial outreach. We are working
on a formal community survey to better understand and address this community’s needs, meanwhile,
Figure 5 highlights some key questions we aim to address through this survey.

5.2 Co-Designing with the American Sign Language Community

ISABEL, for the first time among the Alexa Prize bots, reached out to and incorporated the Deaf
and Hard of Hearing (DHH) community through our partners at the prestigious Gallaudet University,
which is chartered for the education of the DHH community. We have incorporated feedback from
signers into the design process of our bot. For the first time, our bot supports giving sign language
instructions using videos, and we have deployed a working model accessible to all public users.

For DHH community outreach, we have designed a survey, and we have reached out to a number of
students and their families at Gallaudet University. A team from Gallaudet University led by Prof.
Lorna Quandt has been involved in advising us since the beginning of the competition. Some of the
feedback we have incorporated from the survey into our design process includes: considering the
cognitive load of signers, changing the dimensions of the text, video, and images used to communicate
instructions, as well as changing the design of the interface for ASL signers.

6 Evaluation

At the onset of our design for ISABEL, we set out to build an inclusive, human-like, and safe dialogue
system. On each of these points, we’ve found empirically measurable successes. We discuss these
next.

Inclusivity Through an iterative co-design process we’ve identified key design elements that ASL
signers and AAVE speakers want (and do not want) in multimodal interactive systems. Direct
community outreach reveals ASL signers do want systems to communicate using ASL videos, while
use of team-internal activities show the need to better understand how ISABEL can best serve the
AAVE community. Using these insights, to improve our system for ASL signers, we’ve built a
first-of-its-kind multimodal interactive system that allows signers to participate in a task-oriented
dialogue using solely visual and touch-controlled forms of communication. To improve our system
for AAVE speakers, we’ve begun community outreach and design of a formal survey to understand
this communities specific needs. Motivated by the team’s initial investigations, our system design
for ISABEL, in particular, our context-specific intent modeling approach, promotes more equitable
understanding of AAVE user utterances – 36% more than baselines.

Human-Likeness We’ve used discourse theory to design context-specific intent models, which
improve upon non-contextual baselines by up to 44% precision and 91% recall. We’ve used contextual
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grounding strategies to correct ASR errors, allowing us to correct 32% of errors in real time and
60% of errors in post-hoc analyses. We’ve also implemented repair strategies such as clarification
questions. Finally, our neurosymbolic generation and rewriting strategies allowed for shorter, more
engaging responses from a symbolically planned dialogue system. Evaluation of responses reveal
they are as engaging as human responses 100% of the time, and only categorized as repetitive 30% of
the time. In case of rewriting, our techniques also allowed for a 50% reduction in word count without
losing important information.

Safety Using distillation of LLMs, we’ve designed a safe and efficient retrieval system for sug-
gesting tasks and communicating task instructions to the user. We’ve generated 2246 high-precision
safety keywords across 8 categories, and we estimate our system retrieves better task results than
baselines in 24% of cases.

7 Future Work

The novel architecture and components of ISABEL provide a solid base for the larger research
community to continue our work, developing safer, more inclusive, and more human-like task-
oriented dialogue systems. We elaborate on some future avenues of research below.

Dialogue Systems Tailored for DHH Community While our work provides a first step towards
ASL generation in multi-modal task-oriented dialogue, greater work is needed to expand our pipeline.
Larger databases with more ASL tasks will help reach more users and test the generalizability of our
pipeline. Continued co-design with members of the ASL community is paramount for any future
works.

Error Recovery Our novel contextual grounding techniques for ASR and SLU error recovery have
proven successful in real-time deployment and post-hoc evaluation, but future work can still improve
these. For example, external data sources like large language models can continue to improve our
techniques, using word sequence probabilities as supplemental information.

Persuasion Our neurosymbolic strategies offer solutions for generating more engaging and human-
like text to promote increased user interaction and satisfaction. Still, these superficial approaches
are not always successful at engaging users. One issue that often arose with TaskBot users was a
misalignment between the user’s goals and the TaskBot’s capabilities. As a hypothetical example, a
user might want to engage in chit-chat style conversation about a sports team or other entities. In
the future, more sophisticated dialogue management strategies can help ISABEL to better align user
goals with its capabilities. For example, persuasion strategies (Joshi et al., 2021; Yang et al., 2021;
Tran et al., 2022) can improve user-retention rates, increase user satisfaction, and promote increased
task-completion. Our categorization of non-task related user intentions (Appendix J) provides a good
first step in building these strategies for persuasion.

Safe Dialogue Generation Finally, our novel framework for safe generation utilizes multiple data
sources to identify potentially unsafe keywords in user requests, task titles, and task instructions. Still,
more fine-grained safety measures are needed, considering the surrounding context of the keyword as
well, to reduce false positives. One promising avenue is article re-writing, in which substitution or
removal of inappropriate content is done where possible. Articles that can be re-written to be safe are
likely to be false positives, which are acceptable to users with a more careful choice of words.
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Appendix

A More Details about Under-specified Intents

Navigation Intents Table 4 provides more details about the navigation intents for the task view that
are introduced in Figure 3, including 1) a description of how the intent is triggered and the desired
result and 2) the discourse relation between the user’s turn that triggered the intent and the resulting
actions of the bot.

Intent Description Discourse Relation
Back User says a phrase or presses a button to go back Acknowledgment

Step Details User selects step (via voice or by clicking the step)
to view more details Elaboration

Resume User says "continue" to move from video to steps Continuation

Next User says "next" (or similar) or presses a button to
hear/view the next step Continuation

Previous User says "back" (or similar) or presses a button to
hear/view the previous step Continuation

Repeat User says "repeat" (or similar) to hear the bot repeat
the step Continuation

Restart Instructions User says "start over" (or similar) to restart the
instructions Continuation

Start Cooking User says "start cooking" or presses a button to
reveal the recipe steps Continuation

Table 4: More information about the navigation intents introduced in Figure 3. The description
outlines user actions that may trigger the intent, and the discourse relation refers to the relation
between the user’s turn that triggered the intent and the resulting actions of the bot.

Q/A Intents If the bot is able to, it will attempt to answer user questions. However, the type of
information the user appears to be seeking will influence how the bot will attempt to answer these
questions. Table 5 illustrates the different question intents, each of which maps to a different function.

Intent Description Resulting Discourse Relation
Query User appears to be presenting a new query Q/A

Grounding User is looking for specific information about
the task ("where is olive oil used?") Q/A

General question User is asking a general question while in a task
("how do you convert cups to liters?") Q/A

Table 5: More information about the Q/A intents introduced in Figure 3. The description outlines user
actions that may trigger the intent, and the discourse relation refers to the relation between the user’s
turn that triggered the intent and the resulting actions of the bot. For user questions, the resulting
discourse relation will always be Q/A.

