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ABSTRACT
Aiming at a better understanding of the search goals in the user
search sessions, recent query recommender systems explicitlymodel
the reformulations of queries, which hopes to estimate the intents
behind these reformulations and thus benefit the next-query rec-
ommendation. However, in real-world e-commercial search sce-
narios, user intents are much more complicated and may evolve
dynamically. Existing methods merely consider trivial reformula-
tion intents from semantic aspects and fail to model dynamic re-
formulation intent flows in search sessions, leading to sub-optimal
capacities to recommend desired queries. To deal with these limi-
tations, we first explicitly define six types of query reformulation
intents according to the desired products of two consecutive queries.
We then apply two self-attentive encoders on top of two pre-trained
large language models to learn the transition dynamics from se-
mantic query and intent reformulation sequences, respectively. We
develop an intent-aware query decoder to utilize the predicted
intents for suggesting the next queries. We instantiate such a frame-
work with an Intent-aware Variational AutoEncoder (IVAE) under
deployment at Amazon. We conduct comprehensive experiments
on two real-world e-commercial datasets from Amazon and one
public dataset from BestBuy. The numerical results and ablation
studies demonstrate the effectiveness of IVAE. Specifically, IVAE
improves the Recall@15 by 25.44% and 60.47% on two Amazon
datasets and 13.91% on BestBuy, respectively.
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1 INTRODUCTION
In modern online search services, users may make multiple search
attempts before finding the desired products. This reformulation
process could be even longer when users perform complex search
tasks. To alleviate such search difficulty, query recommender sys-
tems [3, 14, 15, 29, 34] (e.g., related search widgets on Amazon) are
becoming integral components by suggesting candidate queries that
reflect the user search intents to help refine their queries. To better
understand the user intents, session-based query recommendations
that learn sequential patterns in user historical query logs have been
investigated to make more precise recommendations [33, 35, 41].

However, the development of session-based query recommender
systems is restricted due to the noise and the ambiguity in the query
logs introduced by the imprecise articulations of hidden search in-
tents. To alleviate such problems, recent studies resort to query
reformulations to better understand the inherent logic behind the
user searching processes [6, 17] since the series of reformulations
are the visible manifestations of their search intents. For example,
Jiang and Wang [17], Guo et al. [13], and Mitra [30] explicitly learn
the reformulation vector representations by assuming that the re-
formulation is the semantic differences between queries by either
adding/deleting terms.

Despite the success of the above methods for web search, query
reformulation is under-explored in the e-commercial product search
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“magic keyboard” “keychron keyboard” “logitech mouse”

specify the brand substitute the brand turn to complementary item

“keyboard”

(a) Queries: “keyboard”, “magic keyboard”, “keychron keyboard ”, “logitech mouse”.

”nike" “nike shoes” “blue nike shoes” “black nike shoes”

specify the type specify the color substitute the color
(b) Queries: “nike”, “nike shoes”, “blue nike shoes”, “black nike shoes”.

Figure 1: The query reformulation intents are complex in e-
commerce: (a) two consecutive queries might be semantically
unrelated but target closely related products (e.g., comple-
mentary items); (b) there are sequential patterns when users
reformulate the queries in a session.

domain, where the queries are more complicated and dynamically
evolving. Concretely, a user may enter product-related terms such
as brand, resulting in consecutive queries that are semantically
dissimilar being relevant in terms of their desired products. Specifi-
cally, an example, as shown in Fig. 1(a) would be { "keyboard", "magic
keyboard", "keychron keyboard", "logit mouse" }, which first specifies
or substitutes the search goal, then switches to a complemen-
tary item. The two consecutive queries { "keychron keyboard", "logit
mouse" } are semantically dissimilar, but we can easily observe a
complementary relationship between the desired items of the two
queries. Existing methods cannot reveal such hidden relationships
as they merely compare the pairwise query semantics.

In addition to the above-described complicated pairwise reformu-
lation intents, it is also observed that there exists dynamic evolution
of intents when a user reformulates the search queries [6]. For exam-
ple, by merely investigating the reformulation sequence in Fig. 1(b):
{ "nike", "nike shoes", "blue nike shoes", "black nike shoes" }, we can ob-
serve that the user starts by specifying the queries for the first two
reformulation phases, then reformulates the query to find substi-
tuted items. As shown in Figure 2, we also observe similar patterns
while conducting empirical studies on the Amazon dataset. Take
the third row for instance, 0.69% of the total Substitution intents
show on the first time step, while 28% of them appear on the last
time step. The users may equivalently reformulate their queries at
an early stage and keep specifying them. Then, they shift to other
related items by substituting or generalizing their queries. We will
describe such statistics in detail in Sec. 4.1.2. Understanding the
sequential dynamics behind the query reformulations can provide
a strong signal for predicting the intent of the next search and thus
can narrow down the recommendation scope for the next query.
However, modeling such sequential patterns of reformulation in-
tents from the relationships between input queries and the desired
products is still under-explored.

Consequently, we are interested in developing a model to bridge
the above gaps by explicitly modeling the dynamic intent flow from
both semantic and product-related perspectives. To achieve this
goal, we should deal with two major challenges. First, the intents
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Figure 2: Intent estimation statistics on Session-AU. The x-
axis is the position in a query sequence, and the y-axis is the
intent type: Equivalence, Specification, Substitution, Gener-
alization, Complement, and Irrelevant. We obtain the intent
prediction from the static intent estimator and analyze the
distribution of each intent type w.r.t the corresponding posi-
tion.

for reformulating the queries in e-commercial product search are
under-defined. It is challenging to get the ground-truth label of a
reformulation intent merely from the semantic relations between
two queries. Second, to deal with unseen queries, conventional
works learn vocabulary representations from scratch [13, 17, 35].
Thus the embeddings of queries that are merely learned from such
sparse and noisy domain-specific datasets encode less semantic
meanings, exacerbating the difficulty of query recommendation.

