
CAE: Character-Level Autoencoder for
Non-Semantic Relational Data Grouping

Veera V S Bhargav Nunna
Amazon Web Services Inc.

Arlington, VA, USA
nunveera@amazon.com

Shinae Kang
Amazon Web Services Inc.

Arlington, VA, USA
kangshin@amazon.com

Zheyuan Zhou
Amazon Web Services Inc.

Arlington, VA, USA
zheyuanz@amazon.com

Virginia Wang
Amazon Web Services Inc.

Seattle, WA, USA
vawang@amazon.com

Sucharitha Boinapally
Amazon Web Services Inc.

Dallas, TX, USA
bsuchi@amazon.com

Michael Foley
Amazon Web Services Inc.

Arlington, VA, USA
folem@amazon.com

Abstract—Enterprise relational databases increasingly con-
tain vast amounts of non-semantic data—IP addresses, prod-
uct identifiers, encoded keys, and timestamps—that challenge
traditional semantic analysis. This paper introduces a novel
Character-Level Autoencoder (CAE) approach that automatically
identifies and groups semantically identical columns in non-
semantic relational datasets by detecting column similarities
based on data patterns and structures. Unlike conventional
Natural Language Processing (NLP) models that struggle with
limitations in semantic interpretability and out-of-vocabulary
tokens, our approach operates at the character level with fixed
dictionary constraints, enabling scalable processing of large-scale
data lakes and warehouses. The CAE architecture encodes text
representations of non-semantic relational table columns and
extracts high-dimensional feature embeddings for data grouping.
By maintaining a fixed dictionary size, our method significantly
reduces both memory requirements and training time, enabling
efficient processing of large-scale industrial data environments.
Experimental evaluation demonstrates substantial performance
gains: our CAE approach achieved 80.95% accuracy in top-
5 column matching tasks across relational datasets, substan-
tially outperforming traditional NLP approaches such as Bag
of Words (47.62%). These results demonstrate its effectiveness
for identifying and clustering identical columns in relational
datasets. This work bridges the gap between theoretical advances
in character-level neural architectures and practical enterprise
data management challenges, providing an automated solution
for schema understanding and data profiling of non-semantic
industrial datasets at scale.

Index Terms—relational data, data grouping, data clustering,
column similarity, semantic parsing

I. INTRODUCTION

In large enterprise environments, different teams often man-
age their own datasets independently, leading to a diverse and
fragmented data landscape within enterprise data warehouses.
As organizations scale, the number of relational tables grows
rapidly, which in turn increases the number of the redundant
or overlapping columns across different tables. These columns
may represent the same or similar entities but their names
or value formats are not standardized. This redundancy intro-
duces significant challenges in identifying authoritative data

sources, ensuring data consistency, and maintaining accurate
data lineage.

To address these challenges, Natural Language Processing
(NLP) techniques have been applied to automatically identify
and group columns with semantic similarity across diverset
set of relational tables. These approaches aim to capture the
underlying semantics of column names and metadata, enabling
tasks such as schema alignment, deduplication, and metadata
standardization. Traditional models like Word2Vec [1] learn
word-level embeddings by capturing co-occurrence patterns
in text, producing dense vector representations that reflect
semantic similarity. Another common method is Bag-of-Words
(BoW) [2], which encodes text using one-hot vectors based
on a predefined dictionary and applies the encoding result for
comparison or classification.

Despite their success in general NLP tasks, these models
face two major limitations in enterprise data environments.
First, the content of the column include non-semantic elements
such as code names, IDs, or formatting artifacts do not
convey meaningful information. Such non-semantic elements
can mislead the model. Second, enterprise datasets frequently
contain domain-specific terms, acronyms, and abbreviations
that are not found in general-purpose vocabularies, resulting
in out-of-vocabulary (OOV) [3] issues and reduced embedding
quality.

To overcome these limitations, we propose a Character-
Level Autoencoder model tailored for relational column name
embedding and similarity detection. By operating at the char-
acter level, our model avoids reliance on token boundaries,
thus is more robust to noise, abbreviations, and rare or
unseen terms. The autoencoder learns compact representations
of column names by capturing character-level patterns that
reflect column data similarity, even in the presence of spelling
variations, domain-specific vocabulary, or formatting inconsis-
tencies. In this paper, we describe the design of our model, the
training methodology, and a set of experiments demonstrating
its effectiveness in grouping redundant columns compared
to existing baselines. Our results show that character-level

modeling can provide meaningful improvements in identifying
columns containing similar concepts.

