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Abstract

Multiple hypothesis testing, a situation when we
wish to consider many hypotheses, is a core prob-
lem in statistical inference that arises in almost
every scientific field. In this setting, controlling
the false discovery rate (FDR), which is the ex-
pected proportion of type I error, is an important
challenge for making meaningful inferences. In
this paper, we consider a setting where an ordered
(possibly infinite) sequence of hypotheses arrives
in a stream, and for each hypothesis we observe a
p-value along with a set of features specific to that
hypothesis. The decision whether or not to reject
the current hypothesis must be made immediately
at each timestep, before the next hypothesis is
observed. This model provides a general way of
leveraging the side (contextual) information in the
data to help maximize the number of discoveries
while controlling the FDR.
We propose a new class of powerful online test-
ing procedures, where the rejection thresholds are
learned sequentially by incorporating contextual
information and previous results. We prove that
any rule in this class controls online FDR under
some standard assumptions. We then focus on
a subclass of these procedures, based on weight-
ing the rejection thresholds, to derive a practical
algorithm that learns a parametric weight func-
tion in an online fashion to gain more discov-
eries. We also theoretically prove that our pro-
posed procedures, under some easily verifiable
assumptions, would lead to an increase of statisti-
cal power over a popular online testing procedure
proposed by (Javanmard and Montanari, 2018).
Finally, we demonstrate the superior performance
of our procedure, by comparing it to state-of-the-
art online multiple testing procedures, on both
synthetic data and real data generated from differ-
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ent applications.

1 Introduction

Multiple hypotheses testing - controlling overall error rates
when performing multiple hypothesis tests - is a well-
established area in statistics with applications in a variety
of scientific disciplines (Dudoit and van der Laan, 2007;
Dickhaus, 2014; Roquain, 2011). This problem has become
even more important with modern data science, where stan-
dard data pipelines involve performing a large number of
hypotheses tests on complex datasets, e.g., does this change
to my webpage improve my click-through rate, or is this
gene mutation associated with certain trait?

Typically, each hypothesis is summarized to one p-value,
and is rejected (or claimed as a non-null) if the p-value is
below some significance level. The rejected hypotheses are
called discoveries, and those that were true nulls but mistak-
enly rejected are called false discoveries. The false discov-
ery rate (FDR) namely, the expected fraction of discoveries
that are false positives is the criterion of choice for statistical
inference in multiple hypothesis testing problems. The tra-
ditional multiple testing research has focused on the offline
setting, where we have an entire batch of hypotheses and
the corresponding p-values, and (Benjamini and Hochberg,
1995) developed a standard procedure (called BH procedure)
to control FDR below a preassigned level. However, the fact
that offline FDR control techniques require aggregating p-
values from all the tests and processing them jointly, makes
it impossible to utilize them for a number of applications
which are best modeled as an online hypothesis testing prob-
lem (Foster and Stine, 2008) (a formal definition will be
provided later). In this scenario, we assume that an infinite
sequence of hypotheses arrive sequentially in a stream, and
decisions are made only based on previous decisions before
next hypothesis arrives, without access to the number of
hypotheses in the stream or future p-values. For example, in
marketing research a sequence of A/B tests can be carried
out in an online fashion, or in a pharmaceutical drug test a
sequence of clinical trials are conducted over time, or with
publicly available datasets where new hypotheses are tested
in an on-going fashion by different researchers.

Foster and Stine (2008) designed the first online alpha-
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investing procedures that use and earn alpha-wealth to con-
trol a modified variant of FDR (referred to as mFDR), which
was later extended to a class of generalized alpha-investing
(GAI) rules by (Aharoni and Rosset, 2014). Javanmard and
Montanari (2015, 2018) showed that a monotone class of
GAI rules can control online FDR as opposed to the modi-
fied FDR controlled in (Foster and Stine, 2008; Aharoni and
Rosset, 2014). Within this class, of a special note is a proce-
dure called LORD that performs consistently well in practice.
Ramdas et al. (2017b) modified the GAI class (referred as to
GAI++) to improve its statistical power (uniformly) while
still controlling FDR, and the improved LORD++ method
arguably represents the current state-of-the-art in the area.
Very recently, (Ramdas et al., 2018) empirically demon-
strated that using adaptiveness, some further improvements
in the power over LORD++ can be obtained. In this paper,
we mostly focus on GAI/GAI++ class, but certain results
also carry over to the SAFFRON procedure.

All above online testing procedures take p-values as input
and make decisions based on previous outcomes. How-
ever, these procedures ignore additional information that is
often available in modern applications. In addition to the
p-value Pi, each hypothesis Hi could also have a feature
vector Xi ∈ X ⊆ Rd, which encodes contextual1 informa-
tion related to the tested hypothesis. The feature vector
Xi only carries indirect information about the likelihood
of the hypothesis Hi to be false but the relationship is not
fully known ahead of time. For example, when conducting
an A/B test for a logo size change in a website, contextual
information such as text, layouts, images and colors in this
specific page can be useful in making a more informative
decision. Similarly another example arises when testing
whether a mutation is correlated with the trait, here contex-
tual information about both the mutation and the trait such
as its location, epigenetic status, etc., could provide valuable
information that can increase the power of these tests.

The problem of using side information in testing has been
considered in offline setting (Ignatiadis et al., 2016; Gen-
ovese et al., 2006; Li and Barber, 2016; Ramdas et al.,
2017a; Xia et al., 2017; Lei and Fithian, 2018). We re-
view some relevant prior work in offline setting in detail
in Appendix A. In this paper we focus on the more natural
online setting, where p-values and contextual features are
not available at the onset, and a decision about a hypothesis
should be made when it is presented. To the best of our
knowledge, this generalization of the online testing problem
has not been considered before. Our main contributions in
this paper are as follows.

(1) Incorporating Contextual Information. We propose a
new broad class of powerful online testing rules, referred
to as contextual generalized alpha-investing (CGAI) rules,
which incorporates the available contextual features in the
testing process. We also prove that any monotone rule

1Also sometimes referred to as prior or side information.

from this class can control online FDR under some stan-
dard assumptions. Formally, we assume each hypothesis
H is characterized by a tuple (P,X) where P ∈ (0,1) is
the p-value, and X is the contextual feature vector from
some generic space X ⊆ Rd. We consider a sequence
of hypotheses (H1,H2, . . . ) that arrive sequentially in a
stream at each timestep t = 1,2, . . . , with corresponding
((P1,X1), (P2,X2), . . . ). Our testing rule generates a se-
quence of significance levels (α1, α2, . . . ) at each time
based on previous decisions and contextual information
seen so far. The test for each hypothesis Ht takes the form
1{Pt ≤ αt}. Under the independence of p-values, and mu-
tual independence between the p-values and the contextual
features for null hypotheses, we show that any monotone
rule from this class controls FDR below a preassigned level
at any time. We also show that a variant of FDR (mFDR)
can be controlled under a weaker assumption on p-values.

(2) Context Weighting. We focus on a subclass of CGAI rules,
referred to as context-weighted generalized alpha-investing
(CwGAI) rules, for designing a practical online FDR con-
trol procedure. In particular, we take a parametric function
ω(; θ) with parameters θ, and at time t use ω(Xt; θ) as a
weight on αt generated through GAI rules, with the intu-
ition that larger weights should reflect an increased willing-
ness to reject the null. Since the parameter set θ is unknown,
a natural idea here will be to learn it in an online fashion to
maximize the number of empirical discoveries. This gives
rise to a new class of online testing rules that incorporates
the context weights through a learnt parametric function.

(3) Statistical Power Analysis. We then look into the effect
of context weighting in discovering true positives. Consid-
ering a general model of random weighting, and under the
assumption that weights are positively associated with false
null hypotheses, we derive a natural sufficient condition
under which the weighting improves the power in an online
setting, while still controlling FDR. In addition, we also
discuss techniques for verifying this power improvement
condition in practice. This is the first result that demon-
strates the benefits of appropriate weighting in the online
setting. Prior to this such results were only known in the
offline setting (Genovese et al., 2006).

(4) A Practical Procedure. To design a practical online FDR
control procedure with good performance, we model the
context weight using a parametric function ω(; θ) of a neu-
ral network (multilayer perceptron), and train it in an online
fashion to maximize the number of empirical discoveries.
Our experiments on synthetic and real datasets show that
our procedure makes substantially more correct decisions
compared to state-of-the-art online testing procedures.

2 Related Online FDR Control Rules

We start with a review of online multiple testing model
which was first introduced by (Foster and Stine, 2008).
Considering a setting where an ordered (possibly infinite)
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sequence of hypotheses arriving in a stream, denoted by
H = (H1,H2,H3, . . . ), we have to decide at each timestep
t whether to reject Ht having only access to previous de-
cisions. Ht ∈ {0,1} indicates if tth hypothesis is a true
null (Ht = 0) or alternative (Ht = 1). Each hypothesis is
associated with a p-value Pt. The results in this paper do
not depend on the actual test used for generating the p-value.
By definition of a valid p-value, if the hypothesis Ht is truly
null, then the corresponding p-value (Pt) is stochastically
larger than the uniform distribution, i.e.,

Pr[Pt ≤ u] ≤ u, for all u ∈ [0,1]. (1)

The marginal distribution of the p-values under alternative
(non-null) hypotheses can be arbitrary. The only require-
ment is that they should be stochastically smaller than the
uniform distribution, which means they carry signal that
can differentiate them from nulls. Let H0 = {t ∶ Ht = 0}
(H1 = {t ∶Ht = 1}) index the true (false) null hypotheses.

An online multiple testing procedure is defined as a decision
rule which provides a sequence of significance levels {αt}
and makes the corresponding decisions:

Rt ∶= 1{Pt ≤ αt} =
⎧⎪⎪⎨⎪⎪⎩

1 Pt ≤ αt ⇒ reject Ht,

0 otherwise ⇒ accept Ht.
(2)

A rejection of the null hypothesis Ht indicated by the event
Rt = 1 is also referred to as a discovery. Let us define the
false discovery rate (FDR), and true discovery rate (TDR)
formally in the online setting. For any time T , denote the
first T hypotheses in the stream byH(T ) = (H1, . . . ,HT ).
Let R(T ) = ∑Tt=1Rt be the total number of discoveries
(rejections) made by the online testing procedure till time T ,
and let V (T ) = ∑t∈H0 Rt be the number of false discoveries.
Then the online false discovery proportion and rate till time
T are defined as:

FDP(T ) ∶= V (T )
R(T ) ∨ 1

, FDR(T ) ∶= E[FDP(T )],

where R(T ) ∨ 1 = max{R(T ),1}. The expectation is over
the underlying randomness. Similarly, let S(T ) = ∑t∈H1 Rt
be the number of true discoveries and let N1(T ) be the
number of true non-nulls till time T . Then online true
discovery proportion and rate till time T are defined as:

TDP(T ) ∶= S(T )
N1(T ) ∨ 1

, TDR(T ) ∶= E[TDP(T )].

The true discovery rate is also referred to as power. In
online hypothesis testing, our goal is to design a sequence
of significance levels (αt)t∈N such that we can control the
online FDR at a desired level α at any time T ∈ N, i.e.,

sup
T

FDR(T ) ≤ α.

Note that none of these above four metrics can be computed
without the underlying true labels (ground truth). A variant

of FDR studied in early online testing works (Foster and
Stine, 2008) is the marginal FDR, defined as: mFDR(T )η =
E[V (T )]

E[R(T )]+η
, with a special case of mFDR(T ) = E[V (T )]

E[R(T )]+1

when η = 1. Note that the gap between FDR and mFDR
can be very significant, and controlling mFDR does not
ensure controlling FDR at a similar level (Javanmard and
Montanari, 2018). We will also provide a guarantee on
mFDR control in a contextual setting under some weaker
assumptions on p-values.

Generalized Alpha-Investing Rules. Foster and Stine
(2008) proposed the first class of online multiple testing
rules (referred to as alpha-investing rules) to control mFDR,
which was extended by (Aharoni and Rosset, 2014) to gen-
eralized alpha-investing (GAI) rules. The GAI rules covers
most of the online testing rules in the current literature.

Any rule of GAI class generates the significance level αt
at time t based on past decisions of the rule till time t −
1: αt = αt(R1, . . . ,Rt−1). This means that αt does not
directly depend on the observed p-values but only on past
decisions. Let F t = σ(R1, . . . ,Rt) be the sigma-field of
decisions till time t. In GAI rules, we require that αt ∈ F t−1.