To address the above challenges, we propose a novel framework
named Intent-Aware Variational AutoEncoders (IVAE) for query
recommendation tasks. IVAE consists of the following key designs:
1) We first formally define six types of reformulation intents accord-
ing to the relationships between the desired items. We then train a
language-model-enhanced reformulation intent estimator, which
takes a pair of consecutive queries as input and predicts the corre-
sponding intents based on extremely limited annotations. For all
unlabeled pairs of consecutive queries, the predictions from the in-
tent estimator will be used as their pseudo-labels for the subsequent
learning procedure. 2) After extracting a reformulation sequence
by estimating every consecutive query pair using the trained intent
estimator from the original query sequence, we explicitly model the
evolving dynamics of user intents using a sequential model. Then
our method can predict the next reformulation intents considering
the historical reformulation behaviors. We further utilize the pre-
dicted reformulation intents to facilitate the prediction of the next
query. 3) We employ a frozen Pre-trained Large Language Model
(PLLM) to generate the input query features instead of one-hot
vocabulary indices. This not only helps to alleviate the data sparsity
issue but also enables our method to handle cold-start sessions and
unseen queries without the additional computational burden of
fine-tuning the PLLM. We also employ an additional regularization
term, named DeepWhitening on query embeddings to get rid of the
PLLMs’ anisotropic problem, which results in poorly semantically
encoded query representations [12, 22, 36]. We incorporate these
key designs in a Variational AutoEncoder for its merits of control-
lable generation and robustness to uncertainty/noise from input
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queries and the intent estimator. Our designs are also compatible
with other AutoEncoders, e.g. DAE, MAE. The main contributions
of this paper are:

1) To our best knowledge, we are the first to explicitly model the
dynamic intent flows in terms of both semantic and product-
related perspectives, which is an important real-world e-
commercial problem under-explored. We also inject such
sequential intent estimations into the generation of the next
query to improve the query recommendation performance
in e-commerce.

2) We propose a new framework named IVAE to improve e-
commercial query recommendations by modeling intent dy-
namics and addressing the issues of data noise and unseen
queries simultaneously.

3) We collect two real-world datasets from Amazon and one
public dataset from BestBuy, and conduct extensive experi-
ments on real-world e-commercial datasets. IVAE consis-
tently outperforms the baseline methods on all datasets.
Especially for Recall@15, IVAE improved the performance
by 25.44%, 60.47% on two Amazon datasets, and 13.91% on
BestBuy, respectively.

2 RELATEDWORKS
2.1 Session-based Query Recommendation
Session-based query recommendation, which aims to predict the
next possible query according to the historical query records within
the current session, has been investigated for decades in the web
search areas. A line of work applies sequential models over the
query logs that implicitly model the semantic transitions between
query embeddings as reformulation signals. As a pioneering work,
HRED [35] adopts a hierarchical encoder-decoder framework, where
both the encoder and decoder are implemented with RNNs. Chen
et al. [5], Dehghani et al. [9] and Mustar et al. [31] use transformer
to learn the sequential patterns from the historical queries. Ah-
mad et al. [1] adopts a multi-task training paradigm that combines
the query recommendation task with a document ranking task.
Furthermore, the query recommendation task is handled with the
hierarchical RNN resembling architecture in HRED [35]. Ahmad
et al. [2] further enriches Ahmad et al. [1] with click information.

Another line of work explicitly learns a reformulation represen-
tation from query embeddings by assuming that the reformulations
either add or delete terms from source queries. Guo et al. [13] first
estimates the latent intent of each query, then learns unique repre-
sentations for each query of different intent types. The final query
representation is the weighted sum of representations of different
types, where the weights are simply the probability estimation
of each intent type. [30] learns the distributed representation of
queries and uses them to implicitly represent query reformulations
that can map similar query changes closer in the latent space. Jiang
and Wang [17] assumes that the reformulations between consec-
utive queries are either adding or deleting some terms from the
original query. It then feeds the difference between two consecutive
queries as additional features into an RNN model for predicting the
next query. However, these methods merely model intents from
semantic aspects of two consecutive queries and fail to consider

the complicated intents in terms of desired objective and dynamic
intent evolution.

Session information also has been intensively investigated for
product recommendation [18, 23, 24, 28, 37, 39, 40, 43], which apply
the sequential models, e.g., RNN, LSTM or Self-attention modules
over the sequence of item embeddings to learn the transition pat-
terns from such sequences and predict next possible items.
2.2 Pre-trained Large Language Models in Web

Search
Pre-trained Large Language Models (PLLMs) [4, 8, 10, 21, 27, 32]
have become integral components in natural language process-
ing. Recently, many works have introduced PLLMs to web search
tasks [7, 16, 26, 44] and have achieved significant improvement.
However, the sentence representation directly from PLLMs poorly
encodes the semantic meanings [22], as they are pre-trained by
optimizing word token prediction task given context. A line of
works points out the problem of anisotropy [12, 19, 22, 36, 42] that
the cosine similarity between arbitrary sentence representations
is averagely greater than 0.9. This phenomenon hinders the ap-
plication of PLLMs for sentence-level subsequent tasks based on
semantic similarities. Current methods tend to design fine-tuning
methods that apply contrastive learning paradigm [12, 19, 42] or
post-processing approaches [22, 36] to map the sentence embed-
dings into the isotropic space. However, the above approaches are
insufficient for session-based query recommendations as they only
consider the pair-wise sentence similarity independently. Further-
more, fine-tuning and post-processing are not suitable for end-
to-end optimization in inductive settings. Few works investigate
transferring knowledge learned from PLLM to session-based query
recommendation tasks, as sequential modeling is much more chal-
lenging than simple retrieval tasks. Mustar et al. [31] investigates
the potential of fine-tuning the PLLM by maximizing the seman-
tic similarity between the target query and the concatenation of
all previous queries. They also designed a hierarchical framework
using the PLLM as the query encoder.

3 METHODOLOGY
In this section, we introduce IVAE in detail, with a high-level il-
lustration of IVAE presented in Fig. 3. IVAE consists of four key
components: 1) We first train the Static Intent Estimator with
extremely limited annotations from a product perspective. 2) We
employ an Dynamic Intent Encoder with a self-attention layer
to model the evolving dynamics of reformulation intents. 3) Query
Encoder: to overcome the data sparsity issue and handle unseen
queries, we employ a frozen PLLM followed by a self-attention
layer to learn semantic dynamics of input queries. 4) Finally, we
design the Intent-Aware Query Decoder with a multi-head self-
attention layer scaled by intent estimations from the dynamic intent
encoder. Next, we introduce the details of each component.

