
No Head Left Behind - Multi-Head Alignment Distillation for Transformers

Tianyang Zhao1,2*, Kunwar Yashraj Singh1 †, Srikar Appalaraju1 ‡, Peng Tang1,
Vijay Mahadevan1, R. Manmatha1, Ying Nian Wu1,2

1AWS AI Labs, 2University of California, Los Angeles
tyzhao@ucla.edu, {sinkunwa, srikara, tangpen, vmahad, manmatha, wunyin}@amazon.com

Abstract
Knowledge distillation aims at reducing model size without
compromising much performance. Recent work has applied
it to large vision-language (VL) Transformers, and has shown
that attention maps in the multi-head attention modules of
vision-language Transformers contain extensive intra-modal
and cross-modal co-reference relations to be distilled. The
standard approach is to apply a one-to-one attention map dis-
tillation loss, i.e. the Teacher’s first attention head instructs
the Student’s first head, the second teaches the second, and
so forth, but this only works when the numbers of attention
heads in the Teacher and Student are the same. To remove this
constraint, we propose a new Attention Map Alignment Dis-
tillation (AMAD) method for Transformers with multi-head
attention, which works for a Teacher and a Student with dif-
ferent numbers of attention heads. Specifically, we soft-align
different heads in Teacher and Student attention maps using
a cosine similarity weighting. The Teacher head contributes
more to the Student heads for which it has a higher similar-
ity weight. Each Teacher head contributes to all the Student
heads by minimizing the divergence between the attention
activation distributions for the soft-aligned heads. No head
is left behind. This distillation approach operates like cross-
attention. We experiment on distilling VL-T5 and BLIP, and
apply AMAD loss on their T5, BERT, and ViT sub-modules.
We show, under vision-language setting, that AMAD outper-
forms conventional distillation methods on VQA-2.0, COCO
Captioning, and Multi30K translation datasets. We further
show that even without VL pre-training, the distilled VL-
T5 models outperform corresponding VL pre-trained VL-T5
models that are further fine-tuned by ground-truth signals,
and that fine-tuning distillation can also compensate to some
degree for the absence of VL pre-training for BLIP models.

Introduction
Recently, large pre-trained Transformers-based (Vaswani
et al. 2017) models, such as BERT (Devlin et al. 2019),
T5 (Raffel et al. 2020), and GPT (Radford et al. 2018),
have shown great capabilities for language modeling. Re-
searchers have further extended these language Transform-
ers to multi-modal Transformers for visual-linguistic tasks,

*Work conducted during an internship at Amazon.
†Corresponding Author
‡Corresponding Author

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

e.g. VL-BERT (Su et al. 2019), VL-T5 (Cho et al. 2021),
Oscar (Li et al. 2020b), BLIP (Li et al. 2022b, 2023), OFA
(Wang et al. 2022a), Flamingo (Alayrac et al. 2022), Flo-
rence (Yuan et al. 2021), PALI (Chen et al. 2022c). These
large vision-language (VL) models exhibit promising per-
formances on a variety of visual-linguistic tasks, including
visual question answering (VQA), image captioning, visual
grounding and image-text matching. Increasing model size
(BERT-L (340M), OFA (930M), T5 (11B), GPT-3 (175B)
(Brown et al. 2020)) leads to better performance, but also in-
creases memory consumption during deployment and leads
to large increases in inference latency.

To alleviate this problem, researchers (Jiao et al. 2020;
Sun et al. 2020; Wang et al. 2020b; Fang et al. 2021; Sanh
et al. 2019) have applied knowledge distillation (KD) (Hin-
ton, Vinyals, and Dean 2015) approaches to large Trans-
formers, aiming at compressing these large models into
smaller ones without compromising much performance. In
general, KD involves a large trained and frozen Teacher net-
work, and a small Student network to be trained. The goal
is to distill the knowledge from the larger Teacher into the
smaller Student to bridge the performance gap between the
two caused by difference of model sizes. In the distillation
process, the Student learns to mimic the soft response and
the latent representation of the Teacher. Specifically, this
may involve minimizing the divergence between the Stu-
dent’s and the Teacher’s output classification logits, and the
divergence between their intermediate representations.

In case of distilling Transformers, their attention maps
are often important and contain intermediate representations
to be transferred. (Cao et al. 2020) show that certain atten-
tion matrices of the pre-trained vision-language Transform-
ers contain extensive intra- and cross-modal co-reference
relations. (Fang et al. 2021) further show that minimizing
the divergence between these attention maps of Teacher and
Student can boost distillation performance.

However, conventional attention map distillation methods
for multi-head attention modules, either for language (Jiao
et al. 2020; Sun et al. 2020; Wang et al. 2020b; Sanh et al.
2019) or VL (Fang et al. 2021) Transformers, directly mini-
mize the divergence between the attention maps of Teacher
and Student for each of their heads in a one-to-one fashion,
i.e. the Teacher’s first attention head instructs the Student’s
first head, the second teaches the second, and so forth, as in

the right side of Figure 1. Hence, these methods can only be
applied where the Teacher and Student have an equal num-
ber of heads, and do not generalize to the more common
case where the large Transformer and the small Transformer
have different numbers of attention heads; Otherwise if the
Teacher has more heads, its extra heads have to be discarded
in the distilling process, causing knowledge loss.