Specifically, it begins with a wealth of W (0) > 0, which is
under the desired control level, and keeps track of the avail-
able wealth W (t) after t steps. At each time t, an amount
of φt, which is the penalty of testing the tth hypothesis at
level αt, will be deducted from the remaining wealth. If the
tth hypothesis is rejected, i.e., Rt = 1, then an extra wealth
of amount ψt is rewarded to the current wealth. This can be
explicitly stated as:

W (0) = w0, 0 < w0 < α (3)
W (t) =W (t − 1) − φt +Rt ⋅ ψt, (4)

where w0 and the nonnegative sequences αt, φt, ψt ∈ F t−1
are user-defined. The wealth W (t) is required to be always
non-negative, and thus φt ≤ W (t − 1). Once the wealth
ever equals zero, the procedure is not allowed to make any
further rejections since it has to set αt = 0 from then on.
An additional restriction is needed for the goal to control
FDR, in that the reward ψt has to be bounded whenever a
rejection takes place. Formally, the constraints are:

φt ≤W (t − 1), (5)

ψt ≤ min{φt + bt,
φt
αt

+ bt − 1}. (6)

Javanmard and Montanari (2015, 2018) defined bt as a user-
chosen constant b0 = α−w0 and proved the FDR control for
monotone GAI rules under independence of p-values. The
monotonicity of a rule is defined as:

If R̃i ≤ Ri for all i ≤ t − 1, then

αt(R̃1, . . . , R̃t−1) ≤ αt(R1, . . . ,Rt−1). (7)
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Recently, (Ramdas et al., 2017b) demonstrated that setting
bt = α−w01{ρ1 > t−1} could potentially lead to larger sta-
tistical power. Here, ρk defined as ρk ∶= mini∈N {∑it=1Rt =
k}, is the time of kth rejection. Ramdas et al. (2017b) refer
to this class of rules as GAI++ rules. Unless otherwise spec-
ified, we use this bt (from GAI++) throughout this paper.

Level based On Recent Discovery (LORD) Rules. One
popular subclass of GAI rules (proposed by (Javanmard and
Montanari, 2015, 2018)) that is LORD, where significance
level αt is a function based only on most recent discovery
time. Formally, we choose any sequence of non-increasing
nonnegative constants γ = (γt)∞t=1 with∑∞t=1 γt = 1. At each
time t, let τt be the last time a discovery was made before
t, i.e., τt ∶= max{i ∈ {1, . . . , t − 1} ∶ Ri = 1}, with τt = 0
for all t before the first discovery. The LORD (Javanmard
and Montanari, 2015, 2018) rule defines αt, φt, ψt in the
following generalized alpha-investing fashion.

LORD: W (0) = w0,

φt = αt =
⎧⎪⎪⎨⎪⎪⎩

γtw0 if t ≤ ρ1
γt−τtb0 if t > ρ1,

ψt = b0 = α −w0.

Javanmard and Montanari (2018) defined three versions of
LORD that slightly vary in how they set the significance
levels. In this paper, we stick to one version (though much of
the discussion in this paper also holds for the other versions),
and we set b0 = w0 = α/2, in which case, the above rule
could be simplified as φt = αt = γt−τtb0. As with any GAI
rule, (Ramdas et al., 2017b) defined LORD++ by replacing
b0 with bt = α −w01{ρ1 > t − 1} and showed it achieves a
power increase while still controls online FDR at same level
α. We describe LORD and LORD++ in little more detail
in Appendix B. Note that both LORD and LORD++ rules
satisfy the monotonicity condition from (7).

SAFFRON Procedure. This is a very recently proposed
online FDR control procedure by (Ramdas et al., 2018).
The main difference between SAFFRON (Serial estimate
of the Alpha Fraction that is Futilely Rationed On true Null
hypotheses) and the previously discussed LORD/LORD++
procedures comes in that SAFFRON is an adaptive method,
based on adaptively estimating the proportion of true nulls.
SAFFRON can be viewed as an online extension of Storey’s
adaptive version of BH procedure from the offline setting.
SAFFRON does not belong to the GAI class. See Ap-
pendix G for more details about SAFFRON, where we also
extend the FDR control results of SAFFRON from (Ramdas
et al., 2018) to a weighted version. Our experiments with
SAFFRON that suggests that contextual information could
potentially help here too.

3 Contextual Online FDR Control

While these online FDR procedures are widely used, a major
shortcoming of them is that they ignore additional informa-

tion that is often available during testing. Each hypothesis,
in addition to the p-value, could have a feature vector which
encodes contextual information related to the tested hy-
pothesis. For example, in genetic association studies, each
hypothesis tests the correlation between a variant and the
trait. We have contextual features for each variant (e.g.,
its location, conservation, epigenetics, etc.) which could
inform how likely the variant is to have a true association.
Missing details from section are collected in Appendix C.

To deal with such situations, we now assume that a p-value
Pt ∈ (0,1) and a vector of contextual features Xt ∈ X ⊆ Rd
are observed for each hypothesis Ht. At each step t, we
have to decide whether to reject Ht having access to previ-
ous decisions and contextual information seen so far. The
overall goal is to control online FDR under a given level α
at any time, and improve the number of correct discoveries
by using the contextual information. Under the alterna-
tive, we denote the density (PDF) of p-values as f1(p ∣X)
(depending on the feature vector X ∈ X ) and the corre-
sponding cumulative distribution (CDF) as F1(p ∣X). Here
f1(p ∣X) can be any arbitrary unknown function, as long as
the p-values are stochastically smaller than those under the
null. Note that f1(p ∣ X) is not identifiable from the data
as we never observe Ht’s directly. This can be illustrated
through a simple example described in Appendix C.

Definition 1 (Contextual Online FDR Control). Given a
(possibly infinite) sequence of (Pt,Xt)’s (t ∈ N) where
Pt ∈ (0,1) and Xt ∈ X , generate a significance levels α′ts
as a function of prior decisions and contextual features αt =
αt(R1, . . . ,Rt−1,X1, . . . ,Xt), and a corresponding set of
decisions Rt = 1{Pt ≤ αt(R1, . . . ,Rt−1,X1, . . . ,Xt)}
such that supT FDR(T ) ≤ α.

We now define a contextual extension of GAI rules, that we
refer to as Contextual Generalized Alpha-Investing (con-
textual GAI or CGAI) rules. In the presence of contextual
information, we consider the sigma-field of decisions till
time t as F t = σ(R1, . . . ,Rt), and the sigma-field of fea-
tures till time t as Gt = σ(X1, . . . ,Xt).

Definition 2 (Contextual GAI Rule). A contextual GAI rule
is defined through three functions, αt, φt, ψt ∈ σ(F t−1∪Gt),
that are all computable at time t, with the GAI condi-
tions (3), (4), (5), (6) satisfied.

We set bt = α −w01{ρ1 > t − 1} as proposed by (Ramdas
et al., 2017b). Similar to that in GAI rules (7), we define
monotonicity property for contextual GAI rules as follows:

Monotoncity: If R̃i ≤ Ri for all i ≤ t − 1, then

αt(R̃1, .., R̃t−1,X1, ..,Xt) ≤ αt(R1, ..,Rt−1,X1, ..,Xt),
for any fixed Xt = (X1, ..,Xt). (8)

A contextual GAI rule satisfying the monotonicity condition
is referred to as monotone contextual GAI.

The following theorem establishes the FDR control for
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any monotone contextual GAI rule under an independence
assumption between p-values and between p-values and
contextual features for the null hypotheses. As mentioned
above, the p-values (Pt) could be arbitrary related to the con-
textual features (Xt) under the alternative (when Ht = 1).
These assumptions are standard in multiple testing literature
(see, e.g., (Ramdas et al., 2017b; Javanmard and Montanari,
2018; Xia et al., 2017) among others).2 The proof is based
on a leave-one-out technique, a variant of which was also
used by (Ramdas et al., 2017b) (and also by (Javanmard and
Montanari, 2018)) in their analyses. The main distinction
for us comes in that we consider the sigma-field at each time
t as σ(F t−1 ∪ Gt) including the information of contextual
features till time t, instead of just F t−1.
Theorem 1 (FDR Control). Consider a sequence of
((Pt,Xt))t∈N of p-values and contextual features. If the
p-values Pt’s are independent, and additionally Pt are in-
dependent of all (Xt)t∈N under the null (whenever Ht =
0), then for any monotone contextual generalized alpha-
investing rule (satisfying conditions (3), (4), (5), (6), (8)),
we have online FDR control, supT ∈N FDR(T ) ≤ α.
Turning to mFDR, we can also prove a guarantee for mFDR
control under a weaker condition than that in Theorem 1 by
relaxing the independence assumptions to a weaker condi-
tional super-uniformity assumption.

Conditional super-uniformity: If Ht = 0, then

Pr[Pt ≤ αt ∣ σ(F t−1 ∪ Gt)] ≤ αt. (9)

By definition of the marginal super-uniformity of p-values
under the null (1), means that for independent p-values the
conditional super-uniformity in (9) holds. So the assumption
(9) is indeed weaker than the Theorem 1 assumptions. Our
next theorem proves mFDR control for any contextual GAI
rule (not necessarily monotone) under this weaker condition.

Theorem 2 (mFDR Control). Consider a sequence of
((Pt,Xt))t∈N of p-values and contextual features. If the p-
values Pt’s are conditionally super-uniform distributed (as
in (9)), then for any contextual generalized alpha-investing
rule (satisfying conditions (3), (4), (5), (6)), we have online
mFDR control, supT ∈N mFDR(T ) ≤ α.
Remark 1. For arbitrary dependent p-values and contex-
tual features, the FDR control can be obtained by using a
modified LORD rule defined in (Javanmard and Montanari,
2018), under a special case where the contextual features
are transformed into weights satisfying certain conditions.
See Proposition 2 (Appendix E) for a formal statement.

4 Context-weighted GAI Rules

The contextual GAI rules form a very general class of online
multiple testing rules. In this section, we focus on a subclass
2Note that a standard assumption in hypothesis testing is that the
p-values under the null are uniformly distributed in (0,1), which
does not depend on the contextual features. That means the
mutual independence of p-values and contextual features is valid.

of these rules, which we refer to as Context-weighted Gener-
alized Alpha-Investing (context-weighted GAI or CwGAI)
rules. Specifically, it considers αt to be a product of two
functions with the first one of previous decisions and second
one based on the current contextual feature,

αt(R1, . . . ,Rt−1,X1, . . . ,Xt)
∶= αt(R1, . . . ,Rt−1) ⋅ ω(Xt; θ), (10)

where ω(Xt; θ) is a parametric weight function with pa-
rameters θ ∈ Θ. Since CwGAI is a subclass of CGAI
rules, the above FDR and mFDR control theorems from
previous section are valid for this class too. Applying this
idea of context-weighting to LORD++ (resp. LORD) give
rise to a new class of testing procedure that we refer to as
CwLORD++ (resp. CwLORD) (defined in Appendix D).

Our reasons for considering this subclass include: (a) We
obtain a simpler form of αt by separating the contextual
features from that of previous outcomes, making it easier
to design functions that satisfy the monotonicity require-
ment of the GAI rules. (b) It is convenient to model the
weight function by any parametric function, and (c) we
can learn the parameters of the weight function empirically
by maximizing the number of discoveries. This forms the
basis of a practical algorithm for contextual online FDR
control that we describe in Section 6. Note that the GAI
rules are context-weighted GAI rules when the weight func-
tion equals 1. We illustrate the relationship among various
classes of testing rules in Figure 3 of Appendix D.

The idea of weighting p-values using prior information has
been widely studied in offline multiple testing setup (Gen-
ovese et al., 2006; Ignatiadis et al., 2016; Li and Barber,
2016; Lei and Fithian, 2018; Xia et al., 2017; Ramdas et al.,
2017a). In many applications, contextual information can
provide some prior knowledge about the true underlying
state at current time, which may be incorporated in by a
weight ωt = ω(Xt; θ). Intuitively, the weights indicate the
strength of a prior belief whether the underlying hypothesis
is null or not. A larger weight ωt > 1 provides more belief
of a hypothesis being an alternative which makes the proce-
dure to reject it more aggressively, while a smaller weight
ωt < 1 indicates a higher likelihood of a true null which
makes the procedure reject it more conservatively.

Weighting in Online vs. Offline Setting with FDR Con-
trol. In the offline setting, prior weights are usually rescaled
to have unit mean, and then existing offline FDR control
algorithm is applied to the weighted p-values Pi/ωi instead
of Pi (Genovese et al., 2006). However, in the online setting,
the weights are computed at each timestep without knowing
the total number of hypothesis or contextual information,
thus cannot be rescaled to have unit mean in advance. In-
stead, as presented in (10), we consider weighting the sig-
nificance levels αt’s, as was also considered by (Ramdas
et al., 2017a). Note that weighting p-values is equivalent
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to weighting significance levels in terms of decision rules
conditioning on the same significance levels, i.e., given the
same αt’s, we have {Pt/ωt ≤ αt} ≡ {Pt ≤ αtωt} for all t.
The subtle difference is that when αt’s are weighted, the
penalty φt’s and rewards ψt’s are also adjusted according to
the GAI constraints. For example, as dictated by (6), if we
overstate our prior belief in the hypothesis being alternative
by assigning a large ωt > 1, the penalty will need to be more
or the reward will need to be less.