II. RELATED WORK

A. Dictionary-Based Language Model

One of the predominant approaches in text embedding
has been dictionary-based language models, which rely on
predefined vocabularies to represent textual data. Traditional
methods such as Bag-of-Words (BoW) [2] represent docu-
ments as sparse vectors by encoding words through one-hot
encoding against a fixed dictionary, where each dimension
corresponds to the frequency of a specific word. More re-
cently, transformer-based architectures like BERT [4] have
revolutionized natural language processing by utilizing large-
scale vocabularies (typically 30,000-50,000 tokens). BERT
employs a multi-layer bidirectional transformer encoder that
learns contextual representations through two primary tasks
- masked language modeling and next sentence prediction -
to achieve state-of-the-art performance on various language
understanding tasks. However, all these sophisticated models
present significant challenges when applied to non-semantic
data: they require substantial computational resources, struggle
with out-of-vocabulary tokens, and maintain large memory
footprints due to their extensive vocabulary requirements.

B. Semantic Language Model

Semantic language models have revolutionized text repre-
sentation by effectively capturing word relationships in con-
tinuous vector spaces. Word2Vec [1], pioneered by Mikolov
et al., established a fundamental approach to word embedding
by training neural networks to learn word embeddings through
two architectures: Continuous Bag-of-Words (CBOW), which
predicts target words from context, and Skip-gram, which
predicts context from target words. Building upon this founda-
tion, FastText [5], developed by Facebook Research, enhanced
Word2Vec’s methodology by incorporating subword informa-
tion, thereby improving the handling of morphologically rich
languages and out-of-vocabulary words. While these semantic
models have significantly advanced natural language process-
ing tasks, they prove inadequate for processing non-semantic
data that is increasingly prevalent in industrial databases,
such as network IP addresses, product identifiers, and other
structured identifiers where semantic relationships are not
meaningful or applicable.

C. Character-Level Text Processing and Recent Advances

Character-level text processing offers a powerful alternative
to word-based approaches, particularly for structured data
where traditional tokenization fails. Zhang et al. [6] demon-
strated that character-level convolutional networks achieve
competitive performance by treating text as a one-dimensional
signal without relying on word-level semantics. This foun-
dation has evolved through architectural innovations: John-
son and Zhang [7] introduced Deep Pyramid CNNs that
improved computational efficiency, while Huang and Wang
[8] successfully adapted character-level CNNs to non-alphabet

languages. Zampieri et al. [9] further demonstrated the ro-
bustness of character-level models for noisy text, showing
superior language-agnostic performance compared to word-
based approaches.

Hybrid architectures have extended these capabilities
through innovative designs. Lai et al. [10] proposed Recurrent
Convolutional Neural Networks that combine character and
word-level information. Al-Rfou et al. [11] employed evolu-
tionary algorithms to automatically discover optimal character-
level CNN architectures—approaches particularly valuable for
processing non-semantic data common in enterprise databases.

Recent advances have further refined character-level mod-
eling for specialized applications. Van den Bosch et al. [12]
established benchmarks for character-level encoder architec-
tures optimal for specialized identifiers, while Li et al. [13]
addressed sub-token conflicts through their Fill-In-the-Middle
approach. Xu et al. [14] enhanced character-level under-
standing in language models by incorporating token internal
information. The versatility of these approaches extends to
diverse applications, including Cao et al.’s [15] enhancement
of visual text generation.

Most relevant to our work is the integration of character-
level processing with autoencoder frameworks, exemplified by
Cunningham et al. [16], who showed how autoencoders can
decompose complex representations into interpretable features.
Our Character-Level Autoencoder builds on this research
trajectory, applying character-level autoencoding specifically
to non-semantic relational data to address critical gaps in
enterprise data management systems processing structured
information.