This motivates the design of our approach, Attention
Map Alignment Distillation (AMAD), to remove the same-
number-of-heads restriction. In brief, AMAD soft aligns dif-
ferent heads in the Teacher and Student attention maps using
cosine similarity. Each Teacher head teaches all the Student
heads with the contribution being more for the Student heads
with which it has higher weights (higher cosine similarities).
The Teacher teaches the Student heads by minimizing the
divergence between the attention activation distributions for
the soft-aligned heads. We may view AMAD as operating
like a cross-attention itself.

One intuition behind is that, unlike embeddings for which
each vision/language token shares the same order for both
Teacher and Student, attention heads do not have a seman-
tic order. (Cao et al. 2020) found that different subsets of
attention heads in VL Transformers may encode different
co-reference knowledge, e.g. a subset of heads may evolve
to pivot on cross-modal interaction between image and text
regimes. Therefore, even in the case when Teacher and Stu-
dent have the same number of attention heads, we still can-
not assume that the Teacher’s and the Student’s heads are
aligned semantically without reordering. Conventional at-
tention map distillation methods force Student heads to have
exactly the same order as Teacher’s, while AMAD allows
similarity alignment based distillation free of head order:
each Teacher teaches all the Students, the contribution be-
ing proportional to the similarity weight between them.

We conduct experiments on distilling VL-T5 (Cho et al.
2021) base to small, and on distilling BLIP (Li et al. 2022b)
large to base. AMAD loss is applied on all their Trans-
former sub-modules, including T5-Encoder + Decoder for
VL-T5, and Vision Transformer (ViT) + BERT for BLIP.
We evaluate on VQA-2.0 (Goyal et al. 2019), COCO Cap-
tioning (Chen et al. 2015), and Multi30K (Elliott et al. 2016)
datasets. We show that AMAD boosts performance.

Our contributions include:

• We propose Attention Map Alignment Distillation
(AMAD) to distill attention maps from a Teacher Trans-
former to a Student Transformer with different num-
bers of attention heads. AMAD uses a soft-alignment ap-
proach so that each Teacher head teaches all the Student
heads but in proportion to how similar the Student is to
the Teacher. We show, under vision-language setting, that
AMAD narrows the performance gap between the large
Teacher and the small Student. With AMAD, researchers
are set free from the same-number-of-heads restriction
and have more choices over Transformers for distillation.

• We show that even without VL pre-training, distilled VL-
T5 models outperform VL pre-trained VL-T5 models of
the same size further fine-tuned with ground-truth data.

• We conduct extensive experiments on distilling VL mod-

els, which contributes to this relatively under-explored
field in the current literature.

Related Work
Vision-Language Pre-training. Recently, large pre-trained
Transformers (Liu et al. 2019; Lan et al. 2020; Clark et al.
2020; Yang et al. 2019; Ho et al. 2022; Li et al. 2022a;
Appalaraju et al. 2021) have started to show improved ca-
pability in a variety of language modeling tasks (Zellers
et al. 2018; Wang et al. 2018; Williams, Nangia, and Bow-
man 2017). Researchers have further extended these models
to large image-text and video-text pre-training multi-modal
models (Huang et al. 2020; Li et al. 2020a; Cho et al. 2020;
Zhang et al. 2021; Sun et al. 2019; Zhu and Yang 2020;
Miech et al. 2020; Radford et al. 2021; Appalaraju et al.
2024) for visual-linguistic tasks (Goyal et al. 2019; Hudson
and Manning 2019; Lei et al. 2018; Mao et al. 2016; Xu
et al. 2016; Zhou, Xu, and Corso 2018). These pre-trained
models outperform previous approaches (Yu et al. 2018; Yu,
Kim, and Kim 2018; Kim, Jun, and Zhang 2018; Ander-
son et al. 2018). As their models sizes grow rapidly, re-
cent works have also explored parameter-efficient learning
and model compression methods, including adapters (Sung,
Cho, and Bansal 2022; Houlsby et al. 2019; Rebuffi, Bilen,
and Vedaldi 2018, 2017), prompt tuning (Gu et al. 2021b;
Lester, Al-Rfou, and Constant 2021; Li and Liang 2021).
Knowledge Distillation. Knowledge distillation (KD) (Hin-
ton, Vinyals, and Dean 2015) transfers knowledge from a
stronger Teacher network (T) to a Student network (S) by
minimizing the divergence of their soft response and in-
termediate features (Gou et al. 2021). Compared with re-
cent approaches to distillation in vision (Zagoruyko and Ko-
modakis 2017; Peng et al. 2019; Tung and Mori 2019; Yang
et al. 2022; Chen et al. 2022b; Wu et al. 2022b; Andonian,
Chen, and Hamid 2022; He et al. 2022; Wu et al. 2022a) or
language tasks (Wang et al. 2020b; Li et al. 2022c; Wang
et al. 2021; Ding et al. 2023), distilling VL models is a rela-
tively under-explored field, as pointed out by the review pa-
per of (Chen et al. 2022a). (Fang et al. 2021) claim to be the
first to distill vision-language Transformers, and (Wang et al.
2022b) claim to be the first to use multi-modal distillation
for VL models. These two papers both focus on distilling
Encoder-only VL Transformers. (Gu et al. 2021a; Ma et al.
2022) also involve distilling knowledge from visual and lin-
guistic domains, but their architectures are based upon Mask
RCNN (He et al. 2017) and ResNet (He et al. 2016), and ap-
ply to the visual task of object detection.