5 Power of Weighted Online Rules

In this section, we answer the question whether weighting
helps in an online setting in terms of increased power. We
answer this question in affirmative, in the context of the pop-
ular LORD procedure of (Javanmard and Montanari, 2018).
The benefits of weighting in the offline setting, in terms
of increased power was first studied by (Genovese et al.,
2006), who showed that a weighted BH procedure improves
the power over the corresponding unweighted procedure
if weighting is informative, which roughly means that the
weights are positively associated with the non-nulls. Miss-
ing details from this section are collected in Appendix E.

We consider a mixture model where each null hypothesis
is false with a fixed probability π1, and the p-values are all
independent. While the mixture model is idealized, it does
offer a natural ground for comparing the power of various
testing procedures (Genovese et al., 2006; Javanmard and
Montanari, 2018). The rest of the discussion in this section
will be with respect to this mixture model.

Mixture Model. For any t ∈ N, let

H1, . . . ,Ht
i.i.d.∼ Bernoulli(π1),

Xt ∣Ht = 0 ∼ L0(X), Xt ∣Ht = 1 ∼ L1(X),
Pt ∣Ht = 0,Xt ∼ Uniform(0,1),
Pt ∣Ht = 1,Xt ∼ F1(p ∣Xt).

where 0 < π1 < 1 and where L0(X), L1(X) are two prob-
ability distribution on the contextual feature space X . Let
F = ∫ F1(p ∣ X)dL1(X) be the marginal distribution of
p-value under alternative. Marginally, the p-values are i.i.d.
from the CDFG(a) = (1−π1)U(a)+π1F (a), where U(a)
is the CDF of Uniform(0,1). We do not require that the con-
textual features Xt’s be independent, but only that they
be identically distributed as L0(X) (under null) or L1(X)
(under alternative).

General Weighting Scheme. We consider the general
weighting as in (Genovese et al., 2006) where weight is a
random variable and conditionally independent of Pt given
Ht. We assume that weight ωt has different marginal distri-
butions under null and alternative,

ωt ∣Ht = 0 ∼ Q0, ωt ∣Ht = 1 ∼ Q1, (11)

with Q0,Q1 unknown continuous distributions on (0,∞).
Under the mixture setup,

ωt
i.i.d.∼ (1 − π1)Q0 + π1Q1, (12)

with Pt and ωt being conditionally independent given Ht

for all t = 1 . . . ,∞.

Contextual Weighting Scheme. This framework of
weighting in (11) is very general. For example, it includes as
a special case, the following contextual weighting scheme,
where we assume that there exists a weight function of con-
textual features ω ∶ X × Θ → R, and the distributions of
weights are defined as:

ωt ∣Ht = 0 ∼ ω(X; θ), with X ∼ L0(X),
ωt ∣Ht = 1 ∼ ω(X; θ), with X ∼ L1(X). (13)

Now Q0 and Q1 are defined as the distributions of ω(X; θ)
under the null and alternative, respectively. Given Q0 and
Q1, the weight ωt is sampled as in (12).3 Note that while
the distributions Q0 and Q1 for weights are defined through
Xt’s distribution, the weight ωt is sampled i.i.d. from the
mixture model (1−π1)Q0+π1Q1, regardless of the value of
Xt. Note that the independence assumption on p-values can
still be satisfied even when the X ′

ts are dependent.4 Since
this contextual weighting scheme is just a special case of
the above general weighting scheme, in the remainder of
this section, we work with the general weighting scheme.

Informativeness. Under (11), the marginal distribution of
ω is Q = (1 − π1)Q0 + π1Q1. For j = 0,1, let uj = E[ω ∣
Ht = j] be the means ofQ0 andQ1 respectively. We assume
that the weighting is informative, based on the following
definition from (Genovese et al., 2006) in the offline setting,

u0 < 1, u1 > 1, u = E[ω] = (1 − π1)u0 + π1u1 = 1. (14)

Remark 1. Informative-weighting places a natural condi-
tion on the weights. Roughly it means that the weight should
be positively associated to true alternatives (or the weight
under alternative is more likely to be larger than that under
the null). The marginal mean of weight E[ω] is not neces-
sary to be one. But for the theoretical power comparison of
different procedures, it is convenient to scale the weight to
have unit mean so that we can use the p-value reweighting
akin to the offline setting. For empirical experiments, we
will use an instantiation of CwLORD++ (see Section 6),
that does not require the weight to have mean one.

Comparison of Power. In order to compare different proce-
dures, it is important to estimate their statistical power. Here

3In case ,Xt
i.i.d.∼ (1−π1)L0+π1L1, then one can define ωt directly

as ωt = ω(Xt; θ) with Q0 and Q1 defined as the distributions of
ω(Xt; θ) under the null and alternative, respectively.

4In practice it is common that the contextual features are dependent
(e.g., same genes or genetic variants may be tested in multiple
independent experiments at different time), but as long as the tests
are carried out independently the p-values are still independent.
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we establish sufficient conditions under which a weighting
could lead to a power increase for LORD. We work with (a
version of) the popular LORD procedure from (Javanmard
and Montanari, 2018), which sets

W (0) = w0 = b0 = α/2, φt = αt = b0γt−τt , ψt = b0. (15)

As shown by (Javanmard and Montanari, 2018), the power
of LORD, under the mixture model, almost surely equals5

lim inf
T→∞

TDP(T ) = (
∞

∑
m=1

m

∏
j=1

(1 −G(b0γj)))−1, (16)

where G(a) = (1 − π1)U(a) + π1F (a) as defined earlier.

Definition 3 (Weighted LORD). Given a sequence of
p-values (P1, P2, . . . ) and weights (ω1, ω2, . . . ), apply
LORD (15) to the weighted p-values (P1/ω1, P2/ω2, . . . ).

Weighted LORD is not strictly a contextual GAI rule (see
discussion in Appendix E), however we establish FDR con-
trol of weighted LORD through Proposition 1(Appendix E).
Assume F is differentiable and let f = F ′ be the PDF of
p-values under alternative. Due to the fact that p-values un-
der alternative are stochastically dominated by the uniform
distribution, there exists some a0 > 0 such that f(a) > 1
for all 0 ≤ a < a0. The following theorem is based on com-
paring the power of weighted LORD (from Theorem 6 in
Appendix E) with the power bound of LORD (16).

Theorem 3 (Power Separation). Suppose that the parame-
ters in LORD (15) satisfy b0γ1 < a0, and the weight distri-
bution satisfies Pr[ω < a0/(b0γ1) ∣ Ht = 1] = 1 for every
t ∈ N and the informative-weighting property in (14). Then,
the average power of weighted LORD is greater than or
equal to that of LORD almost surely.
The results show that using the informative context-
weighting in the LORD rules will help in making more
true discoveries. It also indicates that we can check the
informative-weighting property by checking whether the
mean of the weight distribution under alternative (Q1) is
greater than that of the corresponding distribution under null
(Q0), which can be done under various scenarios as we de-
scribe in detail in Appendix F. We now conclude this section
with a simple example of how the conditions of Theorem 3
are easily satisfied in a common statistical model.
Example 1. To interpret the weight condition in Theorem 3,
let’s take a concrete example and consider the hypothe-
ses (H1, . . . ,HT ) concerning the means of normal dis-
tributions (referred to as normal means model) with test
statistics Zt ∼ N(µ,1). So the two-sided p-values are
Pt = 2Φ(−∣Zt∣). Suppose under the null hypothesis µ = 0,
and under the alternative 0 < µ ≤ 4. Then we can compute
that a0 > 0.022 for any µ such that 0 < µ ≤ 4. In fact,
a0 increases as µ decreases. Setting α = 0.05, T = 105,
5Javanmard and Montanari (2018) proposed multiple versions of
LORD, and as noted by them, the bound in (16) lower bounds the
power on all the versions of LORD under the mixture model.

and {γt}t∈N as suggested by (Javanmard and Montanari,
2018), we get that as long as the weight ω is less than
a0/(b0γ1) ≈ 7.52, the condition for Theorem 3 is satisfied.

6 Experimental Evaluation

Now we propose a practical procedure for contextual online
FDR control based on context-weighted GAI rules, which
sets αt(R1, . . . ,Rt−1,X1, . . . ,Xt) ∶= αt(R1, . . . ,Rt−1) ⋅
ω(Xt; θ), and present numerical experiments to illustrate
the performance with this procedure. In the following, we
use αt(Xt; θ) as a short to represent αt(R1, . . . ,Rt−1) ⋅
ω(Xt; θ). Technically, we can use any parametric function
ω(Xt; θ) (with parameter set θ ∈ Θ) to model the weight
function. Here we choose a deep neural network (multilayer
perceptron) due to its expressive power, as noted in a recent
batch FDR control result by (Xia et al., 2017). Given this, a
natural goal will be to find θ ∈ Θ that maximizes the number
of empirical discoveries (or discovery rate), while control-
ling the FDR. Note that if the function αt(R1, . . . ,Rt−1) is
monotone (such as with LORD or LORD++) with respect
to Ri’s, the function αt(R1, . . . ,Rt−1) ⋅ ω(Xt; θ) is also
monotone with respect to Ri’s.

Training the Network, Setting θ. Given a stream
((Pt,Xt))t∈N, the algorithm processes the stream in
batches, in a single pass. Let b ≥ 1 denote the batch size. Let
θj be the parameter obtained before batch j is processed,
thus θj is only based on all previous p-values and contextual
features which are assumed to be independent of all future
batches. For each batch, the algorithm fixes the parameters
to compute the significance levels for hypothesis in that
batch. Define, the empirical discovery rate for batch j as
follows: EDRj = ∑(j+1)b

i=jb+1 1{Pi ≤ αi(Xi; θj)}/b. Since the
above function is not differentiable, we use the sigmoid
function σ to approximate the indicator function, and de-
fine EDRj = ∑(j+1)b

i=jb+1 σ(λ(αi(Xi; θj) − Pi))/b. Here λ is
a large positive hyperparameter. With this, the parameter
set θ can now be optimized by using standard (accelerated)
gradient methods in an online fashion. Note that we are
only maximizing empirical discovery rate subject to em-
pirical FDR control, and the training does not require any
ground truth labels on the hypothesis. We state the training
procedure in Algorithm 1 (Appendix F).

In all our experiments, we use a multilayer perceptron to
model the weight function, which is constructed by 10 layers
and 10 nodes with ReLU as the activation function in each
layer, and exponential function of the output layer, since
the weight has to be non-negative. In the following, we use
context-weighted LORD++ (CwLORD++) to denote the
testing rule obtained by using LORD++ as the monotone
GAI rule to set αt(R1, . . . ,Rt−1) in αt(Xt; θ).

Verifying Informativeness. One last point to note is that
we can add the verification of the informative-weighting
property (14) to the above procedure under various realistic
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scenarios such as in presence of feedback or in presence of
a validation set. We defer this discussion to Appendix F.

Experimental Results. We now discuss results for numer-
ical experiments with both synthetic and real data to com-
pare the performance of our proposed CwLORD++ with a
state-of-the-art online testing rule LORD++ (Ramdas et al.,
2017b). Due to space limitations, we present the synthetic
data experiments based on the normal means model in Ap-
pendix F.1, with results clearly showing that while FDR
is always controlled for both LORD++ and CwLORD++,
the power of our CwLORD++ uniformly dominates that of
LORD++. Our real data experiments focus on a diabetes
prediction problem and gene expression data analyses. Ex-
periments with the SAFFRON procedure are presented in
Appendix G. The experimental code is also attached as part
of the supplementary material for reproducibility.

Diabetes Prediction Problem. We apply our online mul-
tiple testing rules to a real-life application of diabetes pre-
diction. Specifically, we want to test if patients are at risk
of developing diabetes, i.e., for each patient i, we form the
null hypothesis Hi as the “patient will not develop diabetes”
versus its alternative. Machine learning algorithms are now
commonly used to construct predictive health scores for
patients. A high predicted risk score can trigger an interven-
tion (such as medical follow-up), which can be expensive
and sometimes unnecessary, and thus it is important to con-
trol the fraction of false alerts. The dataset was released as
part of a Kaggle competition6, which contains de-identified
medical records of 9948 patients. For each patient, we
have a response variable that indicates if the patient is di-
agnosed with Type 2 diabetes mellitus, along with patient’s
biographical information and details on medications, lab
results, immunizations, allergies, and vital signs.

We train a predictive score based on the available records,
and then apply our online multiple testing rule rules to con-
trol FDR on test set. Our overall methodology is similar to
that of (Javanmard and Montanari, 2018) in their FDR con-
trol experiments on this dataset. We regard the biographical
information of patients as contextual features. Such choice
is loosely based on the idea of personalization common in
machine learning applications. Note that in theory, for our
procedure, one could use any set of features as context. We
describe the dataset and the ML training process in detail in
Appendix F.2. Here are the results when α = 0.2.