3.1 Problem Formulation
We target a real-world e-commercial query recommendation task.
The input is a set of query sessions: S = {s1, · · · , s |S | }, and a query
set Q = {q1, · · · , q | Q | }, where s𝑖 represents the 𝑖-th session. Each
session corresponds to a sequence of queries s𝑖 = [q𝑖,1, · · · , q𝑖,𝑇 ],
and each query consists of a sequence ofwords q𝑖, 𝑗 = [w1

𝑖, 𝑗
, · · · ,w𝑀

𝑖,𝑗
],
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where𝑇 and𝑀 are the maximum session/query length respectively.
We pad each session and query so that all sessions and queries
are aligned. Then, for each session s𝑖 , we aim to predict the next
most possible query q𝑖,𝑇+1. In the remaining parts, we use bold
roman symbols to represent the raw input and the bold italic
symbols to represent the corresponding vectorized representations.
For instance, q𝑖 denotes the raw input consisting of word tokens of
the 𝑖-th query, whereas 𝒒𝑖 denotes its vectorizations.

3.2 Static Estimations of Reformulation Intents
3.2.1 Explicit Definitions of Reformulation Intent Types. Existing
methods model the reformulation intents directly from the differ-
ences between semantic query representations, as they assume
that the query reformulations in web search either add or delete
terms from the original query. However, in e-commercial prod-
uct search scenarios, two consecutive queries may be semantically
dissimilar but relevant in terms of the usage of their desired prod-
ucts, i.e., the relationships between desired products are substitu-
tion/complement, etc.

To this end, we explicitly define the following six types of re-
formulation intents according to underlying relations between the
two desired products:

• Equivalence: the expected products are equivalent.
• Specification: the user adds attributes expecting higher
retrieval precision.

• Substitution: the user replaces attributes expecting substi-
tute products.

• Generalization: the user removes attributes expecting higher
retrieval recall.

• Complement: the user expects complementary products.
• Irrelevant: the expected items are of different product types,
and there are no complementary relationships.

To explicitly model the product-related reformulation intents, we
need to address the following challenges: 1) It is hard to obtain
ground-truth labels, as we have tens of millions of query records
but extremely limited intent annotations. 2) The reformulation in-
tent might be complicated, e.g., the transition from "red shoes" to
"white Adidas shoes" contains both specification and substitution re-
formulation intents. To address these challenges, we use the limited
intent annotations to fine-tune a PLLM that takes a pair of queries
as input and predicts the corresponding reformulation intent type,
and use the predicted soft logits as soft-pseudo-labels of unseen
reformulations during the subsequent training procedure.

3.2.2 Static Intent Estimator. With the limited annotated intent
labels, we wish to learn a predictive model which can estimate
the intent given a pair of two consecutive queries. Specifically, we
fine-tune a separate PLLM which takes a pair of queries as input
and generates a vector denoting the probability that the transition
between queries belongs to each reformulation intent:

𝒊𝑡 = Softmax[PLLM𝜙 (q𝑡−1, q𝑡 )] ∈ R1×𝐶 , (1)

where 𝐶 is the number of reformulation intents (𝐶 = 6 as defined
in Sec. 3.2). The parameters of the PLLM 𝜙 are optimized using
cross-entropy loss between the reformulation intents predicted
by the PLLM and the limited ground-truth labels. It is also worth

noting that the static intent estimator is trained ahead of other
model components.

3.3 Dynamic Intent Encoder
3.3.1 Sequential Modeling of Intents. After the intent estimator
is well-trained, we freeze its parameters and use it to estimate
the intents for every consecutive query pair. Thus by obtaining a
sequence of estimated intents in a session 𝑰 = [ 𝒊1, · · · , 𝒊𝑇 ] ∈ R𝑇×𝐶 ,
we hope to predict the next intent 𝒊𝑡+1 given the previous intents
𝒊≤𝑡 , i.e., learning an autoregressive sequential model. To reach this
target, we train a masked self-attention layer (i.e., we mask the
tokens after 𝑡 to avoid information leakage as we would like to
predict the intent at 𝑡 + 1), which takes the features of previous
intents as input and outputs the predicted intent of the next step:

𝜶𝑡 = Softmax ©­«
[
( 𝒊𝑗𝑾𝑞) ( 𝒊𝑡𝑾𝑘 )⊤

√
𝐶

]𝑡
𝑗=1

ª®¬ ∈ R1×𝑡 ,
𝒊′𝑡 = MSA( 𝒊≤𝑡 ) =

𝑡∑︁
𝑗=1

𝛼𝑡, 𝑗 · 𝒊𝑗𝑾 𝑣,

(2)

where 𝑾𝑞,𝑾𝑘 , and 𝑾 𝑣 are the linear transformation matrices
in self-attention of dimension R𝐶×𝐶 . MSA(·) is the masked-self-
attention layer. Note that we also equip positional embeddings to
the input intent sequence so that the model is aware of the relative
positions of different intents. 𝒊′𝑡 is the estimation of the next step
intent 𝒊𝑡+1, e.g., 𝒊′1 is the prediction of 𝒊2, and 𝒊′

𝑇
is the prediction of

𝒊𝑇+1. For convenience, we denote the parameters of the MSA(·) in
Intent-Encoder by 𝜃1.