D. Auto-Encoder Architectures for Text Compression

Autoencoders [17] represent a foundational class of unsu-
pervised learning models for dimensionality reduction and fea-
ture learning. The architecture comprises two key components:
an encoder that compresses input data into dense latent space;
and a decoder that reconstructs the original data from this
compressed representation. This approach has proven partic-
ularly effective for learning compact, meaningful representa-
tions while filtering out noise. Among various autoencoder
variants, convolutional autoencoders [18], [19] specifically
excel at processing structured input data by employing con-
volutional layers, which preserve spatial relationships during
the encoding-decoding process. The proposed models using an
embedding layer and a convolutional layer offer high accuracy
in various classification tasks.

The convergence of character-level processing with autoen-
coder architectures presents particular advantages for non-
semantic data processing. The convolutional networks were
proven effective for classifying texts by treating language as
a signal, rather than relying on semantics [6]. Drawing from
Prusa and Khoshgoftaar’s character-level encoding framework
[20] and recent developments in textual data classification
[21], autoencoder-based approaches can effectively compress
character-level representations while maintaining the structural
patterns essential for data matching and grouping tasks. This

Fig. 1: Character-Level Auto-Encoder framework: (1)
Character-Level Encoding converts table column text into
sparse matrices; (2) Auto-Encoder compresses these matrices
into dense latent vectors and reconstructs the original encod-
ing; (3) Latent vectors enable column grouping via cosine
similarity measurement.

combination proves especially valuable for industrial database
applications where semantic relationships are less important
than structural similarity patterns.

Our work adopts this architecture to process character-level
text embeddings, leveraging its ability to capture local patterns
and structural features for generating condensed representa-
tions for efficient data grouping. Our approach first trans-
forms each character in table columns using 1-of-m encoding
(where m represents the character alphabet size), creating
a binary vector representation that preserves character-level
patterns. These representations are then processed through an
autoencoder architecture that compresses the character-level
features into compact, fixed-dimension column embeddings.
This enables efficient data grouping while maintaining the
structural integrity of non-semantic data, demonstrating how
theoretical advances from Zhang et al. can be scaled to address
practical challenges in enterprise data environments.

III. CHARACTER-LEVEL AUTO-ENCODER

The proposed Character-Level Auto Encoder (CAE) is
split into two parts: Character-Level-Encoding (CLE) and
Auto-Encoder. The first component, Character-Level Encod-
ing, processes relational table column data by transforming
each character into a one-hot encoded vector, where each
position in the vector corresponds to a unique character in
the alphabet. The second component, Auto-Encoder, takes the
sparse character-level encoded matrix as input and performs
two sequential operations: [1] The encoder compresses the
sparse representation into a dense hidden feature vector; [2]
The decoder attempts to reconstruct the original character-
level encoding from this compressed representation. Through
this two-stage process, our model learns to capture essential
patterns in non-semantic data while significantly reducing the
dimensionality of the representation (Fig. 1).

A. Character-Level-Encoding

Zhang and LeCun proposed a 1-to-m character-level encod-
ing, where each character is represented by a binary vector of
length m (m being the alphabet size), with a value of 1 at
the position corresponding to the character and 0 elsewhere
[6]. Our CAE model adopted this method into relational table
data by choosing ASCII code [22] as our character set. This
algorithm takes a table and one of its columns as input. For
each entry in the column, it encodes characters up to a fixed
cutoff length into their 8-bit ASCII binary vectors. If an entry
has fewer characters than the cutoff, it pads the encoding with
zero vectors to maintain a consistent length. Each encoded
entry becomes a fixed-size row vector, and all such vectors
stack together to form a matrix representing the entire column.
This process can be described as the following pesudo code:

Algorithm 1 Character-Level Encoding of Table Column

Require: Table T , column C, cutoff length L
1: Initialize matrix M ← []
2: for all entry e in column C of table T do
3: Initialize encoded list E ← []
4: for i = 1 to min(length(e), L) do
5: c← character at position i in e
6: a← 8-bit ASCII encoding of c
7: Append a to E
8: end for
9: while |E| < L do

10: Append zero vector 01×8 to E
11: end while
12: Append E as a new row to matrix M
13: end for
14: return matrix M

While our implementation utilizes ASCII encoding due to
the English-based nature of our dataset, this Character-Level-
Encoding framework can be readily extended to support other
character encoding systems. For instance, the method can be
adapted to use UTF-8 encoding by simply modifying the
character-to-binary conversion step, allowing the system to
handle multilingual content and special characters while main-
taining the same overall encoding structure. This flexibility
makes the framework suitable for diverse datasets requiring
different character encoding schemes.