Table 1: Diabetes Dataset Results, α = 0.2
Procedure FDR Power
LORD++ 0.147 0.384
CwLORD++ 0.176 0.580

Notice that FDR is under control for both procedures, and
the power of CwLORD++ is substantially more (about 51%)
than LORD++. This improvement shows the benefits of
using contextual features for improving the power with FDR
control in a machine learning setup. We probe the reasons
6http://www.kaggle.com/c/pf2012-diabetes

for this improvement, and present results with different
nominal FDR levels from 0.1 to 0.5 in Appendix F.2.
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Figure 1: FDR and discovery numbers on Airway RNA-Seq.
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Figure 2: FDR and discovery numbers on GTEx.
Gene Expression Data. Our final set of experiments are on
gene expression datasets. In particular, we use the Airway
RNA-Seq and GTEx datasets7 as also studied by (Xia et al.,
2017). For both experiments, we use the original ordering
of hypotheses as provided in the datasets. Since we don’t
know the ground truth, we only report the empirical FDR
and the empirical discovery rate number in the experiments.

The Airway RNA-Seq dataset contains n = 33469 genes,
with the aim to identify glucocorticoid responsive (GC)
genes that modulate cytokine function in airway smooth
muscle cells. The p-values are obtained in two-sample
differential analysis of gene expression levels. Log counts
of each gene serves as the contextual feature. Figure 1
reports the empirical FDR and the discovery number. We
see that our CwLORD++ procedure make about 10% more
discoveries than the LORD++ procedure.

In the GTEx study, the question is to quantify the expres-
sion Quantitative Trait Loci (eQTLs) in human tissues. In
the eQTL analysis, the association of each pair of single
nucleotide polymorphism (SNP) and nearby gene is tested.
The p-value is computed under the null hypothesis that the
SNP genotype is not correlated with the gene expression.
The GTEx dataset contains 464,636 pairs of SNP-gene com-
bination from chromosome 1 in a brain tissue. Besides,
we consider three contextual features studied by (Xia et al.,
2017): 1) the distance (GTEx-dist) between the SNP and
the gene (measured in log base-pairs); 2) the average expres-
sion (GTEx-exp) of the gene across individuals (measured
in log rpkm); and 3) the evolutionary conservation mea-
sured by the standard PhastCons scores (GTEx-PhastCons).
We apply LORD++ to the p-values, and CwLORD++ to

7https://www.dropbox.com/sh/wtp58wd60980d6b/AAA4wA60ykP-
fDfS5BNsNkiGa?dl=0.
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the p-value, contextual feature vector pairs. Figure 2 re-
ports the empirical FDR and the discovery number where
for CwLORD++ we use each contextual feature separately.
This results in CwLORD++, having an increase in discovery
number by 5.5%, 2.6%, 2.9% using GTEx-dist, GTEx-exp,
and GTEx-PhastCons as the contextual feature respectively,
compared to the LORD++ procedure. We provide additional
experimental results with multi-dimensional feature vectors
in Appendix F.3, and draw a similar conclusion.
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Supplementary Material for “Contextual Online False Discovery Rate Control”

A Related Work in the Offline Setting

In the offline setting, where we have access to the entire batch of p-values at one time instant, a number of procedures have
been proposed to take advantage of the available auxiliary information to increase the power of test (to make more true
discoveries). As we note below, the modeling of auxiliary information varies.

Storey (2002) proposed an adaptive FDR-control procedure based on estimating the proportion of true nulls from data.
Reweighting the p-values by applying priors was considered by (Benjamini and Hochberg, 1997; Genovese et al., 2006;
Dobriban, 2016; Dobriban et al., 2015). In scenarios where priors are about spatial or temporal structure on hypotheses,
Independent Hypothesis Weighting procedure was proposed by (Ignatiadis et al., 2016), which clusters similar hypotheses
into groups and assigns different weights to these groups. Hu et al. (2010) utilized the idea of both grouping and estimating
the true null proportions within each group. Some more procedures in (Foygel-Barber and Candès, 2015; G’Sell et al., 2016;
Li and Barber, 2017; Lei and Fithian, 2016) incorporate a prior ordering as the auxiliary information to focus on more
promising hypotheses near the top of the ordering. This motivation underlies also the first online multiple testing paper of
(Foster and Stine, 2008).

Structure-adaptive BH algorithm (SABHA) (Li and Barber, 2016) and Adaptive p-value Thresholding (AdaPT) (Lei and
Fithian, 2018) are two recent FDR control adaptive methods which derive the feature vector dependent decision rules.
SABHA first censors the p-values below a fixed level, and then uses the censored p-values to estimate the non-null proportion
(using non-parametric methods in practice), and then applies the weighted BH procedure of (Genovese et al., 2006). AdaPT
is based on adaptively estimating a Bayes-optimal p-value rejection threshold. At each iteration of AdaPT, an analyst
proposes a significance threshold and observes partially censored p-values, then estimates the false discovery proportion
(FDP) below the threshold, and proposes another threshold, until the estimated FDP is below the desired level.

The offline testing algorithm mostly related to our results is the NeuralFDR procedure proposed by (Xia et al., 2017), which
uses a neural network to parametrize the decision rule. This procedure in the offline setting, with access to all the p-values
and the contextual features, comes up with a single decision rule t(X) based on training a neural network for optimizing on
the number of discoveries. In contrast, our method is in online multiple testing setup where we do not know all the p-values
or the contextual features at once, and decision rules are different at each time, and varies as a function of previous outcomes
and features.

B Missing Details from Section 2

The idea behind LORD (and LORD++) rules is that the significance level αt is a function based only on most recent discovery
time. Formally, we start with any sequence of nonnegative numbers γ = (γt)∞t=1, which is monotonically non-increasing
with ∑∞t=1 γt = 1. At each time t, let τt be the last time a discovery was made before t, i.e.,

τt ∶= max{i ∈ {1, . . . , t − 1} ∶ Ri = 1},

with τt = 0 for all t before the first discovery. The LORD rule defines αt, φt, ψt in the following generalized alpha-investing
fashion.

Level based On Recent Discovery (LORD) (Javanmard and Montanari, 2018, 2015):

W (0) = w0,

φt = αt =
⎧⎪⎪⎨⎪⎪⎩

γtw0 if t ≤ ρ1
γt−τtb0 if t > ρ1,
ψt = b0,

b0 = α −w0.

Typically, we will set w0 = α/2, in which case, the above rule could be simplified as φt = αt = γt−τtb0 = γt−τtα/2.



Manuscript under review by AISTATS 2020

As with any GAI rule, (Ramdas et al., 2017b) showed that one could replace b0 with bt = α −w01{ρ1 > t − 1} to achieve
potentially better power, while still achieving online FDR control at level α. With this replacement, we defined LORD++ as
follows.

Improved Level based On Recent Discovery (LORD++) (Ramdas et al., 2017b):

W (0) = w0 ≥ α/2,
φt = αt = γt−τtbt,

ψt = bt = α −w01{ρ1 > t − 1}.

C Missing Details from Section 3

Identifiability of f1(p ∣ X). We present a simple example from (Lei and Fithian, 2018) that illustrates why f1(p ∣ X)
(distribution of p under the alternate) is not identifiable. Consider the following mixture model:

Ht ∣Xt
i.i.d.∼ Bernoulli(π1),

Pt ∣Ht,Xt =
⎧⎪⎪⎨⎪⎪⎩

Uniform(0,1) if Ht = 0,

f1(p ∣Xt) if Ht = 1.

Now consider the conditional mixture density f(p ∣ X) = (1 − π1) + π1f1(p ∣ X). Note that the Ht’s are not observed.
Thus, while f is identifiable from the data, π1 and f1 are not: for example, π1 = 0.5, f1(p ∣ X) = 2(1 − p) and π1 = 1,
f1(p ∣X) = 1.5 − p result in exactly the same mixture density f(p ∣X).

C.1 Proofs of Theorems 1 and 2

Here we present the proof of the online FDR control for any monotone contextual GAI rule. We start by presenting
the following lemma, which is an intermediate result for the proof of FDR later. Recall that Rt = 1{Pt ≤ αt}, where
αt ∈ σ(F t−1 ∪ Gt) is a coordinatewise non-decreasing function of R1, . . . ,Rt−1 for any fixed Xt = (X1, . . . ,Xt). Due to
the marginal super-uniformity (1), we immediately for independent p-values under the null, the following super-uniformity
condition (noted in (9)).

Pr[Pt ≤ αt ∣ σ(F t−1 ∪ Gt)] ≤ αt.

Lemma 1 states a more general result about super-uniformity of independent p-values under the null. The proof is based on
a leave-one-out technique which is common in the multiple testing. A variant of this result was also used by (Ramdas et al.,
2017b) and (Javanmard and Montanari, 2018) in their analysis of GAI rules. The main distinction for us comes in that we
consider the sigma-field at each time t as σ(F t−1 ∪ Gt) including the information of contextual features till time t, instead
of just F t−1.

Lemma 1 (Super-uniformity). Let g ∶ {0,1}T → R be any coordinatewise non-decreasing function such that g(R) > 0 for
any vector R ≠ (0, . . . ,0). Then for any index t ≤ T such that t ∈ H0, we have

E [1{Pt ≤ αt(R1, . . . ,Rt−1,X1, . . . ,Xt)}
g(R1, . . . ,RT ) ∨ 1

∣σ(F t−1 ∪ Gt)] ≤ E [αt(R1, . . . ,Rt−1,X1, . . . ,XT )
g(R1, . . . ,RT ) ∨ 1

∣σ(F t−1 ∪ Gt)].

Proof. Let P = (P1, . . . , PT ) be the sequence of p-values, and X = (X1, . . . ,XT ) be the sequence of the contextual feature
vectors until sometime T . We define a “leave-one-out” vector of p-value as P̃−t = (P̃1, . . . , P̃T ), which was obtained from
P by setting Pt = 0, i.e.,

P̃i =
⎧⎪⎪⎨⎪⎪⎩

Pi if i ≠ t,
0 if i = t.

Let R = (R1, . . . ,RT ) be the sequence of decisions on the input P and X, and R̃−t = (R̃1, . . . , R̃T ) be the sequence of
decisions by applying the same rule on the input P−t and X. Note here we just set one p-value as zero but are not changing
the contextual feature vectors.
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By the construction of p-values, we have that Ri = R̃i for i < t, and hence

αi(R1, . . . ,Ri−1,X1, . . . ,Xi) = αi(R̃1, . . . , R̃i−1,X1, . . . ,Xi), for all i ≤ t.

We also know that R̃t = 1 always holds due to the fact P̃t = 0 ≤ αt. Therefore, if the event {Pt ≤
αt(R1, . . . ,Rt−1,X1, . . . ,Xt)} occurs, we have Rt = R̃t and thus R = R̃−t.

From the above arguments, we conclude that

1{Pt ≤ αt(R1, . . . ,Rt−1,X1, . . . ,Xt)}
g(R) ∨ 1

= 1{Pt ≤ αt(R1, . . . ,Rt−1,X1, . . . ,Xt)}
g(R̃−t) ∨ 1

.

Due to the fact that t ∈ H0 (Ht = 0), Pt is independent to all contextual features X by assumption (as Pi’s and Xi’s are
independent under the null), which gives that Pt is independent of σ(F t−1 ∪ Gt). And since Pt is independent of R̃−t, we
have,

E [1{Pt ≤ αt(R1, . . . ,Rt−1,X1, . . . ,Xt)}
g(R) ∨ 1

∣σ(F t−1 ∪ Gt)]

= E [1{Pt ≤ αt(R1, . . . ,Rt−1,X1, . . . ,Xt)}
g(R̃−t) ∨ 1

∣σ(F t−1 ∪ Gt)]

≤ E [αt(R1, . . . ,Rt−1,X1, . . . ,Xt)
g(R̃−t) ∨ 1

∣σ(F t−1 ∪ Gt)] (17)

≤ E [αt(R1, . . . ,Rt−1,X1, . . . ,Xt)
g(R) ∨ 1

∣σ(F t−1 ∪ Gt)] (18)

where inequality (17) follows by taking expectation with respect to Pt and using super-uniformity, and inequality (18) is
derived by the following observation.

Since P̃t = 0 ≤ αt, we have R̃t = 1 ≥ Rt. Due to the monotonicity of the significance levels, we have

αi(R̃1, . . . , R̃i−1,X1, . . . ,Xi) ≥ αi(R1, . . . ,Ri−1,X1, . . . ,Xi), for all i > t,

ensuring R̃i ≥ Ri for all i, and thus g(R̃−t) ≥ g(R) by the non-decreasing assumption on the function g.