3.4 Query-Encoder
3.4.1 Embedding Layer with PLLM. For a query q = [w1, · · · ,w𝑀 ]
where each w𝑖 represents a word token, we feed it into another
PLLM (e.g., BERT. Other encoders also applicable.) to obtain the
corresponding input query features. During the whole training
procedure, we freeze the PLLM’s parameters to avoid high compu-
tational costs and catastrophic forgetting. Unlike traditional query
recommendation models that learn the word token representation
from scratch, the utilization of the large language model benefits
our method from the rich semantic information of queries. Besides,
such a practice can help address the problem of cold-start queries.
Specifically, when a brand new query comes into the system, our
method is able to generate a meaningful query embedding instead
of initializing a random embedding.We denote the pre-trained large
language model by PLLM(·), and then apply a shallow MLP model
on top of PLLM’s output in order to project the embeddings into a
different latent space. Formally, this can be written as

𝒒𝑡 = MLP𝜃2 (PLLM(q𝑡 )), (3)

where 𝜃2 denotes the parameters of the MLP model. Besides the
capacity to exploit the rich semantic information in textual data,
an additional sequential model is required to learn the transition
patterns in query sequences and make predictions for the next
possible queries. To this end, we employ a VAE framework with
both the encoder and the decoder implemented with masked self-
attention (MSA) layers. We introduce the encoder in the next part
and the decoder in Sec. 3.5.
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Figure 3: Illustrates the framework of IVAE. For an input session, we extract both the query sequence and the query reformulation
sequence, which are fed into PLLM and intent estimator to obtain query features and reformulation intents correspondingly.
𝑞0 is the artifact query, which is only used to infer the first intent type. We apply the masked self-attention layer on top of the
query feature sequence and reformulation estimation sequence to learn the dynamic sequential patterns. On the right side
of the figure is the detailed illustration of the intent-aware decoder, where the dynamic intent estimation based on previous
intent behaviors is used as the coefficients of weighted concatenation among different heads of multi-head self-attentions.

3.4.2 Masked Self-Attention Layer. The encoder of the VAE aims to
learn the posterior distribution 𝑝𝜃3 (𝒛𝑡 |𝒒≤𝑡 ) ∼ N (𝝁𝑡 , 𝚺𝑡 ), where 𝒛𝑡
is the hidden state of the query at time step 𝑡 , 𝒒≤𝑡 are the queries no
later than 𝑡 , and 𝚺𝑡 = diag(𝝈2

𝑡 ) is the diagonal covariance matrix.
Formally, the mean 𝝁𝑡 and standard deviation 𝝈𝑡 are estimated as

𝝁𝑡 = MSA𝜇 (𝒒≤𝑡 ), and 𝝈𝑡 = MSA𝜎 (𝒒≤𝑡 ), (4)

where MSA𝜇 (𝒒≤𝑡 ) and MSA𝜎 (𝒒≤𝑡 ) are two masked self-attention
layers described in Eq. 2 to estimate the corresponding mean 𝝁𝑡 and
covariance 𝚺𝑡 of the hidden state 𝒛𝑡 , given all the queries before 𝑡 .

With the learned distribution, we are able to sample the latent
vector for each state with the reparameterization trick:

𝒛𝑡 = 𝝁𝑡 + 𝜺 ⊙ 𝝈𝑡 , (5)

where 𝜺 is noise sampled from standard Normal distribution.

3.5 Intent-aware Query-Decoder
Previous methods either entangle the intent implicitly during the
query generation or train a query intent classifier first, and then use
it as the coefficient of query representation learning. However, the
generation of the query recommendation is a complex process, thus
implicit entangling or being used as a coefficient is insufficient. To
mitigate the above limitations, we devise an intent-aware decoder
that takes into account both the predicted next queries (with intent
estimation semantically) and the predicted next intent from the
product-related perspective when generating the next query.

3.5.1 Multi-head masked self-attention. Let 𝒛1· · ·𝑇 be the sampled
latent vectors of queries (with reparameterization trick), i.e., 𝒛𝑡 ∼
N(𝝁𝑡 , 𝚺𝑡 ), we first use multi-head masked self-attention mecha-
nism to generate a series of output vectors for each time step:

𝒒̃ 𝑗𝑡 = MSA𝑗 (𝒛≤𝑡 ), 𝑗 = 1, · · · ,𝐶. (6)

Note that we set the number of attention heads as the number of
reformulation intents 𝐶 , so that each head can encode the specific
information for each type of intent.

3.5.2 Intent-scaled weighted concatenation. To inject the intent
knowledge into the decoder model, we define the final estimated
query representation as a weighted concatenation of the multi-head
outputs up to a linear transformation:

𝒒′𝑡 = Concat
( [
𝑖′
𝑡,( 𝑗 ) · 𝒒̃

𝑗
𝑡

]𝐶
𝑗=1

)
𝑾𝑂 , (7)

where 𝒊′𝑡 is the predicted (normalized) intent vector at time 𝑡 , and
𝑖′
𝑡,( 𝑗 ) is its 𝑗-th entry. Then with the output representation at time
step 𝑡 , i.e., 𝒒′𝑡 , we are able to compute a rating score for a target
query𝑘 as 𝑟𝑡,𝑘 = 𝒒′𝑡

⊤ ·𝒒𝑘 . We denote the parameters in Intent-aware
Query-Decoder by 𝜃4.

3.6 Optimization
The optimization of IVAE consists of two steps: 1) we first opti-
mize the intent estimator, i.e., fine-tuning the large language model
PLLM𝜙 in Eq. 1 by minimizing the cross-entropy loss between the
predicted intents and limited ground-truth labels; 2) We freeze
the intent estimator’s parameters after the first step ends. The re-
maining modules are jointly optimized with the next-query (Sec.
3.6.1) and next-intent (Sec. 3.6.2) prediction tasks, together with a
whitening regularization (Sec. 3.6.3) over the query representations.

3.6.1 Next query prediction. For the reconstruction term in VAE’s
optimization, we target a next-query prediction task. Given a ses-
sion s = [q1, · · · , q𝑇 ], the reconstruction loss is defined as:

Lrec = −
𝑇−1∑︁
𝑡=1

(
log𝜎 (𝑟𝑡,𝑡+1) + log(1 − 𝜎 (𝑟𝑡,𝑘 ))

)
, (8)
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where 𝑟𝑡,𝑡+1 = 𝒒′𝑡
⊤ · 𝒒𝑡+1 is the rating of the ground-truth positive

example 𝒒𝑡+1, whereas 𝑟𝑡,𝑘 = 𝒒′𝑡
⊤ · 𝒒𝑘 is the rating of a randomly

selected negative query 𝒒𝑘 .
For the KL-divergence term, we minimize the KL-divergence be-

tween the estimated posterior distribution N(𝝁𝑡 , 𝚺𝑡 ) and standard
Normal distribution every time step, and the analytical solution is:

Lkl =
𝑇−1∑︁
𝑡=1

𝐷∑︁
𝑑=1

(𝜎2
𝑡,𝑑

+ 𝜇2
𝑡,𝑑

− 1 − log𝜎2
𝑡,𝑑

), (9)

where 𝐷 is the dimension of 𝝁𝑡 and 𝚺𝑡 .