Specifically, for distilling large Transformers to smaller
ones, recent work in language distillation (Jiao et al. 2020;
Sun et al. 2020; Wang et al. 2020b; Sanh et al. 2019), vi-
sion distillation (Qu et al. 2022), and VL distillation (Fang
et al. 2021) all show that applying attention map distilla-
tion to transfer the rich co-reference relations to Student can
boost performance. These approaches apply attention map
distillation either on all attention layers or only on the last
self/cross-attention layer and the last cross-attention layer.
Specifically, for a given multi-head attention layer, most of
these approaches (Fang et al. 2021; Jiao et al. 2020; Sun
et al. 2020; Wang et al. 2020b; Sanh et al. 2019) minimize

the sum of divergence between the attention matrices of each
head of Teacher and Student. However, this formulation only
applies when the Teacher and Student have the same num-
ber of attention heads. (Qu et al. 2022) minimizes the diver-
gence between the mean attention matrices of all the heads
of Teacher and Student. However, as pointed out by (Cao
et al. 2020), different attention heads encode different co-
reference knowledge, hence applying mean reduction may
result in knowledge loss.

Different from most approaches for distilling intermediate
features in a one-to-one fashion, (Lin et al. 2022) propose a
one-to-all spatial matching strategy for distilling Convnets
feature maps, allowing each pixel of the Teacher feature to
be distilled to all spatial locations in the Student by simi-
larity mapping; (Ji, Heo, and Park 2021) propose to learn
to match Teacher and Student features maps in different
ResNet layers. Our design is also inspired by these works.

Attention Map Alignment Distillation
In this section, we introduce our proposed Attention Map
Alignment Distillation (AMAD) method. We use plain
lower case letters x for scalars, bold lower case letters x for
vectors, and bold upper case letters X for matrices.

In a multi-head attention layer of Transformer (Vaswani
et al. 2017), each entry of the attention matrix for a head is
a dot-product of query and key vectors followed by softmax
normalization (Bahdanau, Cho, and Bengio 2014). In matrix
form, for each head h, if we denote the number of query
vectors as q, the number of key vectors as k, and the attention
matrix as Ah 2 Rq⇥k, then we have

Ah = softmax(QhK
T

h
/

p
dk) (1)

where Qh and Kh are the query and key matrices of head h,
and dk is the dimension of the key as a scaling factor.

For each training data sample (not batched), the atten-
tion maps of all heads for a given H-head multi-head at-
tention layer form a tensor of [A1,A2, ...,AH] 2 RH⇥q⇥k.
AMAD aims at distilling the attention maps of the Ht heads
in the Teacher to those of the Hs heads in Student. Gener-
ally, Hs Ht.

For representational simplicity, let n = q · k, and ti 2 Rn

denote the column vector representing the flattened attention
map Ai 2 Rq⇥k of Teacher head i. Let sj 2 Rn denote
the column vector representing the flattened attention map
Aj 2 Rq⇥k of Student head j.

For a given Teacher head ti, compute its cosine similarity
wij with each Student head sj :

wij = ti · sj/(ktik2 · ksjk2) (2)
For the given Teacher head, we then compute its dis-

tilling contribution aij to each of the Student heads j 2
{1, 2, · · · , Hs} by applying softmax non-linearity on the
similarity weights wij :

aij =
exp(wij)P

Hs

m=1 exp(wim)
(3)

Then, we minimize the mean squared error between the
given normalized Teacher head attention map ti and the
weighted sum of soft-aligned Student head attention maps.

Teacher Attention Maps Teacher Attention MapsStudent Attention Maps Student Attention Maps

Head 1: s1

Head 2: s2

Head 1Head 1

Head 2 Head 2

Head 3

AMAD Conventional

a11=0.1

a12=0.9

a21=0.2

a31=0.9

a22=0.8

a32=0.1

Head 1: t1

Head 2: t2

Head 3: t3

Figure 1: An illustration of AMAD in a toy case, corre-
sponding to Equation 7, where the Teacher has Ht = 3
heads (t1, t2, t3) and Student has Hs = 2 heads (s1, s2),
all with self attention maps of dimension n = q⇥k = 3⇥3.
Different colors of matrix entries denote different attention
values. On the left, AMAD uses soft-alignment, so each
Teacher head attention map teaches all the Student heads
attention maps but in proportion to how close the Student
head is to the Teacher head. As in the coloring of the matri-
ces, Teacher heads 1 and 2 are similar to each other, and are
relatively similar to Student head 2; While Teacher head 3 is
similar to Student head 1. In this case, with AMAD, Teacher
heads 1 and 2 instruct Student head 2 more (larger a12, a22
and wider arrows above) and instruct Student head 1 less
(smaller a11, a21 and narrower arrows above), and Teacher
head 3 mainly instructs Student head 1. Also note that the
knowledge in the two similar Teacher heads t1 and t2 can
be compressed mostly to a single Student head s2. While
on the right, conventional attention map distillation method
does not apply when the numbers of heads are different be-
tween Teacher and Student: Teacher head 3 has to be dis-
carded in distilling, causing knowledge loss.