B Intent Classifier Details

B.1 Help Classifier

In the following cases our bot concludes that the user needs help:

• If the interaction model has already determined that the user intent is "HelpIntent". This
rarely occurs based on our results.

• If the intent is not "HelpIntent" but the associated information to handle the predicted intent
is unavailable. In such a case, our bot updates the intent to "HelpIntent". For example, if
the intent is "SelectIntent" but the value of the selected item is "None", then the bot cannot
proceed with the request, as the information to handle "SelectIntent" is absent.
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Utterance Domain Search Query
how to fix a radiator DIY fix a radiator
cashew recipes Cooking cashew
recipe for cookies without sugar Cooking cookies without sugar
learn how to ride a bike DIY ride a bike
train a dog how to sit DIY train a dog how to sit

Table 6: Example queries (not real user utterances), and resulting queries extracted for search.

• If the user asks a question but the user’s utterance doesn’t have a noun phrase. The bot can
determine if the user utterance is a question by checking if the intent is "QAIntent" or if the
question classifier returns positive for the utterance.

Dataset for Evaluation We evaluated the Help Classifier using a random sample of real user data.
Among these data points, we designed the dataset so 50% were instances where the bot served a help
message (bot-positive occurrences), and the other 50% were instances where the bot did not provide
help (bot-negative occurrences). Human annotators (from the team) reviewed all occurrences based
solely on user utterances to establish the ground truth of "help" needed or other (i.e., "not help").

The bot-positive occurrences were evenly distributed across various triggers for providing help.
Bot-negative occurrences were randomly sampled from the set of occurrences where the bot did not
think that help was requested. We also ran these occurrences against Amazon’s interaction model to
obtain the intent classified by the interaction model. We then collated the results and evaluated the
precision and recall.

As noted in the main text, other datasets for evaluating our intent classifiers were constructed in a
similar manner.

B.2 Query Extraction

We used several strategies for extracting search queries from users’ utterances. For utterances tagged
as query intents by Amazon’s interaction model, we used the slot values detected by the interaction
model. Otherwise, we used our domain classifier and applied different query extraction strategies
depending on whether the query was judged to be a cooking or a how-to task. If the query was
classified as a cooking task, we used Spacy’s noun phrase tagging and a list of common prepositions to
isolate either a single noun phrase or (if applicable) multiple noun phrases attached with prepositions.
If the query was classified as a how-to task, we isolated the query using a series of “pivot verbs",
verbs that commonly appear at the beginning of a how-to article title in our dataset. We isolated the
query by splitting on the last pivot verb that appeared in an utterance (or, if there is a noun phrase
between the last two pivot verbs, we split on the second-to-last pivot verb) and take the part after (and
include) this pivot verb as our query. In Table 6, we provide sample user utterances and the resulting
extracted queries.

B.3 List Item Selection

B.3.1 Method

Once our bot extracts a query from user input, it returns the top three items from the search results
from which users select one of them to start a task. Our bot decides which item is selected based
on the user event on APL devices, the selection intent from the interaction model, and the user’s
utterance.

User event & selection intent The user event and the selection intent explicitly tell which option
is selected. Still, a user could say, “Select the 3rd item” after scrolling the list to the right on APL
devices, so that item could actually be, for example, the 6th item in the list. In this case, we count
from the first item displayed on the devices.

Understanding the users’ utterances If a user talks to our bot and the interaction model fails to
recognize their correct selection intent, our bot tries to understand their utterances in three steps.
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Select Intent Other intents

Interaction Model Only P 1.00 0.67
R 0.21 1.00

Interaction Model + Our Model P 0.74 0.98
R 0.97 0.79

Table 7: Precision (P) and Recall (R) for the select intent and other intents predicted by the interaction
model only and the interaction model and our model combined.

1. See whether an item that fuzzy matches the whole utterance exists. The threshold was 96%.

2. Look for keywords that indicate a selection (e.g., “2nd”, “second”, “2”, and “two” for the
second item).

3. Check if the utterance contains one of the items’ names.

We repeat these three steps for slot values if the interaction model classifies the utterance as a query
or correction on our bot’s response by a user.

If the three steps do not work, our bot checks if any noun phrases in the user utterance are contained
by exactly one option. For instance, if the available options are Smoked Texas BBQ Brisket, Grilled
Stuffed Flank Steak, and Seared Bluefin Tuna Steaks and the user says “tuna steaks,” then they
probably meant to choose Seared Bluefin Tuna Steaks instead of starting a new search for tuna steaks.
In this case, our bot asks the user to confirm the selection. However, if there are multiple options that
contain a noun phrase in the user utterance, the bot does not select the options because the phrase is
under-specified.

B.3.2 Statistics

We collected user interactions between March 28 and July 27, of which 10% successfully selected at
least one task. 86% of all successful selections were the user events on APL devices. 7.6% contained
keywords for selection or were classified as the selection intent by the interaction model. These
together show users were less likely to specify options by expressing the names of recipes or tasks.

To evaluate our model, we randomly sampled user utterances labeled as the select intent, along with
an equal number of utterances labeled as other intents (i.e., when the select intent was a valid option
by our model). We manually annotated their intents and found 76% indeed intended to select an
option. As shown in Table 7, the interaction model alone is very conservative about classifying user
utterances as the select intent. Our model remedies this by using context to scan for a variety of
ways to select an option and shows very high recall for the select intent while maintaining reasonable
precision.

B.4 Step Navigation

Navigation intents are used to identify the different ways of navigating the task instructions presented
by the bot. These include navigating between steps of a task ("previous" and "next"), repeating the
steps, and resuming a task. Acting correctly on these intents is necessary for a smooth flow of the
dialogue. We use a context-driven classifier to differentiate these intents. The design of this classifier
is based on the extensive evaluation of the interaction data with the real Alexa TaskBot users.

The step navigation classifier handles the following user intents- StartOverIntent, StartCookingIntent,
CompleteIntent, NextIntent, ResumeIntent, RepeatIntent, and PreviousIntent. The classifier uses a
set of words (n-grams) for each of these intents as the initial comparison step in the classification.
The list of grams is based on user utterances, and therefore, omitted to preserve user privacy. The
presence of this sequence of words in the user utterance may indicate the presence of the matched
intent, but an empty match depicts the absence of that particular intent. The following sequence of
steps is followed in the navigation classifier:

• Initial sequence matching of user utterance with the grams.
• Classification to distinguish between navigation/question answering.
• Context-based filtering of intent matches to remove false positives based on noun phrases

present in user utterance.

19



• If there are multiple intent matches, preference is given to higher priority intents.