3.6.2 Next intent prediction. To enable the model with the capa-
bility to predict next intent according to previous reformulation
behaviors, we minimize the cross entropy loss between the output
of the intent encoder at time step 𝑡 , i.e., 𝒊′𝑡 and the input intent of
the next step 𝒊𝑡+1,

Lintent =
𝑇−1∑︁
𝑡=1

ℓce ( 𝒊′𝑡 , 𝒊𝑡+1), (10)

where ℓce is the cross entropy loss.

3.6.3 Preventing anisotropic issues. Asmentioned above, the PLLMs
have anisotropic issues where only a few dimensions of query em-
beddings are used to encode the information related to the input,
resulting in high similarity scores of different queries (average co-
sine similarities of all query pairs are greater than 0.9) that limit
the model’s representation capacity. We also visualize the query
feature distribution in Appendix A.1 indicating that the anisotropic
problems of PLLMs indeed exist in our task. To mitigate this issue,
we adopt a simple uniformity loss as regularization [38], termed
as DeepWhitening. DeepWhitening forces the query embeddings
to distribute isotropically in the latent space mapped by𝑀𝐿𝑃𝜃2 in
Eq. 3. Formally,

LDW = log
∑︁
𝑖, 𝑗

[
𝑒−∥𝒒𝑖−𝒒 𝑗 ∥22/2

]
, (11)

where 𝒒𝑖 and 𝒒 𝑗 are two input query embeddings within the current
batch. With such regularization term, we can omit burdensome
fine-tuning/post-whitening, and enable an end-to-end optimization
procedure directly for query recommendation tasks.

The overall objective function is simply a summation of the terms de-
scribed above. Denote the model’s parameters as 𝜃 = [𝜃1, 𝜃2, 𝜃3, 𝜃4],
then

𝜃∗ = argmin
𝜃

L(𝜃 ) =Lrec (𝜃1, 𝜃2, 𝜃3, 𝜃4) + Lkl (𝜃2, 𝜃3)

+ Lintent (𝜃1) + LDW (𝜃2) .
(12)

4 EXPERIMENTS
In this section, we conduct experiments to evaluate the effectiveness
of IVAE by answering the following research questions:

• RQ1: What’s the performance of IVAE on real-world query
recommendation tasks comparedwith othermethods? (Sec.4.2)

• RQ2: Are the key designs in IVAE, such as the PLLM with
proper regularization, the utilization of intent information
beneficial for satisfactory improvement? (Sec. 4.3)

• RQ3: How does the performance of IVAE vary with different
query frequencies and query lengths? (Sec. 4.3)

4.1 Experiment setups
4.1.1 Datasets. We use two real-world e-commercial datasets col-
lected from search logs of Amazon, Session-AU and Session-CA,
where AU and CA denote Australia and Canada, respectively. The
queries within a session are first sorted according to the times-
tamps and then sliced into sub-sessions by purchase-leading queries.
We only keep sessions longer than two. We also adopt publicly
available sessions released by BestBuy1. The differences between
the BestBuy dataset and the former two are that the sessions in
BestBuy do not end with purchase behavior, and the sessions of
BestBuy dataset may span several days or even months. Thus,
the historical queries within a session may be more noisy and
misleading for predicting the last query. Finally, we present the
statistics of these datasets in Table 1. Following the common prac-
tice [11, 25], we randomly sample 10, 000 sessions from Session-AU
and Session-CA for evaluation and test, respectively. For BestBuy,
we sample 1, 000 instead. The rest of the sessions are used for train-
ing. We use the target queries that appeared in the test dataset as
our recommendation candidate queries.

4.1.2 Statistics of Intents. In addition, we gather statistics on the
intent types in our evaluation dataset from Session-AU as reported
in Table 2. We first obtain the predictions of each consecutive query
pair using the static intent estimator. We count the corresponding
intent types of the last reformulation and report their ratios. The
high ratio of Irrelevant intents suggests that reformulated queries
may be related to historical queries instead of the current ones,
necessitating the usage of historical queries. We also report the
precision of the static intent estimator, which is trained ahead of
other components using extremely limited annotations. Due to
the imbalance and noisy nature of the intent estimator, instead
of merely relying on its estimations for the prediction of the next
query, we need to take intent evolution into account for the correct
intent prediction. To further justify the necessity and rationality
of the usage of intent dynamics, we report the distribution of each
intent type w.r.t. their positions in a sequence using the static intent
estimator in Fig. 2. We can observe that there exist discernible
sequential patterns of each intent type. For instance, Equivalence
is highly likely to appear in the early stage, while Substitution and
Complement tend to appear afterward. Even if the intent estimator
is not 100% correct, we can analyze the previous intent estimations
and their positions to correct the next intent prediction.

Table 1: Statistics of datasets.

Dataset #sessions #queries avg. query freq. avg. seq. len.

Session-AU 1,621,374 1,575,659 6.05 6.23
Session-CA 516,117 724,602 5.72 4.07
BestBuy 83,305 97,690 5.83 4.97

4.1.3 Baselines. We select three types of baseline methods for
a comprehensive comparison: 1) three PLLM-based methods, in-
cluding DLKNN, Bert-Finetune, and SimCSE [12]; 2) two classical
sequential recommendation models, SASRec [18] and Bert4Rec [37];
3) two representative intent-aware query recommendation models,
HRED [35] and RIN [17].
1https://www.kaggle.com/c/acm-sf-chapter-hackathon-big/data

https://www.kaggle.com/c/acm-sf-chapter-hackathon-big/data
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Table 2: Statistics of Intent types in Session-AU.