For each Attention head i of the Teacher,

LAMADi =

������
ti

ktik2
�

HsX

j=1

aij ·
sj

ksjk2

������

2

2

(4)

The total loss LAMAD is the summation of LAMADi over
all the heads of the Teachers,

LAMAD =
HtX

i=1

LAMADi (5)

Now we rewrite the above formulas using a matrix formu-
lation to parallel computations. For each training data sam-
ple (not batched), recall that n = q·k, let matrix T 2 RHt⇥n

represent the Teacher attention maps of all its heads, whose
each row vector is the normalized flattened attention map
tT
i
/ktik2 of the i-th head. Similarly, let matrix S 2 RHs⇥n

represent the normalized Student attention maps of all its
heads. We have (detailed derivation in Appendix),

LAMAD = kT� softmaxdim=row(TST)Sk22 (6)

where the softmax function applies to each row. The pair-
wise similarity weight matrix TST before and after softmax
are both of dimension RHt⇥Hs . Computation with respect
to the i-th row of the matrix formulation corresponds to the
operations regarding the i-th Teacher head as in Equation 4.

For instance, in the case as in Figure 1, we have,

softmax(TST) = (aij)Ht⇥Hs =

0

@
0.1 0.9
0.2 0.8
0.9 0.1

1

A (7)

The above formulas focus on each training data sample
(not batched); For implementation, we use batched tensor
computations via PyTorch, and we L2-normalize each row
of the weighted sum softmax(TST)S before calculating the
mean squared error. Code is provided in the Appendix.

In contrast to previous attention map distillation methods
directly minimizing kT�Sk22 or KL(TkS), requiring T and
S of the same shape (Fang et al. 2021; Jiao et al. 2020; Sun
et al. 2020; Wang et al. 2020b), AMAD removes the limita-
tion of requiring Teacher and Student to have the same num-
ber of attention heads, by letting each Teacher head teaches
all the Student heads with the contribution being more for
the Student heads with which it has a higher weight (higher
cosine similarity), and supports flexible and smooth distilla-
tion because of the soft semantic alignment mechanism.

Formulation Variants
We refer to the above formulation as Variant 1 and the cor-
responding loss as LAMAD-1, and we also explore the follow-
ing ablative baselines and variants for multi-head attention-
matrix distillation:
Baseline: One-to-one Distillation. In this baseline, follow-
ing (Fang et al. 2021; Jiao et al. 2020; Sun et al. 2020; Wang
et al. 2020b), we distill the attention maps in a one-to-one
fashion. Note that different from previous work, we have
more heads in the Teacher than in Student, Ht � Hs, so
we distill the first Hs heads in Teacher to the Hs heads in
Student, respectively, the extra Ht � Hs Teacher heads are
ignored during distillation, as in the right part of Figure 1:

LKD-ATT = kS�T[: Hs, :]k22 (8)
Variant 2: KL Divergence. In this variant, we minimize
the sum of Kullback–Leibler divergence between the aligned
weighted sum of Student multi-head attention map distribu-
tions and the Teacher distributions:

LAMAD-2 = KL(Tksoftmax(TST)S) (9)

where the Teacher T and the Student S are all L1-
normalized by each row in all KL variants, instead of L2-
normalized. Both input and target contain q·Ht distributions,
and KL(·) is computed for each of these q ·Ht distributions
and then summed up.
Variants 3: Parameterized Projection. We borrow the idea
from attention mechanisms to apply a learnable linear pro-
jection W on each flattened vector of attention map sj of
Student head j before computing similarity and alignment:
Wsj + b. In matrix form:

S̃ = ReLU(SWT + b) (10)

LAMAD-3 = KL(Tksoftmax(TS̃T)S̃) (11)
where W 2 Rn⇥n is a learnable matrix and b is the bias.
Variant 4: Token-level Alignment. Here, we adopt a finer
token-level granularity of aligning correspondence and al-
low independence for the soft alignment weights wij for dif-
ferent query attention vectors in Teacher / Student heads.

Formally, denote Tl 2 RHt⇥k as the matrix whose h-th
row vector is the l-th row vector tT

h,l
2 Rk in the Teacher’s

h-th head attention map Ah, and Sl 2 RHs⇥k as the matrix
whose each h-th row vector is sT

h,l
2 Rk. We have:

LAMAD-4 =
qX

l=1

KL(Tlksoftmax(TlS
T

l
)Sl) (12)

where KL(·) is computed for each of the Ht distributions
and then summed up. In this variant, the weight matrices
softmax(TlST

l
) are different for each l-th query attention

vector, in contrast to the unified same weight matrix of
softmax(TST) for all the queries in previous variants.

We report ablation results for each variant in Table 10.
More theoretical analysis is in Appendix.

Experimental Setup
We distill VL-T5 base to small; and distill BLIP large to
base. Table 1 summarizes their architectural backbones. Vi-
sualized architecture and distilling pipeline are in Appendix.

Knowledge Distillation (KD)
For training efficiency, we only apply distillation in down-
stream fine-tuning, no distillation involved in pre-training.