We evaluated two methods to aggregate entry vectors into a
column vector of shape (8,L), where L is a predefined cutoff
(Fig. 2). The Concatenated-CLE method concatenates entry
encodings sequentially until reaching the length limit or the
end of the column. The Alternative-CLE method computes the
average of all entry encodings. Based on experimental results,
we recommend Alternative-CLE, as it captures more com-
prehensive content information within the same output shape.
Additionally, averaging the entry encodings helps smooth the
feature vector by reducing noise.

(a) Concatenated CLE

(b) Alternative CLE

Fig. 2: Two character-level encoding (CLE) approaches for
column vector assembly: (a) Concatenated encoding sequen-
tially joins entry vectors up to a length limit, and (b) Al-
ternative CLE averages entry vectors to create a smoothed
representation.

B. Auto-Encoder

After retrieving sparse column encoding matrix from
character-level encoding, we feed the matrix into the autoen-
coder to obtain a dense feature vector and use it for feature data
autogrouping. Let M ∈ R8×L be the input matrix obtained
from character-level encoding. Then, the general autoencoder
model can be noted as follows:

Encoder: The encoder maps the input matrix M into a
latent vector Z ∈ Rk, where We ∈ Rk×(8L), be ∈ Rk, and
vec(M) ∈ R8L denotes flattening M into a vector. ϕ is a
non-linear activation function:

Z = fenc(M) = ϕ(We · vec(M) + be) (1)

Decoder: The decoder reconstructs the input matrix from
the latent vector, where Wd ∈ R(8L)×k, bd ∈ R8L, and M̂ ∈
R8×L is reshaped from the output:

M̂ = fdec(Z) = ψ(WdZ + bd) (2)

Loss: We minimize the reconstruction error using Mean
Squared Error (MSE), where ∥ · ∥F denotes the Frobenius
norm:

LAE = ∥M − M̂∥2F (3)

We implemented and evaluated two types of autoencoders:
a Linear Autoencoder (Linear AE) and a Convolutional Au-
toencoder (Convolutional AE). The Linear AE consists of

an encoder and decoder built entirely from fully connected
layers. The encoder compresses the input through a series of
linear layers, gradually reducing its dimensionality to a 100-
dimensional latent vector, with dropout at a rate of 0.2 applied
for regularization. The decoder reconstructs the original input
by symmetrically expanding the latent vector through linear
layers back to the input dimension.

In the Convolutional AE, the encoder starts with two
convolutional layers that increase and maintain 16 channels
using 3× 3 kernels with same padding. The resulting feature
maps are flattened and passed through fully connected layers
with ReLU activations, compressing the data into a 100-
dimensional latent vector. The decoder reverses this process
by expanding the latent vector via fully connected layers,
reshaping it into feature maps, and applying two convolutional
layers that reduce the channels back to 1, reconstructing the
original input.

IV. EXPERIMENT AND RESULT

(a) WikiTableQuestions Table 11

(b) WikiTableQuestions Table 12

Fig. 3: Sample WikiTableQuestions tables that should be
grouped together on shared Award, Category, or Result
columns.

A. Dataset

For this experiment, we use the WikiTableQuestions dataset
[23], which contains 2,108 semi-structured HTML tables
extracted from Wikipedia. TThe dataset comprises alphanu-
meric characters, making it relevant for testing the extent
of character-level encoding. On average, each table has 6.3
columns and 27.5 rows. The dataset includes a wide variety of

Fig. 4: Text length distributions across dataset columns: linear
scale (left) and logarithmic scale (right), with the spike at 250
corresponding to the selected character cutoff threshold.

table structures and content, making it suitable for evaluating
column similarity methods. A simple example is shown in Fig.
3: Table 11 focuses on an actress’ filmography and table 12
focuses on a specific year’s film awards. Both contain columns
related to film awards. Columns such as Award, Category, or
Result may be clustered together by the model, despite the
structural and contextual differences between the tables.