Theorem 4 (Theorem 1 Restated). Consider a sequence of ((Pt,Xt))t∈N of p-values and contextual features. If the p-values
Pt’s are independent, and additionally Pt are independent of all (Xt)t∈N are independent under the null (whenever Ht = 0),
then for any monotone contextual generalized alpha-investing rule (i.e., satisfying conditions (3), (4), (5), (6), and (8)), we
have online FDR control,

sup
T ∈N

FDR(T ) ≤ α.

Proof. Note that the number of false discoveries is V (T ) = ∑Tt=1Rt1{t ∈ H0} and the amount of wealth is W (T ) =
w0 +∑Tt=1(−φt +Rtψt).

We can derive the following expression by using the tower property of conditional expectation

E [V (T ) +W (T )
R(T ) ∨ 1

] =
T

∑
t=1

E [
Rt1{t ∈ H0} + w0

T
− φt +Rtψt

R(T ) ∨ 1
]

=
T

∑
t=1

E [
w0

T
+Rt(ψt + 1{t ∈ H0}) − φt

R(T ) ∨ 1
]

=
T

∑
t=1

E [E [
w0

T
+Rt(ψt + 1{t ∈ H0}) − φt

R(T ) ∨ 1
∣σ(F t−1 ∪ Gt)]] (19)

We split the analysis in two cases based on whether Ht = 0 or Ht = 1.
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• Case 1: Suppose that t ∈ H0. By applying Lemma 1, we have

E [ Rt
R(T ) ∨ 1

∣σ(F t−1 ∪ Gt)] = E [1{Pt ≤ αt}
R(T ) ∨ 1

∣σ(F t−1 ∪ Gt)]

≤ E [ αt
R(T ) ∨ 1

∣σ(F t−1 ∪ Gt)]. (20)

Since ψt ≤ φt

αt
+ bt − 1, we further obtain

E [E [
w0

T
+Rt(ψt + 1{t ∈ H0}) − φt

R(T ) ∨ 1
∣σ(F t−1 ∪ Gt)]] ≤ E [E [

w0

T
+Rt(φt

αt
+ bt) − φt

R(T ) ∨ 1
∣σ(F t−1 ∪ Gt)]]

= E [E [
w0

T
+Rtbt + φt

αt
(Rt − αt)

R(T ) ∨ 1
∣σ(F t−1 ∪ Gt)]]

≤ E [E [
w0

T
+Rtbt

R(T ) ∨ 1
∣σ(F t−1 ∪ Gt)]],

where the last inequality follows by applying (20).

• Case 2: Suppose that t /∈ H0. Using the fact that ψt ≤ φt + bt, we have

E [E [
w0

T
+Rt(ψt + 1{t ∈ H0}) − φt

R(T ) ∨ 1
∣σ(F t−1 ∪ Gt)]] ≤ E [E [

w0

T
+Rt(φt + bt) − φt
R(T ) ∨ 1

∣σ(F t−1 ∪ Gt)]]

= E [E [
w0

T
+Rtbt + (Rt − 1)φt

R(T ) ∨ 1
∣σ(F t−1 ∪ Gt)]]

≤ E [E [
w0

T
+Rtbt

R(T ) ∨ 1
∣σ(F t−1 ∪ Gt)]].

Combining the bound on E [E [
w0
T +Rt(ψt+1{t∈H

0
})−φt

R(T )∨1
∣σ(F t−1 ∪ Gt)]] from both cases in (19) and using the definition of

bt, we obtain that,

E [V (T ) +W (T )
R(T ) ∨ 1

] ≤
T

∑
t=1

E [
w0

T
+Rtbt

R(T ) ∨ 1
] = E [w0 +∑Tt=1Rtbt

R(T ) ∨ 1
]

≤ E [w0 +∑Tt=1Rtα −w01{T ≥ ρ1}
R(T ) ∨ 1

] = E [w0 + αR(T ) −w01{T ≥ ρ1}
R(T ) ∨ 1

] ≤ α.

This concludes the proof of the theorem.

Theorem 5 (Theorem 2 Restated). Consider a sequence of ((Pt,Xt))t∈N of p-values and contextual features. If the p-values
Pt’s are conditionally super-uniform distributed (as in (9)), then for any contextual generalized alpha-investing rule (i.e.,
satisfying conditions (3), (4), (5), and (6)), we have online mFDR control,

sup
T ∈N

mFDR(T ) ≤ α.

Proof. The conditional super-uniformity implies that under null

E [Rt∣σ(F t−1 ∪ Gt)] ≤ αt.
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Now using a proof technique similar to Theorem 4, for any T ∈ N, we get

E[V (T )] ≤ E[V (T ) +W (T )]

=
T

∑
t=1

E [Rt1{t ∈ H0} + w0

T
− φt +Rtψt]

=
T

∑
t=1

E [w0

T
+Rt(ψt + 1{t ∈ H0}) − φt]

=
T

∑
t=1

E [E [w0

T
+Rt(ψt + 1{t ∈ H0}) − φt∣σ(F t−1 ∪ Gt)]]

≤
T

∑
t=1

E [E [w0

T
+Rtbt∣σ(F t−1 ∪ Gt)]]

= E [w0 +
T

∑
t=1

Rtbt] = E [w0 + αR(T ) −w01{T ≥ ρ1}]

≤ αE [R(T ) ∨ 1],

where for the second inequality we used an analysis similar to that used in the first case in the proof of Theorem 4. Therefore,
for any T ∈ N,

mFDR(T ) = E[V (T )]
E[R(T ) ∨ 1] ≤ α.

This concludes the proof of the theorem.

D Missing Details from Section 4

Let us see how the principle of context weighting (from Section 4) can be applied to LORD++ rules defined in Section 2.
Given a weight function, ω ∶ X ×Θ→ R, we define the context-weighted LORD++ (CwLORD++) testing rule as follows.

Context-weighted LORD++ (CwLORD++):

W (0) = w0,

φt = αt = min{γt−τtbt ⋅ ω(Xt; θ),W (t − 1)},
ψt = bt = α −w01{ρ1 > t − 1}.

Similarly, given the function ω, we can also define context-weighted LORD using the LORD rules from Section 2. As
pointed out before, when αt’s are reweighted, the penalty φt’s are also adjusted accordingly. This provides a clean way of
incorporating the weights in an online setup without having to rescale the weights to have unit mean.

We illustrate the relationship among various classes of testing rules in Figure 3.

Figure 3: Relationship among various testing rules. One could replace LORD with LORD++ (resp. CwLORD with
CwLORD++).

E Missing Details from Section 5

In this section, we present missing details from Section 5 which provides theoretical support of the increased power through
proper weighting in an online setting. For completeness, we repeat a few definitions from Section 5.
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Mixture Model. For any t ∈ N, let

H1, . . . ,Ht
i.i.d.∼ Bernoulli(π1),

Xt ∣Ht = 0 ∼ L0(X), Xt ∣Ht = 1 ∼ L1(X),
Pt ∣Ht = 0,Xt ∼ Uniform(0,1),
Pt ∣Ht = 1,Xt ∼ F1(p ∣Xt).

where 0 < π1 < 1 and where L0(X), L1(X) are two probability distribution on the contextual feature space X . Let
F = ∫ F1(p ∣ X)dL1(X) be the marginal distribution of p-value under alternative. Marginally, the p-values are i.i.d.
from the CDF G(a) = (1 − π1)U(a) + π1F (a), where U(a) is the CDF of Uniform(0,1). We do not require that the
contextual features Xt’s be independent, but only that they be identically distributed as L0(X) (under null) or L1(X) (under
alternative).

General Weighting Scheme. We consider the general weighting as in (Genovese et al., 2006) where weight is a random
variable and conditionally independent of Pt given Ht. We assume that weight ωt has different marginal distributions under
null and alternative,

ωt ∣Ht = 0 ∼ Q0, ωt ∣Ht = 1 ∼ Q1, (21)

with Q0,Q1 unknown continuous distributions on (0,∞). Under the mixture setup,

ωt
i.i.d.∼ (1 − π1)Q0 + π1Q1, (22)

with Pt and ωt being conditionally independent given Ht for all t = 1 . . . ,∞.

Contextual Weighting Scheme. This framework of weighting in (21) is very general. For example, it includes as a
special case, the following contextual weighting scheme, where we assume that there exists a weight function of contextual
features ω ∶ X ×Θ→ R, and the distributions of weights are defined as:

ωt ∣Ht = 0 ∼ ω(X; θ), with X ∼ L0(X),
ωt ∣Ht = 1 ∼ ω(X; θ), with X ∼ L1(X). (23)

Now Q0 and Q1 are defined as the distributions of ω(X; θ) under the null and alternative, respectively. Given Q0 and Q1,
the weight ωt is sampled as in (22).8 A reader might notice that that while the distributions Q0 and Q1 for weights are
defined through Xt’s distribution, the weight ωt is sampled i.i.d. from the mixture model (1 − π1)Q0 + π1Q1, regardless of
the value of Xt. Note that the independence assumption on p-values can still be satisfied even when the X ′

ts are dependent.9

Since this contextual weighting scheme is just a special case of the above general weighting scheme, in the remainder of this
section, we work with the general weighting scheme.

Informativeness. Under (21), the marginal distribution of ω isQ = (1−π1)Q0+π1Q1. For j = 0,1, let uj = E[ω ∣Ht = j]
be the means of Q0 and Q1 respectively. We also assume that the weighting is informative, based on the following definition
from (Genovese et al., 2006) in the offline setting,

Informative-weighting: u0 < 1, u1 > 1, u = E[ω] = (1 − π1)u0 + π1u1 = 1. (24)

Remark 2. Informative-weighting places a very natural condition on the weights. Roughly it means that the weight should
be positively associated to the true alternatives, or equivalently, the weight under alternative is more likely to be larger
than that under the null. The marginal mean of weight E[ω] is not necessary to be one. But for the theoretical comparison
of the power of different procedures, it is convenient to scale the weight to have unit mean so that we can use the p-value
reweighting akin to the offline setting. For empirical experiments, we will use an instantiation of CwLORD++, that does not
require the weight to have mean one.

We now focus on the establishing power separation under this property.

8In case , Xt
i.i.d.∼ (1 − π1)L0 + π1L1, then one can define ωt directly as ωt = ω(Xt; θ) with Q0 and Q1 defined as the distributions of

ω(Xt; θ) under the null and alternative, respectively.
9For example, in practice it is common that the contextual features are dependent (e.g., same genes or genetic variants may be tested
in multiple independent experiments at different time), but as long as the tests are carried out independently the p-values are still
independent.
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Weighted LORD++. Let the weights ωt’s be random variables that are drawn i.i.d. from this mixture model with marginal
distribution Q. Taking the LORD++ rule from Section 2, we define a weighted LORD++ rule as follows.
Definition 4 (Weighted LORD++). Given a sequence of p-values, (P1, P2, . . . ) and weights (ω1, ω2, . . . ), apply LORD++
with level α to the weighted p-values (P1/ω1, P2/ω2, . . . ).

We want to emphasize that the weighted LORD++ rule actually reweights the p-values (as done in the offline weighted BH
procedure (Genovese et al., 2006)) and then applies the original LORD++ to these reweighted p-values. So this is slightly
different from the idea of CwLORD++, that we mentioned above, which reweights the significance levels and then applies it
to the original p-values. To understand the difference, let us start from their definitions.

In LORD++, the penalty is φt = αt = γt−τtbt <W (t − 1), which is always less than current wealth due to the construction
of γt’s and w0. So in weighted LORD++, we are comparing reweighted p-value P ′

t to the level αt = γt−τtbt, which is
equivalent to comparing the original p-value Pt to the level α′t = γt−τtbtωt.
On the other hand, in CwLORD++, we take a penalty of the form φ̃t = α̃t = min{γt−τtbtωt,W (t − 1)}. We take the
minimum of reweighted significance level and the current wealth, to prevent the penalty γt−τtbtωt from exceeding the
current wealth which would violate a tenet of the alpha-investing rules.

A simple corollary is that the actual significance levels used in weighted LORD++ are greater than those in CwLORD++,
i.e.,

α′t = γt−τtbtωt ≥ min{γt−τtbtωt,W (t − 1)} = α̃t.
That implies the power of weighted LORD++ is equal to or greater than the power of CwLORD++, whereas the FDR of
weighted LORD++ may also be higher than that of CwLORD++. From Theorem 1, we know that we have FDR control with
CwLORD++, however that result does not hold for weighted LORD++ (as weighted LORD++ is not strictly a contextual
GAI rule) We now show that the above weighted LORD++ can still control online FDR at any given level α under the
condition E[ω] = 1, which we do in the following proposition. The FDR control guarantee also holds for weighted LORD
(Definition 3).
Proposition 1. Suppose that the weight distribution satisfies the informative-weighting property in (24). Suppose that
p-values Pt’s are independent, and are conditionally independent of the weights ωt’s given Ht’s. Then the weighted
LORD++ rule can control the online FDR at any given level α, i.e.,

sup
T ∈N

FDR(T ) ≤ α.