As in previous work (Hinton, Vinyals, and Dean 2015;
Fang et al. 2021; Jiao et al. 2020; Sanh et al. 2019), we apply
classification distillation loss on the classifier output logits.
For VQA with a single classifier head,

LKD = CE(zS/⌧d, zT /⌧d) (13)
where ⌧d denotes the distillation temperature (Hinton,
Vinyals, and Dean 2015), which we simply use 1, as in
(Fang et al. 2021). zS and zT refer to the logits from Stu-
dent and Teacher classifier. CE denotes Cross Entropy, i.e.
pi =

exp(zi/⌧d)P
k exp(zk/⌧d)

and LKD =
P

i
p
T

i
· log(pS

i
).

For auto-regressive captioning and translation tasks, the
Teacher and the Student both take ground-truth answer to-
ken sequence as input in Teacher Forcing style to maintain
consistency for distillation (Beyer et al. 2022),

LKD =

|y|X

j=1

CE(zS
j
/⌧d, z

T

j
/⌧d) (14)

where zS
j

and zT
j

denote logits for the j-th output token from
Student and Teacher classifier, and |y| denotes length of seq.

The overall training objective for the Student LTOTAL is a
weighted sum of the classification distillation loss LKD and
the proposed loss LAMAD,

LTOTAL = LKD + ↵LAMAD (15)

VL #Learnable Vision Stream Language (Multi-modal) Stream
Model Params Backbone #Layers dmodel #Heads LAMAD Backbone #Layers dmodel #Heads LAMAD

Teacher VL-T5 base 220M Faster R-CNN (frozen) - - - T5 12+12 768 12
Student VL-T5 small 60M (Ren et al. 2015) - - - (Raffel et al. 2020) 6 + 6 512 8 3

Teacher BLIP large 446M ViT 24 1024 16 BERT 12 768 12
Student BLIP base 210M (Dosovitskiy et al. 2021) 12 768 12 3 (Devlin et al. 2019) 12 768 12 3

Table 1: Model architectures with details of their Transformer sub-modules. We distill VL-T5 base to small; and distill BLIP
large to base. AMAD loss is applied on all Transformer modules, including T5-Encoder + Decoder for VL-T5, and ViT +
BERT for BLIP. Conventional one-to-one attention map distillation does not apply to some of these modules when Teacher and
Student have different numbers of attention heads; AMAD removes the same-number-of-heads constraint and works here.

We apply LAMAD to distill the self/cross-attention maps
of the last (Wang et al. 2020b; Fang et al. 2021) layers of
each Transformer stack. ↵ is tuned so that LKD and LAMAD
scale similarly. We do not add ground-truth loss (Beyer et al.
2022).

Pre-training and Fine-tuning
As VL-T5 small is not released, we pretrain it by ourselves,
adopting the same setting as how they pretrain base. It is
pretrained on MS COCO (Lin et al. 2014; Chen et al. 2015),
Visual Genome (Krishna et al. 2016), VQA-2.0 (Goyal et al.
2019), GQA (Hudson and Manning 2019), and Visual7W
(Zhu et al. 2016). For VL-T5 base and BLIP, we directly use
their released pretrained checkpoints.

After VL pre-training the Teacher and the Student, we
finetune the Teacher on downtream tasks, adopting the same
settings as in VL-T5 or BLIP. The Teacher model is then
frozen and ready to be distilled. We then distill the Teacher
to the Student with LTOTAL on downstream tasks.

In some of our ablative settings, we do not conduct any
VL pre-training for Student: After loading the language-only
pre-trained language / multi-modal branch checkpoint and
the vision-only pre-trained vision branch checkpoint, we di-
rectly finetune the Student on downstream VL tasks with
distillation; Teacher is always pre-trained and finetuned.

Downstream Fine-tuning Datasets
We demonstrate visual question-answering performance on
VQA-2.0 dataset. We report results on Karpathy test, test-
std and test-dev via: https://visualqa.org/challenge.html.

We evaluate image captioning performance on MS COCO
dataset (Chen et al. 2015). As in (Cho et al. 2021; Fang et al.
2021; Li et al. 2022b), we use the Karparthy split (Karpa-
thy and Fei-Fei 2015), which re-splits train2014 and val2014
images (Lin et al. 2014) into ⇠11K / 5K / 5K for train / vali-
dation / test. We report BLEU@4 (B) (Papineni et al. 2002),
CIDEr (C) (Vedantam, Zitnick, and Parikh 2015), METEOR
(M) (Banerjee and Lavie 2005), SPICE (S) (Anderson et al.
2016) evaluation metrics.

We also evaluate multi-modal machine translation perfor-
mance on Multi30K dataset (Elliott et al. 2016), where mod-
els translate English text to German given context images.
We report BLEU@4 score using SacreBLEU (Post 2018).

We report our implementation details in Appendix.

Results and Analysis
Table 2 shows results on distilling VL-T5 and BLIP with
AMAD, in comparison to recent vision-language models.
The higher the better for all metrics. As in previous work
(Fang et al. 2021; Cho et al. 2021), captioning performance
are shown with their cross entropy optimization variants in-
stead of CIDEr optimization variants. Figure 2 visualizes the
effect of model size and number of VL pre-train images to
VQA performance for recent models. Overall, Table 2 and
Figure 2 support the following arguments:
1. Reducing VL model size within same family of models
causes performance drops: If all trained with ground-truth
supervision without distillation, VL-T5 small perform worse
than base (row 13-14, 16-17); and BLIP base worse than
large (row 19-20). The effect is also visualized in Figure 2.
2. For a same model, removing VL pre-training / Pre-
training with fewer images degrades performance: Per-
formance of VL-T5 base and small both drop significantly
if not VL pre-trained (row 13 vs 16; 14 vs 17). Even when
VL pretrained, smaller numbers of VL pre-training images
cause performance drop in MiniVLM (row 7 vs 8) and in
BLIP (pink triangles in Figure 2).