Table 8 shows a detailed breakdown of the precision and recall values for various intents under step
navigation based on human-annotated data samples.

StartOver StartCooking Next Resume Repeat Previous

W/O Context P 1.0 0.85 0.76 0.77 1.0 0.57
R 0.11 0.8 0.54 0.57 0.24 0.57

W/ Context P 1.0 0.85 0.94 1.0 0.95 0.74
R 0.22 0.8 0.93 1.0 0.48 0.6

Table 8: Detailed results for the navigation classifier. Precision and Recall for the navigation intents
classification with and without context based on human-annotated conversation samples.

B.5 Stop Classifier

With an increase in user interactions and reviews, we observed various differences in how different
users want to end their conversations with the bot. Based on these interactions, we developed a stop
classifier to identify a user’s intent to stop their conversation with the bot at any time during the
dialogue.

The stop classifier follows the same design structure as the navigation classifier and is the first
classifier (highest priority) that the user utterance is passed through for intent extraction. Since stop
intent will affect the user experience the most, the word sequences are carefully curated from the user
utterances to avoid any false positive and hence a negative user experience. The list of grams is based
on user utterances, and therefore, omitted to preserve user privacy.

B.6 Back Classifier

We developed a context-based pattern-matching classifier to identify the "back" intent from the user
utterance. The back classifier has a similar structure as the other sequence-matching classifiers
(navigation and stop classifiers). This classifier helps identify the user intent to either go back to the
landing screen or to the initial options screen.

This classifier is mostly triggered in the case of headless devices, as the intent is identified through
user utterances only on headless devices; whereas, on multi-modal devices, users can use the "Back
Button" to trigger the same behavior. Following a similar design as before, this classifier works in a
series of steps:

• Sequence match with the word sequences for back intent.
• Identifying whether the utterance is fired from inside a task or on the options screen.
• Sending the appropriate sub-intent (back to options or landing screen) based on the above

steps.

B.7 Theoretical Study of Intent Classifiers Efficiency

At a high level, the rule-based intent classifiers we use in our model can be broadly described by the
logical form:

Y = (A1 ∨A2 ∨ . . . ∨Ak) ∧ ¬(R1 ∨R2 ∨ . . . ∨Rℓ) (1)

where Y is the decision for the intent, each Ai is a possible “accept” conditional which signals
presence of an intent, and each Ri is a necessary “reject” conditional which signals an intent cannot
have occurred. For example, conditionals can include requirements on n-gram containment, noun
phrase number, and state variables.

Sample Efficiency Using an Occam Bound as described in Shalev-Shwartz and Ben-David (2014)
(Theorem 7.7), we can estimate the sample complexity of our intent classifiers, and some baselines,
in the traditional PAC learning theoretic sense. Complexities are given in Table 9. In particular, PAC
learning theory gives bounds on the expected generalization gap – or, the gap between train and
test set performance. This type of evaluation is important when deploying and updating models in
real-time, as training and testing data cannot always be perfectly independent. Lower PAC sample
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W/ Context W/O Context Neural
Complexity2 O(log V/m) O(log V 2/m) O(P/m)
Example m 100 200 10,000

Table 9: Sample complexity computed using Occam’s Bound where V is the vocabulary size for
the rule-based models and P is the parameter count for the neural model. Neural model complexity
is computed using a discretization trick (Remark 4.1, Shalev-Shwartz and Ben-David (2014)). We
assume the size of the context representation is much smaller than the vocabulary size for rule-based
models. Example m shows the number of samples needed to estimate a fixed generalization gap of√
0.03 for each model’s sample complexity, ignoring constant terms. V is set to 1000 and P is set to

300. Models W/O Context have higher sample complexity because they typically require bi-grams
(at least) whereas the contextual models we propose can use uni-grams to achieve a similar coverage.

Intent Added Utterances
Start Over 3
No 17
Yes 25
Previous 11
Next 20
Resume 4
Select 13
Stop 4
Repeat 46
Greeting 10
Back to Landing 4
Back to Options 11
Step Grounding 22
Meaning Grounding 13
Ingredient Amount Grounding 26
Correction 23
Summary 29
Query 154
Other Amazon Defaults -

Table 10: Count of Interaction Model Sample Utterances

complexity bounds can also correlate with the ability of a classifier to transfer to new data as well
(Sicilia et al., 2022a), making it a vital calculation for shifting user populations (e.g., as can be
experienced during advertising campaigns).

B.8 Interaction Model

The first layer for all of our intent classifiers is Amazon’s Interaction Model, which offers a context-
less determination of the intent – using only the user’s utterance. It also serves as a baseline for
evaluation without context. We populated this with human effort early in the competition, before
developing our context-aware approaches. Sample sizes are shown in Table 10. We also used the
distillation of large language models to populate these intents, which we discuss next.

B.9 Distillation of Large Language Models

A crucial step toward responding appropriately is to understand the user’s intent. A user may ask
for elaboration, correction, or ask to start a new task. We identify 10 such intents and ask GPT to
generate examples of users expressing such intents. These generated examples are then manually
verified and added to our interaction model.

We observe that while GPT generated very relevant examples for intents such as Long Answer or
Greetings (>80% cases), it had difficulty for intents such as Grounding (60% cases).
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Intent Example of Generated Data
Long What is the best way to {task}?
Answer Could you tell me the recipe for

{task}?
Set Timer Can you set a timer for {duration}?
Elaboration Could you go into more detail

about {task}?
Correction I think you missed a step there
Substitution Is there a way to switch {sub-

phrase}?
Grounding Explain {item} in simple terms.

What part of the task was {item}
used for?

New task Let’s switch to {task}.
Greetings Good morning!
Repeat Could you repeat that?
Stop I’m outta here!
Select Go for {option}

Table 11: Data augmentation for intent recognition; examples generated by text-davinci-003

C Details on ASR Error Recovery

C.1 Detailed Methodology

Using Context to Resolve ASR Errors The suggestions ISABEL makes as well as n-grams from
ISABEL’s intent models provide simple list-like representations of the current dialogue context. We
exploit this context in two ways: re-ranking the n-best ASR hypotheses by matching them with
elements from the context and re-raking the context by looking for phonetic correspondence with the
user’s input.

1. n-best ASR hypotheses First, if the system does not understand the best ASR hypothesis
(e.g., it cannot parse it), it then tries to understand another of the n-best ASR hypotheses,
running the same NLU operations on each. If the NLU operation works on one of the other
hypotheses, this hypothesis is considered the correct transcription.