Intent Equ Spe Sub Gen Com Irr

Ratio 5.53% 8.06% 8.65% 6.38% 11.81% 59.57%
Estimator Precision 95.49% 76.61% 72.99% 72.31% 92.96% 76.99%
Average Position 2.14 4.84 5.02 4.95 4.70 4.62

• DLKNN,Bert-Finetune and SimCSE utilize the same PLLM.
DLKNN applies k-nearest neighbors directly on the output of
PLLM to predict the next possible queries. Bert-Finetune fine-
tunes the PLLM bymaximizing the cosine similarity between
consecutive query pairs. SimCSE enhances the Bert-Finetune
with an additional contrastive learning objective.

• SASRec [18] first randomly initializes an embedding for
each query and applies a stack of self-attention layers to
predict the next possible queries.Bert4Rec [37]: The original
implementation of Bert4Rec is similar to SASRec, but has the
bi-directional self-attention layer. We enhance the Bert4Rec
using PLLM with regularization for fair comparison.

• HRED [35] applies hierarchical RNN over query sessions.
They first apply RNN to learn query representations. An-
other RNN is applied on top of these query representations
to extract sequential patterns from query sessions. RIN [17]
further enhances the HRED by explicitly modeling the differ-
ences between two query embeddings as reformulation. RIN
also employs GNN methods to learn query embeddings from
a term-query-website graph as the initialization of queries.
As we do not have website information in the e-commercial
scenario, we replace the query encoder components of HRED
and RIN by the PLLM with regularization.

4.1.4 Implementation Details. We implement our model with Py-
torch, and all the experiments are conducted on an Nvidia A100
GPU with 40GB memory. The model is optimized with Adam [20].
The pre-trained query encoder and static intent estimator adopt
similar architecture as that of the BERT base [10] (12 layers, 768
hidden size). During training, these two models are fixed, and their
outputs (query embeddings and static intent estimations) are fed
into a two-layer MLP and three masked-self-attention layers (MSA)
of hidden size 768. Two MSAs process the query embedding se-
quence to determine mean and variance separately, while one MSA
processes the intent estimation sequence to predict next intent prob-
abilities. The decoder is a six-head-self-attention layer of hidden
size 768. We use a learning rate of 0.0001, batch size of 1024, and
dropout rate of 0.5 for all datasets. To avoid overfitting, we employ
early stopping with patience of 100 epochs. For a fair comparison,
we tune the hyperparameters for all methods on the validation set.

4.2 Performance on Query Recommendation
We report the Top-K recommendation performance regarding Re-
call and NDCG of IVAE compared with other baseline methods in
Table 3. Our method IVAE consistently outperforms all baseline
methods in all metrics, which strongly demonstrates the efficacy of
IVAE. Besides, we have the following observations: 1) Compared
to DLKNN, Bert-Finetune, and SimCSE, our model IVAE consis-
tently improves the query recommendation performance, which

proves the effectiveness and necessity of utilizing all historical ses-
sion information. 2) Compared to the second-best model Bert4Rec
on Session-AU dataset, our model consistently improves perfor-
mance by over 15%. These results strongly support the effectiveness
of IVAE, as we equip Bert4Rec with PLLM and MLP, from which
we can conclude that the improvement is not majorly contributed
by adding more parameters. The improvements come from disen-
tangling the latent variables using VAE to make the model more
robust to noise. Moreover, the intent information, e.g., the estima-
tion of whether the previous query is irrelevant, also improves the
IVAE’s robustness to the noisy and misleading query records and
narrows the range of candidate queries. 3) Compared to DLKNN,
Bert-Finetune performs even worse on all three datasets. This phe-
nomenon indicates that anisotropic issues indeed exist in our task.
The collapse of Bert-Finetune supports the necessity of uniformity
regularization. 4) The baseline models that utilize historical queries
pairwisely or sequentially do not outperform the DLKNN on the
BestBuy dataset. The reason may be that the sessions in this dataset
span several days or even longer, making the historical queries more
noisy and misleading since the search goal is highly likely to be
different from that revealed by the historical queries. Despite the
noisy and misleading historical records, IVAE can still outperform
strong baseline DLKNN on this dataset, as IVAE can capture the
noisy interaction through VAE and irrelevant intent estimations.

4.3 Analysis of IVAE (RQ2 and RQ3)
4.3.1 Ablation studies. Our main contribution is proposing a novel
query recommendation method that captures the intent dynamics
using PLLMs with appropriate regularizers. Thus, the aim of the ab-
lation study is to examine the effectiveness of 1) the Intent Encoder,
2) the PLLM, and 3) the uniformity regularizer, i.e., DeepWhitening.
The comparisons, such as Transformer vs. RNN, VAE vs. AE/DAE,
and Uniformity vs. post-whitening, are not directly related to the
main goal of the ablation study and are omitted for brevity. For
variants without intent, we delete the Intent-Encoder; for variants
without PLLM, we use a learnable embedding as the input feature
for each query; for variants without DeepWhitening, we remove
LDW from the final loss computation.We report the performance of
different variants compared with the original IVAE on Session-AU
dataset in Table 4, and we report the average performance drop in
the last row compared to that of IVAE.

From the performance of different variants of IVAE, we have the
following observations: 1) If we only remove the Intent-Encoder,
the model IVAE’s performance will drop by 8.54%. We also report
the comparison between VAE and IVAE on all three datasets in
terms of Recall@40 and NDCG@40 in Appendix A.2, which in-
dicates that IVAE outperforms VAE on all datasets. These results
strongly support the effectiveness and necessity of utilizing intent
information for query recommendations. As explicitly modeling
such intent information can not only narrow down the query rec-
ommendation candidates but also make the model robust to noisy
and misleading interactions. Furthermore, the design of IVAE also
equips the model with the capability of controllable generation.
We report a case study over the controllable generation in Appen-
dix A.3. 2) Compared to the variants without PLLMs on columns 2,



KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Yu Wang et al.

Table 3: Overall Comparison. Boldface indicates the best performance while the underlined one indicates the second best. The
proposed IVAE achieves the best performance over all datasets across a variety of metrics

Dataset Metric DLKNN Bert-Finetune SimCSE SASRec Bert4Rec HRED RIN IVAE Improv.