Figure 2: VL model performance with respect to # learnable
params (X-axis) and # VL pre-train images (marker size).
AMAD pushes VL-T5 towards upper-left (orange to red).

Learnable # VL pre-train Distilled From VQA-2.0 Acc COCO Captioning
Method Parameters Images Which Model Karpathy test-std test-dev B C M S

CNN-LSTM-based Models

1 Up-Down (Anderson et al. 2018) - 108K 7 - 70.34 36.2 113.5 27.0 20.3
2 GLIED (Liu et al. 2020) 18.3M - self distillation - - - 37.9 118.2 28.3 21.2

Encoder-Only Transformers

3 ViLBERT (Lu et al. 2019) 220M 3M 7 - 70.92 70.55 - - - -
4 UNITER base (Chen et al. 2020) 220M 4M 7 - 72.91 72.70 - - - -
5 Unified VLP (Zhou et al. 2020) 112M 3M 7 - 70.7 - 36.5 116.9 28.4 21.2
6 OSCAR base (Li et al. 2020b) 112M 4M 7 - 73.44 73.16 36.5 123.7 30.3 23.1
7 MiniVLM (Wang et al. 2020a) 35M 7M 7 - - - 34.3 116.7 28.1 21.3
8 MiniVLM (Wang et al. 2020a) 35M 14M 7 - 69.4 69.1 35.6 119.8 28.6 21.6
9 DistillVLM (Fang et al. 2021) 35M 7M Oscar base - 69.8 69.6 35.6 120.8 28.7 22.1
10 MAD-ViLBERT (Wang et al. 2022b) 220M - CLIP-V + CLIP-T - 72.22 - - - - -
11 MAD-UNITER (Wang et al. 2022b) 220M - CLIP-V + CLIP-T - 74.02 - - - - -

Encoder-Decoder Transformers

12 OFA huge (Wang et al. 2022a) 930M 15M 7 - 82.0 82.0 43.9 145.3 31.8 24.8

13 VL-T5 base (Cho et al. 2021) 220M 180K 7 67.9 70.30 - 34.5 116.5 28.7 21.9
14 VL-T5 small 63M 180K 7 66.72 69.28 69.04 32.8 108.2 27.0 20.4
15 Ours VL-T5 small w/ AMAD 63M 180K VL-T5 base reproduced 68.06 70.47 70.41 33.9 114.4 28.3 21.5
16 VL-T5 base (Cho et al. 2021) 220M 0 7 - - - 32.6 109.4 28.2 21.0
17 VL-T5 small 63M 0 7 56.44 - 58.47 30.8 101.4 26.3 19.5
18 Ours VL-T5 small w/ AMAD 63M 0 VL-T5 base reproduced 67.79 70.25 70.06 33.3 112.9 28.0 21.3

Mixture of Encoder / Decoder Transformers

19 BLIP large (Li et al. 2022b) 446M 129M 7 - - - 40.4 136.7 - -
20 BLIP base (Li et al. 2022b) 210M 129M 7 - 78.32 78.25 39.7 133.3 - -
21 Ours BLIP base w/ AMAD 210M 129M BLIP large - - - 40.0 134.1 31.0 23.9
22 BLIP base (Li et al. 2022b) 210M 14M 7 - 77.62 77.54 38.6 129.7 - -
23 BLIP base 210M 0 7 - - - 34.7 115.8 28.5 21.5
24 Ours BLIP base w/ AMAD 210M 0 BLIP large - - - 38.7 129.6 30.4 23.3

Table 2: Results on distilling VL-T5 and BLIP with AMAD, with comparisons to recent VL models. AMAD narrows the
performance gaps caused by reducing model size or removing VL pre-training. Furthermore, to our surprise, the distilled VL-
T5 small w/o VL pretraining (row 18) even outperforms VL pre-trained and GT fine-tuned VL-T5 small (row 14).

3. Distilling with AMAD narrows the aforementioned
gaps caused by shrinking model size or by removing
VL pre-training: Supported by results of distilling VL pre-
trained VL-T5 (row 14 vs 15); distilling non-VL-pretrained
VL-T5 (row 17 vs 18); and distilling BLIP (row 20 vs 21).

Note that, DistillVLM (row 9) distilled Oscar base (row
6) to MiniVLM (row 8) and achieved 0.4% VQA accu-
racy boost and 1.0% Captioning CIDEr score boost. And
they (Fang et al. 2021) claimed to be the first work to ap-
ply knowledge distillation in training VL models. Neither
MiniVLM nor DistillVLM has released their model or code.
4. Knowledge distillation compensates to some degree for
the absence of VL pre-training: When we do not con-
duct any VL pre-training for VL-T5 small, fine-tuning dis-
tilled VL-T5 small (row 18) even outperforms the ground-
truth supervised VL pre-trained and fine-tuned VL-T5 small
baseline (row 14). It also outperforms non-VL-pretrained
VL-T5 base (Cho et al. 2021) reported numbers (row 16).
The performance is also rather comparable to other recent
pre-trained and finetuned VL models. Also, for BLIP, fine-
tuning distillation (row 24) compensates for 14M-scale VL
pre-traning (row 22), but cannot fully compensate for 129M-
scale pre-training (row 20).