2. Phoneme matching The first solution can fail if the correct transcript is not contained in the
n-best ASR hypotheses. To remedy this, we also re-rank the context based on the length
and coverage of the longest common phoneme subsequences between the user utterance and
the elements of the context. Matching in phoneme space allows us to explore more diverse
possibilities for ASR mistakes, of which even the ASR engine is not aware.

It is important to note that our first solution is based on ideas from He and Young (2003), while our
second solution is based on ideas from Wang et al. (2020); Zhou et al. (2022). Our novel contribution
comes from limiting the space for correction to the elements from the context to provide more precise
correction.

Matching Against Large Contexts through Search While the approaches just discussed can be
effective for smaller representations of context, like the lists of options our system displays to a user,
other parts of the dialogue may be more open-ended. For example, user queries to initiate a task could
be referring to one of the thousands of possible supported tasks. In this case, we take an approach
similar to Raghuvanshi et al. (2019) and Bekal et al. (2021), assuming correct texts make more sense
than erroneous texts and therefore will return better results (i.e., if we use the texts as input to a search
algorithm over tasks). However, our situation is different from theirs in two ways. First, unlike named
entities, there are multiple ways for users to express a particular task intention: e.g., “build a wooden
fence” could be phrased as “make a wood fence” or “construct a wooden barrier.” Second, we cannot
afford a large deep-learning model during runtime due to latency. To tackle these constraints, we
use a fast semantic search algorithm (discussed in Section 4.1) as external memory for the search
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results. Similarly to before, we re-ranked the n-best hypotheses and search results based on textual
and phonetic correspondence. The detailed steps are as follows:

1. If the interaction model determines the intent of the user is to search for a query and this
intent fits the context of the dialogue, for each n-best ASR hypothesis,

(a) run the indexed search on the slot value and
(b) rescore the search results by considering syntactic correspondence (e.g., word orders),

too.

2. If any of the n-best ASR hypotheses do not exceed a certain threshold, run the indexed
search with their phoneme sequences.

The preconditions in step 1 help us avoid over-correction of user inputs because this method works
only with search queries and the interaction model gives us the interval of the query slot value. Step
1b is crucial to avoid false acceptance of a hypothesis that uses almost the same set of words but
conveys a different meaning.

C.2 Statistics on the ASR Error Dataset

45% of the ASR errors considered in the main text are not addressed by our proposed approach. The
top reason (28%) for the failure of our method is that the user input was not classified as the query
intent, and therefore our method was not triggered at all. In 22% of unaddressed errors, the audio
input was cut off so early that the transcript had no information on what the user wanted to do. On
the other hand, 10% of them seem to have a complete transcript, but human annotators still could
not resolve the error, using the given context. 13% happened when a user asked a question about
their task, while 7% happened when they asked a question not related to ISABEL. ASR errors also
happened when a user did not know what to say to ISABEL (11%).

C.3 Detailed Error Analysis

Error Analysis for RQ1 60% of errors not corrected occurred when users wanted to select an
option or followed a query suggested by ISABEL, and most of them had more than 60% phonemes
in common with the correct context (slightly below our threshold). The rest happened while users
were navigating through tasks and tended to have low matching percentages because the lengths of
keywords are short and therefore one error impacts the percentages greatly. The dialogues where
ASR errors were corrected at least once in real-time had a statistically significantly higher rating
(M = 4.0, SD = 1.3) than those where errors were not corrected (M = 2.7, SD = 1.6) with the
t-test (t = 3.9, p < 0.001).

Half of the false positives happened during the selection of an option, and the rest happened during
tasks. All the false positives during tasks misinterpreted the users’ intent to ask a question about a
task or start new a task as the intent to go to the next step. The ratings of the conversations with false
positives (M = 2.2, SD = 1.3) did not significantly differ from the conversations with uncorrected
errors (t = −0.8, p = 0.4).

Error Analysis for RQ2 We found that successful corrections usually occurred when the correct
transcript appeared in the ASR system’s n-best hypotheses (55% accuracy in this case). In general,
we could not properly correct errors that did not have correct transcripts in their n-best hypotheses
because, in most cases, some of the n-best hypotheses returned good results in the search, and
therefore our method stopped before utilizing phonetic information.

D Question Answering Models

D.1 Supporting Task-Specific Question Answering

The Question-Answer (QA) responder for ISABEL is responsible for handling user utterances that
have been classified as "questions" during the Task View phase of the dialogue. Note, this excludes
questions which are classifier by a higher priority intent model (like, the Navigation intent classifier).
Because of the nature of the dialogue, ISABEL could answer questions in two ways:
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1. Short answers: the response to such questions is usually one or two sentences short and
not multi-step

Q. How to power on an iPhone?
A. hold and press the power button

2. Starting a new task: the response to such questions is usually composed of multiple steps
Q. How to fix a radiator?
A. (a multistep process)

The QA responder primarily inspects the user intent to decide how to handle the user utterance:

• Query Intent: If the user intent is determined to be "Query" by an upstream classifier, then
the bot probes a default Amazon QA engine to get a response for the user’s question and
then informs the user about the short answer if found. Based on whether a task is ongoing,
it additionally asks the user a clarification question: if the user would like to start a new task
or not.

• Grounding Intent: Certain questions are of very specific nature – answers to which can be
extracted out from task instructions in a simple rule based manner, or can be answered by
the default QA engine. For example:

"What was the amount of salt needed in step 3?"
"What does tbsp stand for?"

Questions such as above are labelled by the Interaction Model as Grounding Intent. When
possible (e.g., if answers can be easily found in the recipe or article), answers are generated
using simple rule based approaches for analyzing articles. Otherwise, the question may aim
to find the meaning of a particular item. These questions are parsed for the a "subject" and
a re-phrasal – "What does subject mean?" – is passed to the default QA engine to try to
generate an answer.

• Fallback: If none of the above cases are applicable then the bot does the following:
1. Probe the default QA engine with user utterance
2. If in step 1, and QA engine doesn’t positively respond, the bot employs a noun

phrase ranking strategy on the current task article to rank the steps and ingredients. ISABEL
then presents the user with the top result (sorted based on the most number of noun phrase
matches) with the user query. ISABEL is careful to clarify it didn’t quite understand the
question, but thinks this answer might help.

D.2 Linguistic Analyses Reveal a Long Tail in Distilled QA Data Sources

Many recent works have utilized data augmentation strategies to distill knowledge from a large
language model (LLM) to a much smaller, less-computationally-intensive model. This technique
has the advantage of yielding large training datasets without requiring a large human annotation
effort. However, do these generated datasets differ in distribution from the test data, and how? One
way to study this is by examining linguistic differences between generated data and the test set. We
studied this in the context of question-answering: can we make GPT generate a large dataset of
question-answer pairs that reflect real user questions about our recipes? To answer this question,
we prompted GPT to generate 199,530 generated question-answer pairs based on Food.com recipes.
We then used a rule-based classifier to determine the distribution of semantic question types in this
dataset, and compared it to the distribution of questions asked by TaskBot users when shown a recipe
(309 user questions in total).