B. Data Preprocessing

We partitioned the dataset into training, validation and
testing sets using an 70/20/10 split across all models. Dur-
ing preprocessing, we addressed non-English characters not
supported by extended ASCII encoding by replacing unrec-
ognizable characters with null characters (zero vectors). To
maintain consistent input dimensions, we set a fixed text
length, TEXT CUTOFF , for each input. The cutoff length
was determined based on dataset statistics (Table. I) to capture
the majority of columns while keeping the length reasonable.
Using a dynamic threshold sliding window to calculate the

Statistic Value

Mean 314.38
Standard deviation 822.16
Variance 675,942.16
Minimum 7
Maximum 24,968

TABLE I: Text Length Statistics

column count, we found that 71.68% of the columns were
fully preserved without truncation with TEXT CUTOFF
= 250 (Fig. 4).

C. Setup

For our experiments, we established four distinct mod-
els that combine different character encoding schemes and
autoencoder architectures, as summarized in Table II. To
ensure consistency and comparability across all models, we
standardized several key training parameters: the dataset was
partitioned with 80% allocated for training and 20% reserved
for validation; the learning rate was uniformly set to 0.001;
each model was trained for 100 epochs with a batch size of 64.
Additionally, mean squared error (MSE) loss was employed
as the criterion for optimization, and the Adam optimizer [24]
was utilized to update the network weights effectively.

Model Notation Character Encoding Auto-encoder

Concatenated Linear Concatenated Linear
Concatenated Convolution Concatenated Convolution
Alternative Linear Alternative Linear
Alternative Convolution Alternative Convolution

TABLE II: Comparison of Four Model Variants

D. Evaluation

1) Reconstruction: With the above experimental setup,
we monitored the training process by visualizing both the
input character-encoded vectors and their corresponding re-
constructed vectors, as illustrated in Fig. 5. As the number
of training epochs increased, the reconstructions progressively
aligned more closely with the original inputs, indicating that
the model was successfully learning to capture and reproduce
the underlying features of the encoded representations. This
trend reflects the model’s gradual convergence, demonstrating
improved reconstruction accuracy over time.

Fig. 5: Reconstruction quality improvement over training
epochs: Input encoding matrix (left) and their reconstructions
(right). As the number of training epochs increases, the model
progressively captures salient features and underlying patterns,
resulting in reconstructions that more closely resemble the
original encoded inputs.

2) Clustering: After completing model training, we ap-
plied k-means clustering [25] to the column embeddings to
obtain a high-level view of the relationships among their
latent vector representations. Due to the diverse nature of
the WikiTableQuestions dataset [23], determining the optimal
number of clusters presented a challenge. To address this, we
employed the elbow method [26], which evaluates a range
of candidate cluster counts and computes the within-cluster
sum of squares (WCSS) for each. The optimal number of
cluster was determined at the “elbow” point where adding
additional clusters yields diminishing improvements in WCSS.
Our experiments revealed this point at six clusters, as shown in
Fig. 6. Using the determined six clusters, we applied Principal
Component Analysis (PCA) [27] for dimensionality reduction

Fig. 6: Elbow method plot for determining the optimal number
of clusters showing 6 being the optimal cluster.

Fig. 7: K-means clustering on CAE output WikiTableQues-
tions column latent representation with PCA reduction.

to project the high-dimensional data into a lower-dimensional
space. As shown in Fig. 7, the resulting visualization reveals
distinct groupings that correspond to the identified clusters.
The clear separation between groups suggests that the model
successfully captured the inherent features of the data.

E. Result

For our evaluation, we reserved 10% of the complete
dataset as testing data. Within this test set, we manually
curated a collection of column pairs from our database tables,
focusing specifically on non-semantic data types such as
identifiers, codes, and reference numbers. For example, we
included pairs like ”Coordinates” (index: 201-csv/14, 201-
csv/2). This testing strategy allowed us to evaluate our model’s
ability to effectively group non-semantic data types while
distinguishing them from semantic content like names or
descriptions. Building on the qualitative findings presented in
Section IV-D, we conducted a quantitative evaluation of our
model by measuring top-k hits [28] using cosine similarity
[29] across four variations of our convolutional autoencoder
(CAE) models and baseline implementations.