One possible explanation is that the knowledge obtained

VL-T5 Model #Params test-2016 test-2017 test-2018

Teacher (reproduced) 220M 44.00 39.40 37.00
Student 60M 41.90 36.85 34.02

Student w/ AMAD 60M 43.88 38.70 36.64
� +1.98 +1.85 +2.62

Table 3: Multi30K English-German translation BLEU@4
score. The VL-T5 small Student distilled with AMAD out-
performs ground-truth (GT) fine-tuned VL-T5 small, and its
performance is close to the VL-T5 base Teacher’s.

in the pre-training stage of the Teacher can somehow be dis-
tilled to the Student in the downstream fine-tuning process
when the Student tries to mimic the Teacher’s classification
logits and tries to align and mimic the Teacher’s attention
maps, even if the Student has no access to the pre-training
data by itself. The Teacher’s attention maps contain valuable
intra-modal and cross-modal coreference relations learned
from the pre-training dataset, and LAMAD helps the Student
to inherit the rich learned representation from the Teacher.

Besides these observations 1-4, we show in Table 3 that
AMAD can generalize well to language-heavy translation

BLIP Model #Params B C M S

Teacher (Li et al. 2022b) 446M 40.4 136.7 - -
Student 210M 22.3 65.1 20.9 13.5

Student w/ AMAD 210M 29.7 95.0 25.4 18.5
� +7.4 +29.9 +4.5 +5.0

Table 4: Results on COCO Captioning karpathy test split.
All BLIP Students are w/o any pretraining, i.e. the ViT and
BERT modules are randomly initialized for all Students.
Results for pretrained BLIP models are also reported in Ap-
pendix. Student distilled with AMAD outperforms the GT
trained Student by a surprisingly large margin, although per-
formance still degrades a lot because of neither VL nor uni-
modal pre-trained. This indicates that uni-modal pretraining
is still necessary even when distillation is applied.

VL-T5 #Params LKD LAMAD B C M S

Teacher 220M 34.2 115.1 28.3 21.6

Student 60M 32.8 108.2 27.0 20.4
Student 60M 3 33.1 111.8 27.9 21.2
Student (RKD-D) 60M 3 33.6 113.4 28.1 21.3
Student 60M 3 3 33.9 114.4 28.3 21.5

Table 5: Ablation results on COCO Captioning karpathy test
split. All VL-T5 Students are first VL pretrained. Ablation
results w/o VL pretraining are in Appendix. Distilling with
LAMAD outperforms logits distillation with LKD, and nar-
rows the CIDEr gap between the small Student and the base
Teacher to only 0.7% with 72% less parameters. The VL-
T5 Teacher is reproduced, as their fine-tuned checkpoints
are not released, also in following Tables. We also compare
AMAD with RKD-D (Park et al. 2019), a distance-based
similarity distillation method: We treat attention maps of all
heads as a whole single feature and apply RKD-D on that,
since #heads are different between Teacher and Student.

VL-T5 #Params LKD LAMAD Karpathy std dev

Teacher 226M 68.75 71.34 71.23

Student 63M 66.72 69.28 69.04
Student 63M 3 67.74 70.19 70.10
Student 63M 3 3 68.06 70.47 70.41

Table 6: VQA-2.0 test. All Students are first VL pretrained.

VL-T5 #Params LKD LAMAD Karpathy std dev

Teacher 226M 68.75 71.34 71.23

Student 63M 56.44 - 58.47
Student 63M 3 66.39 - 68.71
Student 63M 3 3 67.79 70.25 70.06

Table 7: Ablation results on VQA-2.0 test split. All Students
are w/o VL pretraining, i.e. are initialized with language-
only pre-trained T5 and vision-only pre-trained detector
chechpoints. This shows that vanilla finetuning logits distil-
lation already compensates to some degree for the absence
of VL pre-training, and AMAD narrows the gap further.

VL-T5 #Params Loss Variant Acc �

Teacher 226M 68.75

Student 63M Ground-Truth 66.72
Student 63M LKD 67.74 +1.02

Student 63M LKD + LKD-ATT 67.73 +1.01

Student 63M LKD + LAMAD-1 67.96 +1.24
Student 63M LKD + LAMAD-2 68.06 +1.34
Student 63M LKD + LAMAD-3 68.02 +1.30
Student 63M LKD + LAMAD-4 68.05 +1.33

Student 63M w/ AMAD mean 68.02 +1.30
std-err of the mean ± 0.02 ± 0.02

Table 8: Ablation results on VQA-2.0 Karpathy test split.
All VL-T5 Students are first VL pretrained. The baseline
of distilling the attention maps from the first 8 heads of
Teacher to those of the 8 heads of Student in a one-to-one
fashion with LKD-ATT = kS � T[: Hs, :]k22 does not help
improve performance than distilling with LKD only, maybe
because the extra Ht �Hs Teacher heads are discarded dur-
ing distillation, causing forced knowledge loss. Meanwhile,
all LAMAD variants help improve performance consistently
with a small standard error. KL variants for LAMAD (2, 3,
4) perform slightly better than MSE LAMAD-1. We have not
observed significant performance change brought by learn-
able projection LAMAD-3 or token-level alignment LAMAD-4,
compared to LAMAD-2.

task. Note that Table 4 unveils one of our limitations that, al-
though fine-tuning distillation might close the performance
gap of removing VL pretraining, uni-modal pretraining is
still necessary.