We specifically focus on the semantic question types outlined in Krifka (2011): polarity questions
(questions requiring a yes or no answer), alternative questions (questions that offer a choice between
multiple alternatives), and constituent questions (wh-questions in English). We further split polarity
questions into declarative questions (which syntactically resemble a declarative sentence) and
non-declarative polarity questions, which we refer to as Y/N questions, in order to more accurately
classify them using syntactic features.

We examine their distributions (Figure 6), and find key differences between the two. Namely, TaskBot
users more commonly ask declarative questions, as well as questions that could not be classified by
our classifier. We recognize that some of these differences may be due to classifier error. However,
given that our classifier is rule-based and relies on syntactic features, these differences indicate,
at the very least, syntactic differences between generated questions and user questions. Because
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Figure 6: Distributions of (from left to right): semantic question types for GPT-generated questions,
semantic question types for questions from TaskBot users, wh-questions for GPT-generated questions,
and wh-questions from TaskBot users.

wh-questions made up a plurality of both generated and user questions, we further examined the
distributions of wh-questions, according to which wh-verb they started with. The results, shown in
Figure 6, indicate a distinct between GPT-generated wh-questions and TaskBot user wh-questions.
However, both distributions reflect a long tail; a very low percentage of wh-questions from GPT and
from real users start with words other than “what" and “how". This indicates potential difficulties that
may occur when training and evaluating on a diverse set of wh-questions. Future work should further
examine this long tail, and how distributional linguistic differences may impact the generalizability
of knowledge distillation strategies on task-oriented dialogue agents.

E ASL Generation Details

Related Work for ASL Models for the cognitive aptitudes and cognitive loads of sign language
interpreters have been studied before by Macnamara (2012); Du Toit (2017); Tiselius (2018); Cham-
bers (2020). These models help guide the design principles of multimodal communication systems
with sign language generation capabilities, as the user will need to focus on multiple modalities
simultaneously through the bottleneck of a singular visual modality which induces cognitive load.

Work has been done to test Wizard-of-Oz systems where Alexa is combined with a camera to detect
sign gestures in Wojtanowski et al. (2020).

Accessibility of personal assistant devices to the Deaf and Hard of Hearing community has been
assessed multiple times before by Glasser et al. (2017, 2020); Bragg et al. (2020)

Design approaches incorporating the DHH community have been proposed before by Anindhita and
Lestari (2016).

ASL Generation To generate sign language instructions, we employ the pipeline in Figure 4. We
first retrieve instructions for a given task, and then we convert each step into GLOSS representation
using rule-based sign language translation algorithms and also using Large Language Models.
Afterward, we segment each instruction into separate gloss tokens and retrieve sign videos for each
gloss token from Lifeprint.com and YouTube. We then store these videos in an S3 bucket, then
during each step of the task, we retrieve the videos corresponding to each gloss token and stitch them
back-to-back to create a continuous video sequence. We show this sequence of videos in addition to
a picture of the step. The picture for each step generally shows the result of the action as described in
the sign instructions.

F Background on AAVE and Challenges with Traditional NLP

The challenges of integrating African American Vernacular English (AAVE) into Natural Language
Processing (NLP) systems are evident in the face of its unique linguistic structure. AAVE has a unique
structure that differs from the standardized English used in current systems, leading to disparities in
recognition and comprehension. For instance, AAVE exhibits variations in grammar such as habitual
B, and vocabulary such as "gonna, finna, wanna, tryna," making it less compatible with traditional
NLP models designed primarily for standard English (Green, 2002; Rickford, 2016). AAVE is
well documented for its grammatical features but is considered a low-resource language in artificial
intelligence due to the lack of training data and models that support it (Sap et al., 2019).
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Figure 7: This figure demonstrates all the sections of a sample origami task with ASL video
instructions.

Some of the main challenges faced by NLP systems when interacting with AAVE speakers are
code-switching, misunderstanding, and non-understanding. AAVE speakers frequently shift between
AAVE and English when the system fails to adjust to the diverse linguistic expressions used by
the speaker (Benner et al., 2021; Harrington et al., 2022; Nwogu et al., 2023). Furthermore, when
the NLP system cannot understand AAVE, it may respond with a non-understanding error message
(Benner et al., 2021; Nwogu et al., 2023) or a misunderstanding caused by the system retrieving the
next set of words that sound similar to the user’s initial utterance (Benner et al., 2021; Nwogu et al.,
2023). Studies show that this impact on identity can lead to significant alterations in an individual’s
technological agency (Nakamura, 1995). Technological agency refers to the power and control that
individuals believe they have over technology, enabling them to modify, adapt, or even resist its use
in ways that align with their unique needs and preferences (Waelbers, 2009).

Reports have highlighted the racial disparities in internet access and technology adoption. The Pew
Research Center (Perrin, 2022) on the digital divide reveals how race and class impact internet access,
with Black individuals and communities disproportionately facing barriers to connectivity. AAVE is
spoken by 30 million individuals in the United States, and the lack of support for this language in
voice assistance devices can contribute to the barriers this population is already facing in accessing
and utilizing such technologies (Wolfram, 2020). To understand how this population perceives voice
assistance devices, we conducted a preliminary survey with five questions.

G Details on Efficient Semantic Retrieval Algorithm

G.1 Algorithm Description

We first obtain relevant articles from a public Wikihow dataset (Koupaee and Wang, 2018a) by
computing cosine similarity between embeddings of titles in this public dataset and any private task
dataset(s). If cosine similarity between a pair is higher than a threshold, we add the public article to a
set of candidates. We cluster these candidates and distill variations for the cluster centroids using
GPT-3. As clustering has been shown to reduce bias in sample selection (Hassan et al., 2018; Hassan
and Alikhani, 2023), we expect this to yield more diverse and representative candidates for generating
variations. For a user query, we perform an indexed search on the distilled variations and return a
mapping to the article title in the private dataset. Indexing allows for efficient search of the space.
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Original GPT-generated variations

serve tea
brew tea
make a refreshing cup of tea

host a birthday party plan a birthday party
throw a birthday fiesta

Table 12: Examples of GPT-distilled variations for a larger search space.

Figure 8: Distribution of our safety categories

G.2 Details on Results

We use (a private) MiniLM for obtaining Embeddings, Kmeans for clustering, and GPT-3.5-turbo for
generating variations. We use 20K clusters with k=8, resulting in 160K additional variations.