The comparative results indicate that the alternative convo-
lutional autoencoder consistently outperforms the other mod-
els. In particular, the alternative encoding method generally
achieves superior retrieval performance compared to the con-
catenated encoding. This improvement is likely attributed
to the aggregation operation employed in the alternative
approach. This aggregation smooths potential noise across
entries in all rows and enhances the model’s ability to capture
underlying column patterns. Furthermore, convolutional au-
toencoders demonstrate better performance than linear autoen-
coders, which may be attributed to the convolutional kernels’
capability to capture spatial information within the constructed
column encoding matrix, such as the local neighborhood of
characters that provide richer feature representations.

TABLE III: Top-k Performance Comparison for Different CAE
models

CLE Type
Linear AE Convolution AE

Top 1 Top 5 Top 1 Top 5

Concatenated 52.38% 71.43% 73.91% 78.26%

Alternative 71.43% 80.95% 76.19% 85.71%

We evaluated our approach using an alternative convolu-
tional autoencoder as our representative CAE model, com-
paring its performance against two baseline models: Bag-
of-Words and Word2vec. As shown in Table IV, the CAE
significantly outperforms both baselines, achieving a Top-
1 accuracy of 76.19% and a Top-5 accuracy of 85.71%,
respectively. The baseline methods demonstrate substantially
lower performance: BoW achieved Top-1 accuracies of 4.76%
and Top-5 accuracies of 47.62%, while Word2vec reached and
19.05% and 52.38%, respectively. These results underscore
the CAE’s superior capability in capturing meaningful and
discriminative features for retrieval tasks, attributed to its
ability to learn hierarchical and spatial representations that
traditional encoding methods cannot capture.

TABLE IV: Top-k Performance Comparison of CAE and
Baseline Models

Encoding Method Top 1 Top 5

CAE 76.19% 85.71%

BoW 4.76% 47.62%

Word2vec 19.05% 52.38%

V. DISCUSSION

Our experimental results demonstrate that the Character-
Level Autoencoder (CAE) approach significantly outperforms
traditional semantic text embedding techniques for identify-
ing similar columns in relational datasets. The substantial
performance gap — with our best CAE model achieving
85.71% Top-5 accuracy compared to Word2vec’s 52.38%
and BoW’s 47.62%—indicates the fundamental limitations
of conventional NLP approaches when processing structured
tabular data with varied column formats.

A. Analysis of Encoding and Architecture Choices

The comparative results revealed that the alternative en-
coding method consistently achieves superior retrieval per-
formance compared to the concatenated encoding approach
(85.71% vs. 80.95% Top-5 accuracy with linear autoencoders,
and 85.71% vs. 78.26% with convolutional autoencoders).
This improvement can be attributed to the aggregation oper-
ation employed in the alternative approach, which effectively
smooths potential noise across entries in all rows and enhances
the model’s ability to capture underlying column patterns
despite variations in individual values.

Furthermore, convolutional autoencoders demonstrated bet-
ter performance than linear autoencoders across both encoding
methods. This superiority likely stems from the convolutional
kernels’ capability to capture spatial information within the
constructed column encoding matrix. The 2D convolutions can
identify local neighborhoods of characters that provide richer
feature representations, effectively learning patterns that exist
across structured identifiers and codes found in the diverse
WikiTableQuestions dataset.

B. Clustering Effectiveness

The clustering results visualized in Fig. 7 reveal distinct
groupings that correspond to natural categories within the Wik-
iTableQuestions dataset. The elbow method’s identification of
six optimal clusters, as shown in Fig. 6, suggests that columns
naturally organize into this number of broad categories based
on their character-level patterns. The clear separation between
clusters indicates that the model successfully captured inherent
features of the data even without explicit semantic understand-
ing.

Upon examination of cluster contents, we observed that
columns with similar data types and functions (such as date
fields, identifiers, and categorical labels) were consistently
grouped together despite variations in their representation
across different tables. This emergent organization demon-
strates the effectiveness of character-level pattern recognition
for column similarity detection in heterogeneous data envi-
ronments like the WikiTableQuestions dataset, which spans
diverse topics and table structures.