Proof. We start with a frequently used estimator of FDR that is defined as:

F̂DP(T ) ∶= ∑
T
t=1 αt

R(T ) ∨ 1
.

As established in Section 4 in (Ramdas et al., 2017b), LORD++ applied to any sequence of p-values will ensure that
supT F̂DP(T ) ≤ α. We apply LORD++ with the sequence of p-values defined as P ′ = (P1

ω1
, P2

ω2
, P3

ω3
. . . ). Let P ′

t = Pt/ωt for
any t ∈ N. Then it follows that,

sup
T ∈N

F̂DP(T ) = sup
T ∈N

∑Tt=1 αt
R(T ) ∨ 1

= sup
T ∈N

∑Tt=1 αt
(∑Tt=1 1{P ′

t ≤ αt}) ∨ 1
≤ α. (25)

We denote the sigma-field of decisions based on the weighted p-values P ′ till time t as Ct = σ(R1, . . . ,Rt). By using the
“leave-one-out” method used in Theorem 4, the FDR of the weighted LORD++ at any time T can be written as,

FDR(T ) = E [∑
T
t=1 1{t ∈ H0 ∶ P ′

t ≤ αt}
(∑Tt=1 1{P ′

t ≤ αt}) ∨ 1
]

=
T

∑
t=1

E [
1{t ∈ H0 ∶ Pt

ωt
≤ αt}

R(T ) ∨ 1
]

=
T

∑
t=1

E [E [
1{t ∈ H0 ∶ Pt

ωt
≤ αt}

R(T ) ∨ 1
∣Ct−1]]

=
T

∑
t=1

E [E [
1{t ∈ H0 ∶ Pt

ωt
≤ αt}

R−t(T ) ∨ 1
∣Ct−1]],
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where R−t(T ) = ∑Ti=1 1{Pi/ωi ≤ αi} is obtained by setting Pt = 0, while keeping all ωt’s unchanged. The last equality
holds due to the fact that R−t(T ) = R(T ) given the event {Pt/ω ≤ αt}.

Since αt ∈ Ct−1, and Pt, ωt are independent of R−t(T ) and Ct−1, we can take the expectation of the numerator inside the
brackets and obtain that

Pr[Pt/ωt ≤ αt ∣ Ct−1,Ht = 0] = ∫ Pr[Pt/ωt ≤ αt ∣ Ct−1, ωt = w,Ht = 0]dQ(w ∣Ht = 0)

= ∫ wαtdQ(w ∣Ht = 0)

= u0αt,

where u0 = E[ω ∣Ht = 0]. Plugging this in the bound on FDR(T ) from above gives,

FDR(T ) =
T

∑
t=1

E [E [ u0αt
R−t(T ) ∨ 1

∣Ct−1]]

≤
T

∑
t=1

E [E [ αt
R−t(T ) ∨ 1

∣Ct−1]] (26)

≤
T

∑
t=1

E [E [ αt
R(T ) ∨ 1

∣Ct−1]] (27)

= E [ ∑
T
t=1 αt

R(T ) ∨ 1
] = E [F̂DP(T )] ≤ α,

where inequality (26) is due to the assumption that u0 < 1, (27) follows by the fact that R−t(T ) ≥ R(T ) due to monotonicity
of LORD++, and the last equality is based on (25).

Weakening the Assumptions from Proposition 1. In most applications, the independence between p-values and weights
needed in Proposition 1 is not guaranteed. Javanmard and Montanari (2018) achieved the FDR control under dependent
p-values by using a modified LORD rule, which sets ψt = b0 and αt = φt = γtW (τt) with the fixed sequence (γt) satisfying
∑∞t=1 γt(1 + log(t)) ≤ α/b0.

We can extend the FDR control results to the dependent weighed p-values. In particular, as long as the following condition
is satisfied, i.e., for each weighted p-value (Pt/ωt) marginally

Pr[Pt/ωt ≤ u ∣Ht = 0] ≤ u, for all u ∈ [0,1], (28)

then the upper bound of FDR stated in Theorem 3.7 in (Javanmard and Montanari, 2018) is valid for weighted p-values.
Specifically, if the modified LORD rule in Example 3.8 of (Javanmard and Montanari, 2018) is applied to the weighted
p-values under the assumption in (28), then the FDR can be controlled below level α.

We formally state the results in the following proposition.

Proposition 2. Suppose that the weight distribution satisfies the informative-weighting property in (24). And weighted
p-values (Pt/ωt) marginally satisfy (28). Then the modified LORD++ rule that applies to the weighted p-values can control
the online FDR at any given level α, i.e.,

sup
T ∈N

FDR(T ) ≤ α.

The proofs of these extension are almost the same as those in (Javanmard and Montanari, 2018) and are omitted here.

Lower Bound on Statistical Power of Weighted LORD++. In order to compare different procedures, it is important to
estimate their statistical power. Here, we analyze the power of the weighted LORD++. Define D(a) = Pr[P /ω ≤ a] as
the marginal distribution of weighted p-values. Under the assumptions on the weight distribution from (21), the marginal
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distribution of weighted p-value equals,

D(a) = Pr[P /ω ≤ a] = ∫ Pr[P /ω ≤ a ∣ ω = w]dQ(w)

= ∫ ∑
h∈{0,1}

Pr[P /ω ≤ a ∣ ω = w,H = h]g(h ∣ w)dQ(w)

= ∫ ∑
h∈{0,1}

Pr[P /w ≤ a ∣H = h]g(h ∣ w)dQ(w)

= ∫ ∑
h∈{0,1}

((1 − h)aw + hF (aw))g(h ∣ w)dQ(w)

= ∫ ∑
h∈{0,1}

((1 − h)aw + hF (aw))dQ(w ∣ h)g(h)

= ∑
h∈{0,1}

∫ ((1 − h)aw + hF (aw))dQ(w ∣ h)g(h)

= (1 − π1)∫ awdQ(w ∣ h = 0) + π1 ∫ F (aw)dQ(w ∣ h = 1)

= (1 − π1)µ0a + π1 ∫ F (aw)dQ1(w). (29)

The proof of the following Theorem 6 uses the similar technique as the proof of the statistical power of LORD in (Javanmard
and Montanari, 2018). The main distinction is that we replace the marginal distribution of p-values by the marginal
distribution of weighted p-values. The proof of Theorem 6 goes through by analyzing the weighted LORD procedure
(Definition 3).
Theorem 6. Let D(a) = Pr[P /ω ≤ a] be the marginal distribution of weighted p-values as in (29). Then, the average
power of weighted LORD++ rule is almost surely bounded as follows:

lim inf
T→∞

TDR(T ) ≥ (
∞

∑
m=1

m

∏
j=1

(1 −D(b0γj)))−1.

Proof. Since we are interested in lower bounds, we consider a version of LORD (as also considered in (Javanmard and
Montanari, 2018)) which that is based on the following rule,

LORD:W (0) = w0 = b0 = α/2, φt = αt = b0γt−τt , ψt = b0.

Note that since bt = α −w01{ρ1 > t − 1} > b0 in LORD++, the test level in LORD++ is at least as large to the test level in
LORD. Therefore, for any p-value sequence the power of the LORD from is also a lower bound on the power of LORD++.
In the rest of this proof, we focus on LORD for the weighted p-value sequence {P1/ω1, P2/ω2, . . .}. The bound established
below is in fact tight for LORD under this p-value sequence.

Denote by ρi as the time of the ith discovery (rejection), with ρ0 = 0, and ∆i = ρi − ρi−1 as the ith time interval between the
(i − 1)st and ith discoveries. Let ri ∶= 1{ρi ∈ H1} be the reward associated with inter-discovery ∆i. Since the weighted
p-values are i.i.d. it can be seen that the times between successive discoveries are i.i.d. according to the testing procedure
LORD, and the process R(T ) = ∑Tl=1Rl is a renewal process (Cox et al., 1967). In fact, for each i, we have

Pr[∆i ≥m] = Pr[∩ρi−1+ml=ρi−1
{Pl/ωl > αl}] =

ρi−1+m

∏
l=ρi−1

(1 −D(αl)) =
ρi−1+m

∏
l=ρi−1

(1 −D(b0γl−ρi−1)) =
m

∏
l=1

(1 −D(b0γl)).

The above expression is same for every i. Therefore,

E[∆i] =
∞

∑
m=1

Pr[∆i ≥m] =
∞

∑
m=1

m

∏
l=1

(1 −D(b0γl)).

Applying the strong law of large numbers for renewal-reward processes (Cox et al., 1967), we obtain that the following
statement holds almost surely,

lim
T→∞

1

T

R(T )

∑
i=1

ri =
E(ri)
E(∆1)

= π1(
∞

∑
m=1

m

∏
l=1

(1 −D(b0γl)))−1.
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Let ∣H1(T )∣ be the number of true alternatives till time T . Since limT→∞ ∣H1(T )∣/T = π1 almost surely, we have

lim
T→∞

1

∣H1(T )∣ ∑
i∈H1(T )

Ri = lim
T→∞

1

∣H1(T )∣

R(T )

∑
i=1

ri = (
∞

∑
m=1

m

∏
l=1

(1 −D(b0γl)))−1.

Now by using the definition of TDP(T ), almost surely, we have that for any weighted LORD++,

lim inf
T→∞

TDP(T ) ≥ (
∞

∑
m=1

m

∏
j=1

(1 −D(b0γj)))−1.

As discussed above, this bound translates into a lower bound for weighted LORD++. Furthermore, by using the Fatou’s
lemma (Carothers, 2000), we can extend the same result for TDR(T ) almost surely,

lim inf
T→∞

TDR(T ) = lim inf
T→∞

E[TDP(T )] ≥ E[lim inf
T→∞

TDP(T )] ≥ (
∞

∑
m=1

m

∏
j=1

(1 −D(b0γj)))−1.

Comparison of Power. Next, we establish conditions under which a weighting could lead to increased power for LORD.
We work with (a version of) the popular LORD procedure from (Javanmard and Montanari, 2018), which sets

W (0) = w0 = b0 = α/2, φt = αt = b0γt−τt , ψt = b0. (30)

As shown by (Javanmard and Montanari, 2018), the average power of LORD, under the mixture model, almost surely
equals10

For LORD: lim inf
T→∞

TDR(T ) = (
∞

∑
m=1

m

∏
j=1

(1 −G(b0γj)))−1, (31)

where G(a) = (1 − π1)U(a) + π1F (a) as defined earlier. From the proof of Theorem 6, the average power of weighted
LORD almost surely equals

For weighted LORD: lim inf
T→∞

TDR(T ) =
∞

∑
m=1

m

∏
j=1

(1 −D(b0γj))−1. (32)

Assume F is differentiable and let f = F ′ be the PDF of p-values under alternative. Due to the fact that p-values under
alternative are stochastically dominated by the uniform distribution, there exists some a0 > 0 such that f(a) > 1 for all
0 ≤ a < a0. The following theorem is based on comparing this power on weighted LORD from (32) with the power on
LORD from from (31).

Theorem 7 (Power Separation). Suppose that the parameters in LORD (30) satisfy b0γ1 < a0, and the weight distribution
satisfies Pr[ω < a0/(b0γ1) ∣Ht = 1] = 1 for every t ∈ N and the informative-weighting property in (24). Then, the average
power of weighted LORD is greater than equal to that of LORD almost surely.

Proof. We compare the average power bound of weighted LORD and LORD. It is equivalent to comparing D(a) and G(a)
for a = b0γl, for l = 1, . . . ,∞. Since u = (1 − π1)u0 + π1u1 = 1, we have (1 − π1)u0 = 1 − π1u1. This means that

D(a) −G(a) = (1 − π1)u0a + π1 ∫ F (aw)dQ1(w) − (1 − π1)a − π1F (a)

= (1 − π1)(u0 − 1)a + π1(∫ F (aw)dQ1(w) − F (a))

= π1(1 − u1)a + π1(∫ F (aw)dQ1(w) − F (a)).

So we just need to compare (µ1 − 1)a and ∫ F (aw)dQ1(w) − F (a), for any a = b0γl, for l = 1, . . . ,∞. Due to the fact
that {γl} is a non-increasing sequence, we have a = b0γl ≤ b0γ1. Since b0γ1 < a0 and Pr[ω < a0/(b0γ1) ∣ H = 1] = 1 by
assumption, then Pr[max(a, aw) < a0 ∣H = 1] = 1.
10Javanmard and Montanari (2018) proposed multiple versions of LORD, and as noted by them the bound in (16) lower bounds the

average power on all the versions of LORD for the above mixture model.
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For any fixed a = b0γl > 0, we have

∫ F (aw)dQ1(w) − F (a)
a

= ∫
F (aw) − F (a)

a
dQ1(w)

= ∫
F (aw) − F (a)

(w − 1)a (w − 1)dQ1(w)

= ∫ f(ξ)(w − 1)dQ1(w) (33)

≥ ∫ (w − 1)dQ1(w) (34)

= E[W ∣H = 1] − 1 = u1 − 1,

for some ξ ∈ (min(a, aw),max(a, aw)). Note we assume Q1 is a continuous distribution, so Pr[w = 1 ∣H = 1] = 0. The
equality (33) is achieved by applying the Intermediate Value Theorem, and the inequality (34) is obtained by the fact that
Pr[ξ < a0 ∣H = 1] = 1, i.e., Pr[f(ξ) > 1 ∣H = 1] = 1.