Session-AU

Recall@15 0.2626 0.1471 0.2841 0.2741 0.3290 0.2689 0.2333 0.4127 25.44%
Recall@20 0.2917 0.1651 0.3144 0.3058 0.3697 0.3066 0.2719 0.4583 23.97%
Recall@40 0.3621 0.2178 0.3938 0.3919 0.4819 0.4091 0.3739 0.5762 15.69%
NDCG@15 0.1518 0.0761 0.1569 0.1615 0.1671 0.1274 0.1102 0.2188 30.94%
NDCG@20 0.1587 0.0803 0.1640 0.1691 0.1767 0.1363 0.1193 0.2296 29.94%
NDCG@40 0.1731 0.0911 0.1803 0.1867 0.1997 0.1572 0.1402 0.2537 27.04%

Session-CA

Recall@15 0.2259 0.1628 0.2325 0.1505 0.2246 0.1217 0.1553 0.3731 60.47%
Recall@20 0.2453 0.1808 0.2513 0.1682 0.2580 0.1432 0.1829 0.4228 63.87%
Recall@40 0.2945 0.2289 0.3055 0.2246 0.3444 0.2066 0.2665 0.5443 58.04%
NDCG@15 0.1372 0.0934 0.1400 0.0850 0.0970 0.0564 0.0728 0.1899 35.64%
NDCG@20 0.1417 0.0977 0.1444 0.0892 0.1129 0.0614 0.0793 0.2017 39.68%
NDCG@40 0.1518 0.1075 0.1555 0.1007 0.1384 0.0744 0.0963 0.2265 45.65%

BestBuy

Recall@15 0.1150 0.0580 0.0890 0.0400 0.0560 0.0620 0.0680 0.1310 13.91%
Recall@20 0.1400 0.0740 0.1120 0.0570 0.0730 0.0790 0.0860 0.1510 7.86%
Recall@40 0.1910 0.1280 0.1650 0.0970 0.1340 0.1320 0.1600 0.2110 10.47%
NDCG@15 0.0628 0.0242 0.0484 0.0159 0.0266 0.0263 0.0282 0.0640 1.91%
NDCG@20 0.0680 0.0280 0.0538 0.0199 0.0307 0.0304 0.0324 0.0688 1.17%
NDCG@40 0.0791 0.0389 0.0646 0.0281 0.0431 0.0411 0.0474 0.0809 2.28%

4, and 6, the IVAE outperforms substantially. This could be attrib-
uted to the sparsity nature of the dataset, as the query embeddings
merely learned from such highly noisy and sparse training datasets
encode fewer semantics than those from PLLM. 3) From another
aspect, by comparing IVAE with variants without DeepWhitening
on columns 3, 4, and 5, we can conclude that DeepWhitening helps
improve performance by addressing the issues of anisotropy. Al-
though the MLP can also alleviate the anisotropic issues to a certain
extent, DeepWhitening further improves by directly penalizing the
anisotropic query embeddings. It is simple yet effective and provides
a plug-and-play mechanism without fine-tuning the cumbersome
PLLMs. We also further examine the effect of DeepWhitening in
Appendix A.1. Because of the limited space, we do not report the
version directly using the normalized [CLS] embedding as model
input, as the model collapsed to the degenerate representation.

4.3.2 Impacts of session length. In this section, we split the test
sessions into eight groups according to their length. We compare
four models’ performance over different groups and report the ex-
periment results in Fig. 4. We chose DLKNN, SimCSE and Bert4Rec
for comparison, as they achieve second best performances on three
datasets respectively. Within Fig. 4, we can observe that: 1) IVAE
outperforms the other baseline models over all groups on both Re-
call@40 and NDCG@40. These results validate the effectiveness of
IVAE. 2) The performance of all models except DLKNN decreases as
the length of sessions increases. The reason might be that there are
more noisy queries for the long sessions. Without the capability of
being robust to the noise, the performance of models like Bert4Rec
decreases dramatically. DLKNN only recommends queries based
on semantic similarity without considering historical queries. Thus
the performance stays invariant to the session length. 3) SimCSE
performs better than Bert4Rec and DLKNN on short sessions, as it

introduces additional uniformity loss over query representations
and fine-tunes the PLLM by looking one step back. These factors
make SimCSE good at short sessions. This phenomenon also sup-
ports IVAE as we add uniformity loss and train the model by looking
back to all previous queries. Thus, IVAE performs much better for
short sessions but is also more robust to the noise in long sessions.
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Figure 4: Performance comparison w.r.t. session lengths.

4.3.3 Impacts of query frequency. We divide test sessions into eight
groups based on the frequency of target queries in the training
dataset. We then compare the performance of second-best models
(SimCSE, DLKNN, and Bert4Rec) with our model. We report the
results in Fig. 5 and have the following observations: 1) IVAE has
better results for all groups of queries that appear more than seven
times in the training dataset. 2) DLKNN and SimCSE outperform
IVAE for queries with low frequency, as these rare queries usually
have specific descriptions and search goals. Thus, historical infor-
mation is highly likely to be irrelevant. IVAE and Bert4Rec that
look back to all previous queries can extract little signal for such
query recommendation, resulting in decreased performance. 3) The
performance of IVAE and Bert4Rec improves as the frequency of
queries increases, while SimCSE performs the opposite. The reason
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Table 4: Ablation Study

Components
Intent ✗ ✓ ✓ ✓ ✗ ✗ ✓

PLLM ✓ ✗ ✓ ✗ ✓ ✗ ✓

DeepWhitening ✓ ✓ ✗ ✗ ✗ ✓ ✓

Session-AU

Recall@15 0.3781 0.1385 0.3408 0.1355 0.3338 0.1289 0.4127
Recall@20 0.4274 0.1632 0.3874 0.1589 0.3793 0.1531 0.4583
Recall@40 0.5415 0.2339 0.4994 0.2267 0.4918 0.2166 0.5762
NDCG@15 0.1908 0.0688 0.1703 0.0665 0.1655 0.0620 0.2188
NDCG@20 0.2024 0.0746 0.1813 0.0720 0.1762 0.0677 0.2296
NDCG@40 0.2258 0.0890 0.2042 0.0858 0.1992 0.0807 0.2537

avg. drop -8.54% -64.26% -17.03% -65.33% -18.79% -67.03% 0%

might be that the frequent queries are more likely to be relevant
to the historical queries that are two or more time steps back, and
IVAE and Bert4Rec can learn the global relevance from all historical
queries. IVAE is superior to Bert4Rec as it is more robust to the
noisy and misleading queries when considering all previous queries.
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Figure 5: Performance comparison with different target
query frequencies. IVAE performs better as the target query’s
frequency increases.