VI. CAVEAT

Although our Character-Level Autoencoder approach
demonstrates significant improvements over traditional meth-
ods, we acknowledge several limitations in our current study.
First of all, our comparative analysis focused primarily on
basic baselines (BoW and Word2Vec) rather than more recent
advanced embedding techniques like BERT or domain-specific
language models. This choice was deliberate, as our research
aimed to establish the fundamental advantages of character-
level processing for structured data rather than competing
with state-of-the-art semantic models. Additionally, our exper-
iments were tested on a single dataset (WikiTableQuestions).
While the size may be adaquate, the range of topics cov-
ered might not fully represent the diversity found in actual
enterprise environments. Finally, though our model shows

strong performance, the current implementation offers limited
interpretability into how specific character patterns influence
column similarity judgments.

VII. CONCLUSION AND FUTURE WORK

This paper presented a Character-Level Autoencoder (CAE)
approach to address the critical challenge in handling com-
plex naming variations and semantic ambiguities, a problem
prevalent in enterprise data warehouses. Our proposed method
overcomes limitations of traditional NLP techniques by op-
erating at the character level, avoiding dependency on token
boundaries and effectively handling non-semantic elements,
domain-specific term, and out-of-vocabulary issues. Specifi-
cally, our approach employs ASCII-based character encoding
(readily extendable to UTF-8 support) combined with an
averaging mechanism that aggregates character-level repre-
sentations across column entries, enabling the autoencoder to
learn robust, noise-resistant embeddings that capture semantic
similarity even in the presence of formatting variations and
domain-specific terminology.

Through experiments on the WikiTableQuestions Dataset,
we demonstrate that Alternative convolutional Autoencoder
achieves superior performance with 76.19% Top-1 and 85.71
% Top-5 accuracy, significantly outperforming baseline meth-
ods including BoW (4.76% Top-1) and Word2Vec (19.05 %
Top-1).

This work not only substantially improves schema matching
in traditional data warehouse environments but also addresses
fundamental data governance challenges in large-scale en-
terprise systems. As organizations continue to accumulate
vast amounts of data across distributed teams and systems,
the ability to automatically identify semantic relationships
between columns becomes crucial for maintaining data quality,
ensuring consistency, and establishing accurate data lineage.
Our character-level approach proves particularly valuable in
handling ambiguity and complexity inherent in real-world en-
terprise datasets, where standardized naming conventions are
often absent and domain-specific acronyms and abbreviations
are common.

In Big Data contexts, our approach offers a practical solu-
tion for metadata management and data discovery at scale.
This model’s robustness to spelling variations, formatting
inconsistencies, and rare terms make it well-suited for man-
agement and upkeep of massive and heterogeneous datasets.
Future work will focus on three key directions: (1) evaluating
the model’s scalability across larger enterprise datasets; (2)
exploring semi-supervised or contrastive learning frameworks
to further improve feature discriminability between similar
columns; and (3) enhancing model interpretability through
visualization of reconstruction errors and learned embedding
spaces, providing greater insight into how the model identifies
column similarities. Additionally, we aim to explore integra-
tion with existing data catalog and governance platforms to
enable real-time column similarity detection in production big
data environments

REFERENCES

[1] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[2] G. Salton and M. J. McGill, Introduction to modern information re-
trieval. McGraw-Hill, 1983.

[3] S. Garcia-Bordils, A. Mafla, A. F. Biten, O. Nuriel, A. Aberdam,
S. Mazor, R. Litman, and D. Karatzas, “Out-of-vocabulary challenge
report,” 2022. [Online]. Available: https://arxiv.org/abs/2209.06717

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” 2019.
[Online]. Available: https://arxiv.org/abs/1810.04805

[5] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the Association for
Computational Linguistics, 2017.