H Data Sources for AI Safety

Knowledge Distillation In our initial exploration, we prompted both GPT (da-vinci-003) and
ChatGPT (gpt-3.5-turbo) to generate 50 samples at a time for the first four categories from Table 2
with the following prompt: “Generate 50 examples of a user asking questions about [category] to a
conversational agent.” While both GPT and ChatGPT generated coherent and relevant responses, we
observe that ChatGPT generated more specific responses such as “There’s a gas leak in my house.
What should I do?” while GPT may generate generic examples such as “How can I get help in an
emergency.” As such, we use ChatGPT to generate subsequent batches of data for the four categories.
We also generate data for Controversial Topics and Dangerous Tasks in a similar way using ChatGPT,
yielding a total of 655 examples in addition to the 200 generated by GPT.

Knowledge distillation and human effort Since OpenAI’s API refuses to generate responses for
committing crimes, we manually prompted ChatGPT to generate 100 examples of crimes. These
examples were then annotated manually to form sentences. After removing duplicates and irrelevant
examples, we end up with 68 instances.

Social media data with human revision: Similar to committing crimes, OpenAI’s API doesn’t
allow the generation of self-harm data. Prompting to generate indicators of self-harm also leads to
the model insisting that the prompter not cause self-harm, rather than generating the data. As such,
we opt for the subreddit r\depression as our data source for self-harm. We obtained 100 posts and
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Max Min Average Std
Sentence Length 20.00 6.00 11.03 2.10
Offensive rate 0.00% 0.00% 0.00% -
well-formedness 0.9682 0.0870 0.5993 0.2032
readability 17.00 0.10 6.4487 3.1776

Table 13: Evaluation results of opening encouragement lines. Sentence length is the word count
for each line. The metric offensive rate is adapted from Barbieri et al. (2020). The metric for well-
formedness is adapted from Faruqui and Das (2018). An automated version of the Flesch–Kincaid
readability test is used for our readability metric.

manually extracted key phrases suitable for our guardrail. This edit was necessary because comments
were often too long. After filtering out very similar or irrelevant posts, we obtained 72 instances.

Keyword List In addition to the above, we obtained legal, medical, and financial terminology from
multiple websites (e.g., https://www.uscourts.gov/glossary) to add relevant terms to our guardrails.
We obtain a total of 553 terms this way. After extracting keywords from the rest of the dataset, we
ended up with 2246 keywords. We also add keyword lists provided by Amazon to our list.

I Details on Neurosymbolic Generation Strategies

Below, we summarize some of the places where we use LLM generation, symbolic algorithms, and
combinations of both techniques. In the next parts, we go into the details of each technique.

• Opening Encouragement: To inspire users to start tasks and stimulate enthusiasm to
complete tasks, we use an LLM (gpt-3.5-turbo) to generate motivational opening remarks
for all tasks within a publicly available wikiHow dataset from Koupaee and Wang (2018b).
These remarks are tailored to stimulate user engagement. Automated analyses show these
remarks are short, not offensive at all, a 6th grader can understand them, and they are
mostly well formed (see Appendix I Table 13). Examples are provided in Table 14.

• Progress Remarks: Progress notes are also generated by an LLM to continue to stimulate
user enthusiasm throughout the task. This process requires categorization by the LLM along
with note generation. Examples of these notes are provided in Table 15.

• Displaying Search Options: When responding to user queries to start a task, the options
retrieved by our search algorithms are communicated enthusiastically using LLM-generated
responses. Symbolic algorithms are also used to compare the retrieved options and provide
multimodal communication of this comparison to the user; e.g., adding short comparisons
of time, rating, etc. to ISABEL’s speech output as well as emoji descriptors on the screen
for visual communication. For additional technical details and results, see § 4.3.1.

• Help Messages: Help messages are used to guide users when they appear to be confused
about what they can do, or ISABEL cannot understand them. LLM-generated partial
utterances combined with a symbolic retrieval algorithm allow us to ensure diversity and
enthusiasm in our help responses.

I.1 Opening Encouragement

To inspire users to start tasks and generate enthusiasm to complete tasks, we use an LLM (gpt-3.5-
turbo) to generate motivational opening remarks for all tasks within a publicly available wikiHow
dataset from Koupaee and Wang (2018b). These remarks are tailored to stimulate user engagement.

We carefully selected the appropriate prompt for generating these lines. We experimented with
various prompts, using a sample of 100 tasks. Each generated line was then manually assessed based
on several criteria, including sentence length, incidence of offensive language, syntactic correctness,
readability, and motivational strength.

After a thorough examination, we settled on the following prompt to generate encouraging lines for
the public dataset: “You are a motivational AI assistant whose goal is to inspire and encourage users
to do the task steps in articles. Write an advertisement line so the users get excited to start the tasks
in one sentence. Do so in less than 15 words. Start with getting ready to, or something similar."
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Title Encouragement Lines

How to Clean a Book Keep your books clean and in top condition with expert
cleaning techniques!

How to Use YouTube Uploader Master the art of YouTube uploading and share your creativity
with the click of a button!

How to Avoid Car Sickness Say goodbye to car sickness and enjoy a comfortable journey
with these simple methods!

Table 14: Examples of opening encouragement lines.

Category Progress Progress Note
Cars &
Other Vehicles 10% Buckle up! You’ve just started cruising through

the steps. Keep that engine roaring!

Arts and Entertainment 30% Step by step, you’re turning the art of progress
into a masterpiece.

Computers and Electronics 50% You’re halfway there! Keep rockin’ those tech
steps and stay ahead of the game!

Education and Communications 70% Congratulations on your progress! You’re getting
closer to completing this educational journey.

Health 90% You’re almost there! Keep up the great work
and pat yourself on the back!

Table 15: Examples of progress notes.

Several examples of the lines generated through this process are presented in Table 14.

I.2 Progress Remarks

Our strategy for producing the Language Model (LM) generated progress notes consists of two
significant steps: task annotation and progress line generation for each category.

Firstly, we employ the GPT language model to categorize each article within the publicly accessible
wikiHow dataset into one of the 20 predefined categories. The distribution and categorization of
the dataset are illustrated in Figure 9. Once categorized, the annotated dataset is stored in S3 cloud
storage for future reference. The prompt used for this step is: "You are an AI assistant that categorizes
articles into groups given titles. Given the following article titles, use your language understanding
capabilities to categorize each into an appropriate topic. “

After annotating the dataset, we generated 30 unique progress lines for each category. Additionally,
we generated 30 progress lines without categorization information. These progress lines are further
divided into ten steps, each containing three lines. The resulting 630 progress lines are stored locally
within ISABEL for quick access. The prompt for generating these progress lines is: "You are a
motivational AI assistant walking a user through the steps of a task. Generate a witty progress line
that encourages the user and acknowledges their progress. Do so in less than 15 words. Don’t mention
the exact step numbers. Category: Current Step: Total number of Steps:"

Once a user starts a task with ISABEL, it attempts to find the corresponding title in the annotated
dataset to identify the task’s category. ISABEL then computes the user’s current progress and gets
three progress lines using the category information and the progress rate. Out of these three, it
chooses to present a line randomly. ISABEL only shows the progress lines based on a probability
that can be adjusted - currently set at 20%. A few examples of these progress lines are displayed in
table 15.