(a) IVAE (b) VAE

(c) DLKNN (d) Bert4Rec

Figure 6: Top-40 Ranked Queries from IVAE (our method),
VAE, DLKNN and Bert4Rec. Even though the input queries
(in Table 5) are noisy, IVAE can still give correct predictions.

4.4 Case Study
Finally, we analyze specific cases of the predicted queries by com-
paring the top-40 ranked queries from: IVAE, DLKNN, Bert4Rec,

and VAE (a variant of our model without intent information). We
report the recommended queries of these four models in the form of
the word cloud, as shown in Fig. 6, where the font size corresponds
to the rank of the query. We also report the input information of
these four models in Table 5. From the input data, we can observe
that there is a noisy query dog toy, and the target query noodle is a
complementary reformulation from the previous query. In Fig. 6,
we can observe that the IVAE correctly predicts the next poten-
tial query noodle, even though (as shown in Table 5) the static
intent estimation is incorrect, as the dynamic intent estimator can
re-estimate the potential intent considering the intent evolution.
Furthermore, the intent information also introduces diversity into
the query recommendation, e.g., fruit basket, and drinking game,
which are not semantically relevant to the historical queries but
might be complementary and inspiring queries.

Table 5: Case Study of Input Data

Historical Queries dog toy, Genoa Foods, apricot
Target Query noodle

Static intent estimator Irrelevant
Dynamic intent estimator Complement

5 CONCLUSION
In this paper, we have proposed IVAE for explicitly modeling the
complex reformulation intent evolving from both semantic and
product-related perspectives. To reach such desiderata, we first
explicitly define the six types of reformulation intents according to
the relationships between the desired items. Then, we extract an
additional reformulation intent sequence from the original query
sequence and apply the self-attention module over these two se-
quences, respectively, to learn the sequence transitions of queries
and intents. In the end, we propose an intent-aware decoder that
can generate candidate queries using the dynamic next intent es-
timations and next query estimations. Extensive experiments on
real-world query recommendation datasets demonstrate the effi-
cacy of the proposed method.
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A ADDITIONAL EXPERIMENTS
A.1 Effects of DeepWhitening
DeepWhitening provides a simple yet effective mechanism for high-
level sentence tasks e.g. query recommendation. It provides the
possibility to combine the PLLMs and the sequential models while
avoiding anisotropy. It plays a plug-and-play interface and can
also be applied to existing sequential approaches. In this section,
we equip the SASRec, Bert4Rec with the PLLM using the Deep-
Whitening, and report the results in Fig. 7, where SASRec-w/o DW,
Bert4Rec-w/o DW represent the variants without DeepWhitening,
SASRec-DW, and Bert4Rec-DW with DeepWhitening on the con-
trary. Compared to the vanilla version that learns query embedding
from scratch using the training data, the performance in terms of
both Recall@40 and NCDCG@40 of models with DeepWhitening
improves substantially. These phenomena prove the potential of
utilizing PLLMs and the effectiveness of DeepWhitening.
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Figure 7: The effect of DeepWhitening. We equip the Deep-
Whitening technique to different backbone models and com-
pare their corresponding performance. DeepWhitening can
boost the performance of all backbones.

To investigate whether the proposed DeepWhitening can really
mitigate the anisotropic issue, we further plot and compare the
query feature distribution of Session-CA with and without Deep-
Whitening in Fig. 8. As demonstrated in the figure, without the
regularization of DeepWhitening, the query features tend to be
concentrated, thus, are hard to discriminate. By contrast, Deep-
Whitening encourages query features to distribute uniformly in the
hypersphere.

A.2 Effects of Intents
We further compare IVAE with VAE that simply removes the Intent-
Encoder of IVAE on all three datasets. From the experimental results
reported in Fig. 9, we can observe that the intent information im-
proves the query recommendation performance consistently on
all datasets in terms of Recall@40 and NDCG@40. Especially for
dataset Session-CA, which has the most sparse sessions, the IVAE
managed to improve the Recall@40 compared to VAE is improved
from 0.2957 to 0.5443.
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Figure 8:We plot the query feature distributions (the first two
dimensions) with Gaussian kernel density estimation (KDE)
in R2 and von Mises-Fisher (vMF) KDE on angles for ran-
domly selected 10,000 queries from Session-CA dataset. Left
is the feature distribution without DeepWhitening, while the
right is that with DeepWhitening.
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Figure 9: The effect of Intent.We compare the performance of
our method with (IVAE) and without (VAE) the intent infor-
mation on Session-AU, Session-CA and BestBuy, respectively.
Adding the intent information can improve the model’s per-
formance on all datasets.

Table 6: Case Study of Controllable Generation from
Session-AU. We report the top-5 ranked queries from IVAE
and Bert4Rec.

rank IVAE with Equivalent intent estimation Bert4Rec
1 face mask reusable pm 2.5 filters for face mask
2 face masks virus protection kids face mask
3 face mask face mask reusable
4 face mask disposable reusable face mask
5 face masks disposable weddingstar face masks

A.3 Controllable Generation
The design of IVAE also equips the model with the capability of
controllable generation. Specifically, we can affect the query recom-
mendation process of the intent-aware decoder by manipulating
its input from the dynamic intent encoder. For example, we manu-
ally enlarge the probability estimation of equivalent reformulation
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intent and report the top-5 ranked queries for recommendation in
Tab. 6. For this case, we have historical queries as {face masks virus
protection, face mask disposable kids, face mask reusable kid, face

mask disposable} and the target query is face mask reusable. From
Tab. 6, we can observe that the top-ranked queries from IVAE are
all equivalent reformulations compared to those from Bert4Rec.
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