[6] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional
networks for text classification,” in Advances in Neural Information
Processing Systems 28. Curran Associates, Inc., 2015, pp. 649–657.
[Online]. Available: https://proceedings.neurips.cc/paper/2015/file/5782-
character-level-convolutional-networks-for-text-classification.pdf

[7] R. Johnson and T. Zhang, “Deep pyramid convolutional neural networks
for text categorization,” in Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
2017, pp. 562–570. [Online]. Available: https://aclanthology.org/P17-
1052/

[8] W. Huang and J. Wang, “Character-level convolutional
network for text classification applied to chinese corpus,”
arXiv preprint arXiv:1611.04358, 2016. [Online]. Available:
https://arxiv.org/abs/1611.04358

[9] M. Zampieri, A. S. Lacerda, T. Zampieri, T. De Nies, and W. Van de
Velde, “A word-character convolutional neural network for language-
agnostic twitter sentiment analysis,” in IEEE International Conference
on Data Science and Advanced Analytics, 2017, pp. 445–452.

[10] S. Lai, L. Xu, K. Liu, and J. Zhao, “Recurrent convolutional neural
networks for text classification,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 29, no. 1, 2015, pp. 2267–2273.

[11] R. Al-Rfou and K. Ma, “Evolving character-level convolutional neural
networks for text classification,” arXiv preprint arXiv:2012.02223,
2020. [Online]. Available: https://arxiv.org/abs/2012.02223

[12] G. D. C. van den Bosch, J. M. van der Zwaan, and P. A. N. D. E. T.
W. M. T. W. W, “What is the best recipe for character-level encoder-
only modelling?” in Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers),
2023.

[13] Y. Li, K. Chen, Y. He, and D. Yang, “Empowering character-level
text infilling by eliminating sub-token conflicts,” in Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2024.

[14] Y. Xu and L. Ma, “Enhancing character-level understanding in llms
through token internal information,” arXiv preprint arXiv:2411.17679,
2024.

[15] X. Cao, S. Chen, Z. Xu, Y. Lu, Y. Zeng, and L. Chen, “Chargen:
High accurate character-level visual text generation and editing,” arXiv
preprint arXiv:2412.17225, 2024.

[16] J. Cunningham, J. D. Bricken, K. A. Klabunde, and J. Elhage, “Sparse
autoencoders reveal universal feature spaces across large language
models,” arXiv preprint arXiv:2410.06981, 2024.

[17] D. Bank, N. Koenigstein, and R. Giryes, “Autoencoders,” 2021.
[Online]. Available: https://arxiv.org/abs/2003.05991

[18] E. M. E. Marzougui, E. M. E. Bouallagui, and K. Chtourou, “Data
representation for cnn based internet traffic classification,” Journal of
Ambient Intelligence and Humanized Computing, vol. 11, no. 8, pp.
3185–3196, 2020.

[19] A. Al-Ajmi, L. Al-Mousa, and M. Al-Ghamdi, “Binary and multiclass
text classification by means of separable convolutional neural networks,”
Computers, vol. 10, no. 4, p. 70, 2021.

[20] J. D. Prusa and T. M. Khoshgoftaar, “Designing a better data represen-
tation for deep neural networks and text classification,” in 2016 IEEE
17th International Conference on Information Reuse and Integration
(IRI), 2016, pp. 411–416.

[21] M. V. B. R. S. Lakshmi, S. D. N. S. R. V. K. V. P. Raju, K. V. D. S. R.
R. L. R. Raju, and T. V. N. Rao, “An efficient approach for textual

data classification using deep learning,” Frontiers in Computational
Neuroscience, vol. 16, p. 910245, 2022.

[22] American National Standard Code for Information Interchange (ASCII),
American National Standards Institute Std. ANSI X3.4-1986, 1986.

[23] P. Pasupat and P. Liang, “Compositional semantic pars-
ing on semi-structured tables,” 2015. [Online]. Available:
https://arxiv.org/abs/1508.00305

[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2015.

[25] J. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” in Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability, Volume 1: Statistics. University
of California Press, 1967, pp. 281–297.

[26] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to
Statistical Learning: with Applications in R. Springer, 2013.

[27] K. Pearson, “Liii. on lines and planes of closest fit to systems of points
in space,” The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science, vol. 2, no. 11, pp. 559–572, 1901.

[28] R. Fagin, “Optimal aggregation algorithms for middleware,” Journal of
Computer and System Sciences, vol. 66, no. 4, pp. 614–656, 2003.

[29] G. Salton and C. Buckley, “Term-weighting approaches in automatic
text retrieval,” in Information Processing & Management, vol. 24, no. 5.
Elsevier, 1988, pp. 513–523.