I.3 Displaying Search Options

As noted in the main text, we use LLMs to generate an engaging message to display search options
retrieved after a search. For example, when the user prompts ISABEL by asking “how to” do a
certain task. We show some examples of the messages we generate in Table 16. While most of the
structure and content of the message is generated by the LLM (discussed in Appendix I.4), some
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Figure 9: Distribution of annotated categories in wikiHow dataset.

important article information contained in this message is symbolically generated and presented in a
multimodal fashion, using the procedures discussed next.

Comparisons and Emojis When users are provided results for their search query, several good
candidates may match their query. However, some candidates may fit the user’s needs more than
others, and a list of results with task images does not always convey which candidates are most
appropriate. For instance, a recipe search on Whole Foods may yield three or more recipes entitled
Blueberry Muffins, and the best recipe for the user will depend on whether the user is most concerned
about health, other users’ opinions of the recipe, or the time the recipe takes to make. To provide the
user with more information, we use two tools across different modalities: comparison and emojis.
Incorporating both into ISABEL allows us to communicate more information to more users.

Comparison: When the user searches for a recipe, in addition to reading and displaying the top
three search results, ISABEL provides a one-line description detailing some differences between
the recipes. This description will vary based on a random selection between possible candidates,
which include the first, second, or third option is the highest rated and the first, second, or third
one is our overall pick. This keeps the descriptions short and prevents the ISABEL’s utterances
from becoming repetitive. Our comparison feature uses the speech modality for both headless and
multimodal devices.

Emojis: Though our comparison features provide some information, we restrict the amount of
information it offers to reduce the user’s cognitive load; there is only so much information the user
can listen to and retain in a single dialogue turn. However, the visual modality can be utilized to
convey additional information. By placing emojis and one-to-two-word natural language descriptions
underneath each search result, we provide the user with eye-catching details that distinguish the
different search results and are retained on the screen. An example of emojis displayed in the recipe
search results can be found in Figure 10.

I.4 Generation with Formal Grammar Rules

This section explores prompting techniques to seamlessly combine LLM-generated outputs with
the symbolic components of ISABEL. As noted in the main text, there are key lexical, semantic,
and structural constraints imposed on the LLM generation as a result. We highlight these important
constraints:

1. a symbolic algorithm will process the users’ next utterance, so clear communication of
possible “next steps” to the user and how to trigger these steps is important;
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Search Generated Message Examples

cookies

Let’s explore some delicious Whole Foods recipe options for your search on cookies!
Take a look at what I found: The top results are Nutella cookies, Linzer cookies, and
Spritz cookies. The third option looks like the best. Choose one to get started or summarize
it if you’re short on time.

Delicious recipes await you! Take a look at what I found on the Whole Foods marketplace
for your search on cookies: The top results are Nutella cookies, Linzer cookies, and Spritz
cookies. If you want the highest rated, check out the second option. Whether you want to
select an option, summarize it, or search for something else - the choice is yours!

cake recipes

Let’s spice things up in the kitchen with these tasty Whole Foods recipes! Here’s what
I found for your search on cake: The top results are Carrot Cake Coffee Cake, Louisa’s Cake,
and Hummingbird Cake. Other users have rated the first option pretty high, and the first
option has the fewest steps. Don’t forget to select an option, summarize it, or search for
something else.

Let’s explore some delicious Whole Foods recipe options for your search on cake! Take
a look at what I found: The top results are Carrot Cake Coffee Cake, Louisa’s Cake, and
Hummingbird Cake. . Choose one to get started or summarize it if you’re short on time.

how to fix a faucet

Let’s see what we’ve got! Here are some options I found on WikiHow for fix a faucet:
The top results are How to Fix a Leaky Faucet, How to Fix a Kitchen Faucet, and How
to Fix a Leaky Shower Faucet. You can select an option, summarize an option, or search
something else.

Are you ready to dive into the world of DIY? Check out what I found on WikiHow for
fix a faucet: The top results are How to Fix a Leaky Faucet, How to Fix a Kitchen Faucet,
and How to Fix a Leaky Shower Faucet. You can select an option, summarize an option,
or search something else.

how to make origami

These options seem like a blast! Check out what I found on WikiHow for origami:
The top results are How to Make Origami, How to Make an Origami Pig, and How
to Make an Origami Chair. You can select an option, summarize an option, or search
for something else.

Get ready to have some fun! Here’s what I found on WikiHow for origami: The
top results are How to Make Origami, How to Make an Origami Pig, and How to
Make an Origami Chair. You can select an option, summarize an option, or search
something else.

Table 16: Examples of generated messages that appear for different search queries. By using LLM-
generated candidates for several components of our message, and varying which candidates are
compared and how, we are able to make the bot more humanlike and stochastic while still ensuring it
presents the user with accurate information.

2. programmatic insertion of outputs from the system’s symbolic generation components must
be possible, e.g., retrieved articles and attribution in the case of displaying search results;

3. any necessary components of the generation (e.g., content attribution) should be present;

4. and, the user’s query cannot be provided to the (third-party) LLM to preserve user privacy.

As noted in the main text, we use formal grammars (Chomsky, 1956) to achieve the constraints
imposed on LLM generations (i.e., by the symbolic plans laid out by ISABEL’s generation modules).
For example, these constraints are needed when generating an engaging message to display retrieved
tasks after a search. A formal grammar is a model of language defined by the following components:

• Terminals a set which defines the base alphabet or vocabulary for the grammar – we modify
this slightly to increase stochasticity, asking the LLM to generate these itself;

• Variables which can take on different combinations from the terminal alphabet;
• Production Rules which describe how to go from the start symbol (a special variable) to

other variables, and then to the terminals, which in the end, should form a full utterance in
the grammar.

An example prompt that uses this grammatical structure is provided below. Interestingly, gpt-3.5-
turbo appears to have an understanding of how to construct utterances from grammar rules and our
prompting strategy is able to exploit this.
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Example Prompt: (temp: 1, top p: 0.9, freq penalty: 0.25)

I am going to describe a formal grammar and then ask you to generate text according
to this grammar. To promote more diverse derivations from the grammar, we will
modify the usual definition so that terminals can be stochastic. To achieve this
behavior, a similarity symbol "∼" will mean you should self-prompt, so you are
supposed to generate the terminal value on your own according to the provided
prompt. For more traditional, deterministic terminal assignments in the grammar,
we will use the equality "=" symbol. These terminals should be copied exactly.