Therefore, we prove that ∫ F (aw)dQ1(w) − F (a) ≥ u1 − 1, which implies that D(a) ≥ G(a) for a = b0γl, for l =
1, . . . ,∞.

As discussed earlier since the general weighting scheme includes the context-weighting scheme, so the results here indicate
that using the informative context-weighting in the LORD rules will help in making more true discoveries.

Remark 3. Intuitively, the condition implies that to achieve higher power while controlling FDR, the weights given to
alternate hypotheses cannot be too large. Let us discuss this point in the context of weighted LORD++ and context-weighted
LORD++.

In weighted LORD++, we can always assign large weights to make the reweighted p-values small enough to be rejected, in
order to achieve high power. But this can lead to a loss in FDR control which is why we need the restriction of E[ω] = 1 for
proving the FDR control in Proposition 1. Therefore, it is natural to have weights not too large.

If we consider reweighting the significance levels as in CwLORD++, assigning a large weight will not affect the FDR
control (we prove that FDR is controlled for any choice of weights in Theorem 1). However, the price is paid in terms of
power. When we use a large weight, the penalty φt increases and therefore the wealth might go quickly down to zero. Once
the wealth is exhausted, the significance levels afterwards must all be zero and thus preventing any further discoveries.

F Missing Details from Section 6

In this section, we provide additional experimental results. The results demonstrate the increased power (under FDR control)
in online multiple testing setup that can be obtained with our proposed contextual weighting in various scenarios.

Informative-Weighting Property. A natural question to ask is whether one can check for the informative-weighting
property (24). If we assume the feedback (true labels) are given after testing each batch, then this condition can be verified in
the online learning process. With the feedback after each batch, we can compute the average weights of the true alternatives
and nulls, to see whether the former is greater than the latter. If so, then the weights learned so far are informative and can
be utilized further. If not, for next batch we can revert to previous informative weights, or even start over from the baseline
unweighted procedure.

However, the requirement of having feedback after testing each batch is too strict, so in practice the assumption can be
relaxed. That is, we can still verify the informative weighting condition in practice if we have a fixed set of contextual
features from the same mixture model with known labels (from null or alternative) for validation. Similarly, after testing
each batch and updating the parameters of the weight function, we apply the updated weight function to the contextual
features of the validation set and compare the average weights of the features from alternatives and nulls. If the former one
is greater than the latter, we will keep going on with next batch. Otherwise, we will revert to the previous step of the weight
function updates. Please see Section F.1.1 for the numerical comparison of the algorithm implementation with and without
validation set. If the labels of the validation set of the contextual features are not available to us, we need to first figure out
their labels. One possible way to do so is to apply some powerful offline hypothesis testing rule to first test whether they
are from null or alternative. Getting this right require more rigorous assumptions. For example, if the dimension of each
contextual feature vector is one, and they are assumed to be normal distributed with mean zero under the null and with mean



Manuscript under review by AISTATS 2020

Algorithm 1: Online FDR Control with a Context-Weighted GAI Procedure

Model the weight function as a multi-layer perceptron (MLP);

Input: A sequence of p-value, contextual feature vector pairs ((P1,X1), (P2,X2), . . . ), a monotone GAI rule (such as
LORD++) denoted by G with desired FDR control, batch size b, learning rate η

Output: Neural network model parameter set θ ∈ Θ

Randomly initialize the parameter set θ0; batch index j = 0
repeat

for i = 1 to b do
Consider the pair (Pjb+i,Xjb+i) (ith hypothesis in the jth batch)
Let α̃ ← αjb+i(R1, . . . ,Rjb+i−1) (computed as defined by the GAI rule G)
Accept/reject this hypothesis with significance level αjb+i(Xjb+i; θj)) ∶= α̃ ⋅ ω(Xjb+i; θj)

end
Use the decisions in the jth batch to update the empirical discovery proportion (EDRj)
Compute the gradient with respect to the parameter set ∂EDRj

∂ θ

Update the parameter set: θj+1 ← θj + η ∂EDRj

∂ θ
j ← j + 1

until convergence or end-of-stream;
Return θj

greater than zero under the alternative, and with the same known variance. Then we can compute the corresponding p-values
and apply the BH procedure to them. From previous works of (Genovese and Wasserman, 2002) and (Arias-Castro and
Chen, 2017), the BH procedure is powerful and optimal (with power tending to 1 and FDR controlled) asymptotically under
mixture Gaussian model with some conditions. So the test results of BH can be considered as accurate if those conditions
are satisfied and provided the size of validation set is large enough. We can further use the labels returned by BH method to
validate the informative weighting condition as described above.

Algorithm 1 deals with the case when there is no feedback or validation set. The algorithm learns the weight function in an
online fashion, by regarding the previous decisions as ground truth, informally meaning that it will regard previously rejected
hypotheses as true alternatives and thereby assigning a larger weighting in CwLORD++ for future hypothesis with contextual
features similar to those of previously rejected hypotheses. Online FDR control is always guaranteed by Algorithm 1. The
hope is that by maximizing the number of empirical discoveries, the algorithm can learn an informative-weighting (as
possibly corroborated by our experiments).

F.1 Synthetic Data Experiments

For the synthetic data experiments, we consider the hypotheses H(T ) = (H1, . . . ,HT ) coming from the normal means
model. The setup is as follows: for t ∈ [T ], under the null hypothesis, Ht ∶ µt = 0, versus under the alternative, µt = µ(Xt)
is a function of Xt. We observe test statistics Zt = µt + εt, where εt’s are independent standard normal random variables,
and thus the two-sided p-values are Pt = 2Φ(−∣Zt∣). For simplicity, we consider a linear function µ(Xt) = ⟨β,Xt⟩ for β
unknown to the testing setup. We choose the dimension of the features Xt’s as d = 10 in all following experiments.

We set the total number of hypotheses as T = 105. We generate each d-dimensional vector Xt independently from
L0 = N(0, σ2Id) under the null (Ht = 0), and from L1 = N(0.1, σ2Id) under the alternative (Ht = 1) with σ2 = 2 logT .
The choice of the σ2 is to put the signals in a detectable (but not easy) region. This is because under the global null
hypothesis where Zt ∼ N(0,1) for all t = 1, . . . , T , we have maxt∈[T ]Zt ∼

√
2 logT with high probability. Here, β is a

deterministic parameter vector of dimension d = 10, we generate the ith coordinate in β as βi ∼ Uniform(−2,2) and fix
β throughout the following experiments. Let πi denote the fraction of non-null hypotheses. For LORD++, we choose
the sequence of hyperparameters {γt} (where γt = 0.0722 log(t ∨ 2)/(t exp(

√
log t))) as suggested by (Javanmard and

Montanari, 2018).

In Figure 4, we report the maximum FDP and the statistical power of the two compared procedures as we vary the fraction
of non-nulls π1 and desired level α. The average is taken over 20 repeats.

In the first set of experiments (Figures 4(a) and 4(b)), we set α = 0.1, and vary the fraction of non-nulls π1 from 0.1 to
0.9. We can see that FDP of both rules (CwLORD++ and LORD++) are almost always under the set level α = 0.1 and are
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Figure 4: The top rows plots the average of max FDP and TDR (power) for our proposed CwLORD++ and LORD++ as we
vary the fraction of non-nulls (π1) under the normal means model. The nominal FDR control level α = 0.1. The bottom row
plots the same with varying nominal FDR levels. In this case, we set the fraction of non-nulls π1 = 0.5. As mentioned in the
text, the average of max FDP is an overestimate of FDR.

decreasing with the increasing fraction of non-nulls. As expected, the power increases with increasing π1, however the
power of CwLORD++ uniformly dominates that of LORD++.

Note that we take the average of maximum FDP over 20 repeats, which is an estimate for E[sup FDP]. Due to the fact that
E[sup FDP] ≥ supE[FDP] = sup FDR, the reported average of maximum FDP is probably higher than the true maximum
FDR. In Figure 4(a), we see that the average of maximum FDP is almost always controlled under the black line, which
means the true maximum FDR should be even lower than that level. When π1 is really small (like 0.1), the number of
non-nulls is too sparse to make a high proportion of true discoveries, which leads to a higher average of maximum FDP that
also have a higher variance in Figure 4(a).

In the second set of experiments (Figures 4(c) and 4(d)), we vary the nominal FDR level α from 0.1 to 0.5. The fraction of
non-nulls is set as 0.5. Again we observe while both rules have FDR controlled under nominal level (the black line), and our
proposed CwLORD++ is more powerful than the LORD++ with respect to the true discovery rate. On average, we notice
about 3-5% improvement in the power with CwLORD++ when compared to LORD++.
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F.1.1 Synthetic Data Experiments with Validation of Informative-Weighting

The setting of the numerical experiments are similar to that in Section F.1. The only difference is that here we additionally
generate a fixed set of feature vectors X ′

1, . . . ,X
′
s from the same mixture model (1 − π1)L0 + π1L1 with size s, and their

labels H ′
1, . . . ,H

′
s are visible to the procedure. We use this set as a prior information to validate the informative-weighting

condition of the procedure. As mentioned before, the experiments with the validation set is implemented as follows. After
each batch is tested and the parameters of the weight function is updated, we apply the updated weight function to the
contextual features X ′

1, . . . ,X
′
s of the validation set. Since the labels of the validation set is visible to us, we compute and

compare the average weights of the features from alternatives (with H = 1) and nulls (with H = 0). If the former one is
greater than the latter, we will keep going on testing next batch with the up-to-date weight function. Otherwise, we will
revert to the previous step of the weight function updates and use that version to continue with next batch.

In Figure 5, we report the maximum FDP and the statistical power of the LORD++, CwLORD++ and CwLORD++ with
validation set (Valid CwLORD++) as we vary the fraction of non-nulls π1. The average is taken over 20 repeats.
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Figure 5: The plots show the average of max FDP and TDR (power) for LORD++, CwLORD++ and CwLORD++ with
validation set (Valid CwLORD++) as we vary the fraction of non-nulls (π1) under the normal means model. The nominal
FDR control level α = 0.1.

We can see that the performance of CwLORD++ with the validation set is very close to, and sometimes a bit conservative
than that without validation set. The main reason is that the former one converges slower because it will occasionally revert
back to previous procedure with weights which have been verified as informative weighting. In particular, it will update
very slowly in the first several steps if the random initialization is not informative at all. But on the other hand, the fact that
performance with or without checking for informative-weighting are very close is also a strong evidence to show that our
proposed CwLORD++ algorithm can gain the informative weighting during the training process.

F.2 Diabetes Prediction Problem

In this section, we apply our online multiple testing rules to a real-life application of diabetes prediction. For completeness,
we repeat some of the discussion from Section 6.

Machine learning algorithms are now commonly used to construct predictive health scores for patients. In this particular
problem, we want a test to identify patients that are at risk of developing diabetes. A high predicted risk score can trigger an
intervention (such as medical follow-up, medical tests), which can be expensive and sometimes unnecessary, and therefore
it is important to control the fraction of alerts that are false discoveries. That is, for each patient i, we form the null
hypothesis Hi as the “patient will not develop diabetes” versus its alternative. The dataset was released as part of a Kaggle
competition11, which contains de-identified medical records of 9948 patients (labeled as 1,2, . . . ). For each patient, we
11http://www.kaggle.com/c/pf2012-diabetes

http://www.kaggle.com/c/pf2012-diabetes
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have a response variable Y that indicates if the patient is diagnosed with Type 2 diabetes mellitus, along with information
on medications, lab results, immunizations, allergies, and vital signs. In the following, we train a predictive score based
on the available records, and then will apply our online multiple testing rule rules to control FDR on test set. Our overall
methodology is similar to that used by (Javanmard and Montanari, 2018) in their FDR control experiments on this dataset.
We proceed as follows. We construct the following features for each patient.

1. Biographical information: Age, height, weight, BMI (Body Mass Indicator), etc.
2. Medications: We construct TF-IDF vectors from the medication names.
3. Diagnosis information: We derive 20 categories from the ICD-9 codes and construct an one-hot encoded vector.
4. Physician specialty: We categorize the physician specialties and create features that represents how many times a patient

visited certain specialist.

We regard the biographical information of patients as treated as contextual features. The choice of using biographical
information as context is loosely based on the idea of personalization common in machine learning applications. In theory,
one could use other features too as context.

Second, we split the dataset into four parts Train1, comprising 40% of the data, Train2, 20% of the data, Test1, 20% of the
data and Test2, 20% of the data. The Train sets are used for training a machine learning model (Train1) and for computing
the null distribution of test statistics (Train2), which allows us to compute the p-values in the Test sets. We first learn the
neural network parameters in the CwLORD++ procedure in an online fashion by applying it to p-values in Test1, and then
evaluate the performance of both LORD++ and CwLORD++ on Test2. This process is explained in more detail below.

We note that our experimental setup is not exactly identical to that of (Javanmard and Montanari, 2018), since we are using a
slightly different set of features and data cleaning for the logistic regression model. We also split the data to four subsets
instead of three as they did, which gives less training data for the predictive model. Our main focus, is to compare the power
of LORD++ and CwLORD++, for a reasonable feature set and machine learning model.

Training Process. We start by training a logistic model similar to (Javanmard and Montanari, 2018).12 Let xi denote the
features of patient i. We use all the features to model the probability that patient does not have diabetes through a logistic
regression model as

Pr[Yi = 0 ∣ x = xi] =
1

1 + exp(⟨β,xi⟩)
.

The parameter β is estimated from the Train1 set.

Construction of the p-values. Let S0 be the subset of patients in Train2 set with labels as Y = 0, and let n0 = ∣S0∣. For
each i ∈ S0, we compute its predictive score as qi = 1/(1 + exp(⟨β,xi⟩)). The empirical distribution of {qi ∶ i ∈ S0} serves
as the null distribution of the test statistic, which allows for computation of the p-values. Explicitly, for each j in either
Test1 or Test2 sets, we compute qTest

j = 1/(1 + exp(⟨β,xj⟩)), and construct the p-value Pj by

Pj =
1

n0
∣{i ∈ S0 ∶ qi ≤ qTest

j }∣.

Smaller p-value indicates that the patient has higher risk of developing diabetes. We use the p-values computed on the
patients in Test1 to train the weight function in CwLORD++, and the p-values on the patients in Test2 to the compare
performance of CwLORD++ and LORD++. Note that the training of the neural network does not utilize the labels of the
hypothesis in the Test1 set. Since the dataset does not have timestamps of hypotheses, we consider an ordering of hypotheses
in the ascending order of corresponding p-values, and use this ordering for both LORD++ and CwLORD++. Note that,
since the Train and Test sets are exchangeable, the null p-values will be uniform in expectation (and asymptotically uniform
under mild conditions).

Online Hypothesis Testing Process and Results. We set the desired FDR control level at α = 0.2. The set of hyperparam-
eters {γt} is chosen as in the synthetic data experiments. For the patients in Test1 set, we use their biographical information
of patients as contextual features in the training process for CwLORD++ for learning the neural network parameters. We
apply the LORD++ and CwLORD++ procedures to the p-values in the Test2 set and compute the false discovery proportion
and statistical power. Let T2 be the set of patients in Test2 set. Note that for a patient in Test2 set, for both CwLORD++ and
LORD++, the p-values are identically computed from all the features (including the patient’s biographical information). This
generates a sequence of p-values (Pi)i∈T2 . Now, while LORD++ is applied to this p-value sequence directly, CwLORD++

12Even though the chosen logistic model is one of the best performing models on this dataset in the Kaggle competition, in this paper, we
do not actively optimize the prediction model in the training process.
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FDR Power
LORD++ 0.147 0.384

CwLORD++ 0.176 0.580

Table 2: Results from diabetes dataset with nominal FDR control level α = 0.2.

is applied to the sequence of (Pi,Xi) where Xi is the biographical information of patient i ∈ T2. For CwLORD++, the
neural network parameters are fixed in this testing over the Test2 set.

We repeat the whole process and average the results over 30 random splittings of the dataset. Table 2 presents our final
result. We can use biographical information again as contextual features in training CwLORD++ because the p-values under
the null are uniformly distributed, no matter which features are used in logistic modeling. This guarantees that the p-values
under the null are independent to any features, which is the only condition we need to have a FDR control, assuming the
p-values themselves are mutually independent.

Notice that while FDR is under control for both procedures, the statistical power of CwLORD++ is substantially more (about
51%) than LORD++. This improvement illustrates the benefits of using contextual features for improving the power with
FDR control in a typical machine learning setup. A possible reason for the observed increase in power with CwLORD++
is that in addition to using the labeled data in the Train1 set for training a supervised model, CwLORD++ uses in an
unsupervised way (i.e., without considering labels) some features of the data in the Test1 set in its online training process
with the intent of maximizing discoveries.

One could also see the effect of training LORD++ on larger dataset. For example, previously we trained LORD++ only
on Train1 set (40% of the data) and we completely ignored the Test1 set for LORD++. Suppose, we instead train logistic
model for LORD++ (but not for CwLORD++) on the union of Train1 and Test1 set to make the baseline method stronger,
with the same splits of the datasets. With this change, LORD++ has FDR at 0.143 and power at 0.427. While this is not
completely a fair comparison for CwLORD++ as we have now used more labeled data in training the logistic model for
LORD++ than CwLORD++, we observe that CwLORD++ still beats this stronger baseline with over 35% power increase.
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Figure 6: FDR and TDR results on diabetes dataset as we vary the nominal FDR level α. Note that the power of CwLORD++
uniformly dominates that of LORD++, with an average improvement in power of about 44%.

In order to further probe some of these improvements, we repeated the experiment with different nominal FDR levels ranging
from 0.1 to 0.5. The results (see Figure 6) demonstrate that our CwLORD++ procedure achieves more true discoveries than
the LORD++ procedure while controlling FDR under the same level. The FDR is controlled exactly under the desired level
starting around α ≥ 0.15, while it is close to the desired level even when α is as small as 0.1. This phenomenon can also
be observed in (Javanmard and Montanari, 2018), where the FDR is 0.126 for LORD under the target level α = 0.1. This
is probably because both the experiments here and in (Javanmard and Montanari, 2018) do not adjust for the dependency
among the p-values, which violates the theoretical assumption behind the FDR control proof, and is more of a concern when
target α level is small.
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F.3 Gene Experiments

Here we discuss some additional experiments on GTEx dataset. As mentioned in Section 6, in the GTEx study, we consider
three contextual features studied by (Xia et al., 2017): 1) the distance (GTEx-dist) between the SNP and the gene (measured
in log base-pairs); 2) the average expression (GTEx-exp) of the gene across individuals (measured in log rpkm); and 3)
the evolutionary conservation measured by the standard PhastCons scores (GTEx-PhastCons). In Figure 2 (Section 6), we
presented results on using CwLORD++ procedure with each of these three features used separately. Now we discuss what
happens when we combine these features.

In Figure 7, the GTEx-dist and GTEx-exp features are used together as a two-dimensional vector, and here CwLORD++
procedure makes about 6.1% more discoveries than the LORD++ procedure. In Figure 8, CwLORD++ uses all the three
available features and makes about 6.4% more discoveries than LORD++. These results indicate that additional contextual
information could be helpful in making more discoveries.
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Figure 7: Results on GTEx dataset with GTEx-dist and GTEx-exp used together as a 2-dimensional contextual feature
vector in CwLORD++.
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Figure 8: Results on GTEx dataset with GTEx-dist, GTEx-exp, and GTEx-PhastCons used together as a 3-dimensional
contextual feature vector in CwLORD++.

G SAFFRON Procedure

Let us start with a quick introduction to the SAFFRON procedure proposed by (Ramdas et al., 2018). Since SAFFRON can
be viewed as an online analogue of the famous offline Storey-BH adaptive procedure (Storey, 2002), we start a description
of the Storey-BH procedure.
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In the offline setting where p-values are all available, the rejection rule is to reject all p-values below some threshold s,
meaning thatR(s) = {i ∣ Pi ≤ s}. Thus an oracle estimate for FDP is given by

FDP∗(s) ∶= ∣H0∣ ⋅ s
∣R(s)∣ ∨ 1

.

The world oracle means that FDP∗ cannot be calculated, sinceH0 is unknown. The BH method overestimates FDP∗(s) by
the empirically computable quantity

F̂DPBH(s) ∶=
n ⋅ s

∣R(s)∣ ∨ 1
,

and chooses the threshold ŝBH(s) = max{s ∶ F̂DPBH(s) ≤ α}. However, (Storey, 2002) noted that the estimate of F̂DPBH(s)
is conservative, and thus proposed a different estimate (referred to as Storey-BH) as

F̂DPSt-BH(s) ∶=
n ⋅ s ⋅ π̂0
∣R(s)∣ ∨ 1

,

where the fraction of nulls π̂0 is estimated by

π̂0 ∶=
1 +∑ni=1 1{Pi > λ}

n(1 − λ) ,

with a well-chosen λ. There is a bias-variance trade-off in the choice of λ. When λ grows larger, the bias of π̂0 grows
smaller while the variance becomes larger. Through numerical simulations (Storey, 2002) demonstrated that there could be
an increase in power (over the BH procedure) with this adaptivity.

Similarly, in the online setting, the oracle FDP estimate now is

FDP∗(T ) ∶=
∑t∈[T ],t∈H0 αt

R(T ) ∨ 1

The connection between SAFFRON and LORD/LORD++ is the same as that between Storey-BH and BH. Empirically,
LORD/LORD++ overestimates the oracle FDP∗(T ) as

F̂DPLORD(T ) ∶=
∑t∈[T ] αt

R(T ) ∨ 1

SAFFRON estimates the amount of alpha-wealth that was spent testing nulls so far, which is analogous to the proportion of
nulls in the offline setting, and controls the following overestimate of oracle FDP,

F̂DPSAFFRON(T ) ∶=
∑t∈[T ] αt

1{Pt>λt}

(1−λt)

R(T ) ∨ 1
,

where {λt}∞t=1 is predictable sequence of user-chosen parameters in interval (0,1). Note that when λt = 0, it recovers
F̂DRLORD(T ). When λt is chosen to be a constant λ for all t, then SAFFRON procedure can be viewed as an instance of the
GAI framework. It starts off with some alpha-wealth (1 − λ)W0 < (1 − λ)α, and only loses wealth when testing candidate
with p-values Pt > λ, and gains wealth of (1 − λ)α on every rejection except the first.

Ramdas et al. (2018) proved that, under some constraints, SAFFRON can control online FDR at given level α by showing
that

FDR(T ) ≤ E[F̂DPSAFFRON(T )].

These results can also be extended to a weighted version of SAFFRON. Akin, to weighted LORD++, we can define weighted
SAFFRON as follows.

Definition 5 (Weighted SAFFRON). Given a sequence of p-values, (P1, P2, . . . ) and weights (ω1, ω2, . . . ), apply SAF-
FRON with level α and the parameters {λt} to the weighted p-values (P1/ω1, P2/ω2, . . . ).

Next proposition shows that the above weighted SAFFRON can still control online FDR at any given level α under the
condition (24).
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Proposition 3. Suppose that the weight distribution satisfies the informative-weighting property in (24). Suppose that
p-values Pt’s are independent, and are conditionally independent of the weights ωt’s given Ht’s. Considering the weighted
SAFFRON rule with monotone αt and λt, we have

FDR(T ) ≤ E[F̂DPweighted-SAFFRON(T )].

The proofs of Proposition 3 of weighted SAFFRON are just simple extensions of the proofs of Lemma 2 and Theorem 1 in
(Ramdas et al., 2018), and the techniques of extension are almost the same as that in the proof of 1, thus they are omitted
here.

We now present some empirical evidence that contextual information could help with SAFFRON too.

Experiments with SAFFRON. We consider exactly the same setting as with the synthetic data experiments in synthetic
data experiments, and train a context-weighted SAFFRON (referred to as CwSAFFRON) in the same way as CwLORD++.
With varying fraction of non-nulls, Figure 9 reports the maximum FDP and statistical power (TDP) of CwSAFFRON along
with three other procedures, SAFFRON, CwLORD++, and LORD++. We observe that SAFFRON and CwSAFFRON
have FDR greater than the nominal level of 0.1 when the fraction of non-nulls π1 is small (less than 0.3), but is below the
nominal level when π1 gets larger. And the FDR of both LORD++ and CwLORD++ are generally much smaller than that of
SAFFRON and CwSAFFRON. On the other hand, the power of CwSAFFRON dominates that of SAFFRON for all π1, and
is larger than that of CwLORD++ when π1 exceeds 0.3. As the fraction of non-nulls increases, CwSAFFRON achieves
a faster increase in power than CwLORD++. A similar phenomenon can be also seen between SAFFRON and LORD++
(which was also noted by (Ramdas et al., 2018)).
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Figure 9: The average of max FDP and TDR (power) for our proposed CwSAFFRON, CwLORD++, along with SAFFRON
and LORD++ with varying the fraction non-nulls (π1) under the normal means model. The nominal FDR control level
α = 0.1. As mentioned in the description of the synthetic data experiments, the average of max FDP is an overestimate of
FDR.
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