The set of stochastic terminals is below. Remember, you should generate these
according to the self-prompt:

• fun_message ∼ generate something exciting to hype a user up before they
start working on a DIY task. For example, "Are you ready to get started"
or "These options seem fun!" or "This looks like it will be a blast!"

• search_results ∼ generate a message to display WikiHow article options
that were found on WikiHow. Make sure to attribute WikiHow and use the
placeholder "___input_search___" and "__list_options__" to indicate what
was searched and what was found, respectively. For example, "Here’s what I
found on the WikiHow for ___input_search___: __list_options__." Copy both
placeholders verbatim.

The set of deterministic terminals is below. Recall, these should be copied
exactly as written here:

• instructions = "You can select an option summarize an option or search
something else."

The set of variables are:

• FUN_SEARCH
• INSTRUCT

The start symbol is:

• START

The set of production rules are:

• START -> FUN_SEARCH __instructions__
• FUN_SEARCH -> fun_message search_results
• FUN_SEARCH -> search_results fun_message

An example derivation is given below:

Mmm, these recipes look delicious! Here’s what I found on the Whole Foods
marketplace for __search__: __list_options__. You can select an option summarize
an option or search for something else.

Generate 10 diverse and fun examples according to this grammar. Respond
differently to the self-prompts each time. Use all the rules with equal likelihood.
Example Output:

• Are you ready for some DIY fun? Here’s what I found on WikiHow for
__input_search__: __list_options__. You can select an option, summarize
an option, or search for something else.

• Oh boy, this is going to be exciting! I found some awesome ideas on
WikiHow for __input_search__: __list_options__. You can select an option,
summarize an option, or search for something else.

• These options seem like a blast! Check out what I found on WikiHow for
__input_search__: __list_options__. You can select an option, summarize
an option, or search for something else.

• Get ready to unleash your creativity! Check out these ideas I found on
WikiHow for __input_search__: __list_options__. You can select an option,
summarize an option, or search for something else.
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• Let’s see what we’ve got! Here are some options I found on WikiHow for
__input_search__: __list_options__. You can select an option, summarize
an option, or search for something else.

I.5 Help Messages

Help messages guide the users when they are lost. This means that they require context awareness,
where we need to let the user know what actions they can perform based on the current state of the
conversation. In order to do that we employ a set of grammatical rules and templates. They are based
on the current state and the responder that is shown to the user.

Similar to the above section, we generate help messages based on formal grammatical rules. For
help messages, rather than supplying rules within the prompt to an LLM like gpt-3.5-turbo, we
instead use human effort to design the grammar’s production rules and variables, automating only the
generation of terminals (i.e., using gpt-3.5-turbo with some human supervision). The randomly
generated terminals can then be combined using simple deterministic algorithms.

For example, one grammatical rule for generating help messages is the following:

start→ confused + eurekaIntj + info + whatWantDoQ

where ‘+’ denotes concatenation and all other terms are variables. gpt-3.5-turbo can then generate
multiple terminals that map directly to each variable with human supervision; e.g.,

confused → Hmm, it looks like we need some help getting started.
confused → You don’t know what to do, right?
confused → I’m having trouble understanding you.
. . .

After randomly generating terminals, we can execute rules with a simple deterministic algorithm. So,
a full help message corresponding to the rule from before could look like:

Hmm, it looks like we need some help getting started. Aha! You can ask me to
help you make a recipe or do a DIY task. What would you like to do today?

A high degree of stochasticity comes from having gpt-3.5-turbo generate multiple potential
terminal values for each variable, making the help messages appear more human-like.

J Details on User Requests from Taskbot

From analysis of the user interaction data, apart from a task-related question the users have come to
our bot with the following intents:

• Perform a task unsupported by the Taskbot: For Example- playing music or performing
general functions that Alexa can do.

• Have a General Conversation: For Example- trying to chit-chat and have a conversation
with the bot, is more suitable for a social bot, etc.

• Need help with what to cook: For Example- deciding on what to cook, needing recommen-
dations for recipes, etc.

• Need help with what task to do: For Example- deciding on what DIY task to do, needing
recommendations based on the season, etc.

• Talk about different entities: For Example- talking about their pets, different animals, etc.
• Express their feelings: For Example- talking about how they are feeling, needing emotional

comfort, etc.
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Figure 10: The visual interface for our Whole Foods query results.

K Interface Design

K.1 Query Results Page

A screenshot of our query results page can be found in Figure 10. This page is displayed when the
user has given a search query and ISABEL has found valid search results to display to the user as
a list of options. The user can scroll through the options, and clicking on a recipe will give them
more details about that recipe. We provide a dynamic, scrollable list of filter buttons directly above
the search results, which users can click to filter their results based on specific attributes. We also
use emojis to give the users a short, eye-catching summary of some important details of the recipe,
including the rating, number of steps, and required cooking time.

K.2 Task Detail pages

Task Overview Page Upon clicking a task, the user may need more information about the task
before they view the steps. For recipe tasks, the user must know the task ingredients. For tasks with
multiple methods and parts (which each contain multiple steps), the user may only wish to browse
the steps for a particular method or part. As such, we provide a task overview page that is displayed
when the user starts the task, where basic information about the task is displayed and users can view
the ingredients and navigate to the steps (recipes) or view a task-specific video and choose the method
they would like to start with (how-to tasks) Screenshots of the overview pages for recipe and how-to
tasks can be found in Figure 12.

Scrollable Steps Page Accommodating large amounts of information in an easily digestible and
navigable format is vital for accessibility and user-friendliness. To achieve this, we’ve implemented
’Scrollable Features’ in our system. Areas such as ingredients, materials, methods/parts, and steps,
which may involve extensive lists, are scrollable. Such scrollable lists can be found in the task
overview pages (Figure 12) as well as in separate scrollable lists of steps (Figure 12).

Detail Page The ’Detail Page’ is one of the critical components, offering users an expanded view
of each task step. From the ’All Steps’ page, users can select an individual step, which then opens the
corresponding Detail Page. Here, they can access in-depth instructions and additional information
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Figure 11: The task overview pages for recipes (left) and how-to tasks (right).

about the step (when provided in the recipe metadata) including an image depicting the step and the
ingredients needed for that step. Figure 13 contains a screenshot of a detail page for a recipe task.

Figure 12: The scrollable list of recipe steps.
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Figure 13: The detail page for recipe steps.
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