Ablations
Effects of logits distillation LKD and AMAD LAMAD: We
ablates on captioning and VQA tasks in w/ and w/o VL pre-
train settings in Table 5-7 and in Appendix, respectively. In
w/o VL pretrain settings, Students are finetuned directly af-
ter loading the vision pretrained Faster R-CNN and language
pretrained T5.
AMAD Variants and Baselines are analyzed in Table 8.

We present visualizations and qualitative analysis of
LAMAD distilled attention maps in Appendix.

Conclusion
We have proposed the Attention Map Alignment Distillation
(AMAD) method to distill attention maps from a Teacher
to a Student Transformer with different numbers of atten-
tion heads. Our experiments confirmed that AMAD nar-
rows the performance gap between the large Teacher and
the small Student in both discriminative VQA and auto-
regressive generative captioning / translation tasks. Our ab-
lation further suggested that fine-tuning knowledge distilla-
tion can compensate to some degree for the absence of VL
pre-training for VL Transformers.

References
Alayrac, J.-B.; Donahue, J.; Luc, P.; Miech, A.; Barr, I.; Has-
son, Y.; Lenc, K.; Mensch, A.; Millican, K.; Reynolds, M.;
et al. 2022. Flamingo: a visual language model for few-shot
learning. arXiv preprint arXiv:2204.14198.
Anderson, P.; Fernando, B.; Johnson, M.; and Gould, S.
2016. SPICE: Semantic Propositional Image Caption Eval-
uation. In ECCV.
Anderson, P.; He, X.; Buehler, C.; Teney, D.; Johnson, M.;
Gould, S.; and Zhang, L. 2018. Bottom-Up and Top-Down
Attention for Image Captioning and Visual Question An-
swering. 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 6077–6086.
Andonian, A.; Chen, S.; and Hamid, R. 2022. Ro-
bust Cross-Modal Representation Learning with Progressive
Self-Distillation. In CVPR, 16430–16441.
Appalaraju, S.; Jasani, B.; Kota, B. U.; Xie, Y.; and Man-
matha, R. 2021. Docformer: End-to-end transformer for
document understanding. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, 993–1003.
Appalaraju, S.; Tang, P.; Dong, Q.; Sankaran, N.; Zhou, Y.;
and Manmatha, R. 2024. DocFormerv2: Local Features for
Document Understanding - Full Paper. AAAI.
Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural ma-
chine translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473.
Banerjee, S.; and Lavie, A. 2005. METEOR : An Automatic
Metric for MT Evaluation with Improved Correlation with
Human Judgments. In ACL Workshop.
Beyer, L.; Zhai, X.; Royer, A.; Markeeva, L.; Anil, R.;
and Kolesnikov, A. 2022. Knowledge distillation: A good
teacher is patient and consistent. In Proceedings of the
IEEE/CVF Conference on CVPR, 10925–10934.
Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan,
T.; Child, R.; Ramesh, A.; Ziegler, D. M.; Wu, J.; Winter,
C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.;
Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford,
A.; Sutskever, I.; and Amodei, D. 2020. Language Models
are Few-Shot Learners. In NeurIPS.
Cao, J.; Gan, Z.; Cheng, Y.; Yu, L.; Chen, Y.-C.; and Liu, J.
2020. Behind the scene: Revealing the secrets of pre-trained
vision-and-language models. In ECCV.
Chen, F.; Zhang, D.; Han, M.; Chen, X.; Shi, J.; Xu, S.; and
Xu, B. 2022a. VLP: A Survey on Vision-Language Pre-
training. ArXiv, abs/2202.09061.
Chen, X.; Cao, Q.; Zhong, Y.; Zhang, J.; Gao, S.; and
Tao, D. 2022b. DearKD: Data-Efficient Early Knowledge
Distillation for Vision Transformers. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 12052–12062.
Chen, X.; Fang, H.; Lin, T.-Y.; Vedantam, R.; Gupta, S.; Dol-
lar, P.; and Zitnick, C. L. 2015. Microsoft COCO Captions:
Data Collection and Evaluation Server.

Chen, X.; Wang, X.; Changpinyo, S.; Piergiovanni, A.;
Padlewski, P.; Salz, D.; Goodman, S.; Grycner, A.; Mustafa,
B.; Beyer, L.; et al. 2022c. Pali: A jointly-scaled multilingual
language-image model. arXiv preprint arXiv:2209.06794.
Chen, Y.-c.; Li, L.; Yu, L.; Kholy, A. E.; Ahmed, F.; Gan,
Z.; Cheng, Y.; and Liu, J. 2020. UNITER: UNiversal Image-
TExt Representation Learning. In ECCV.
Cho, J.; Lei, J.; Tan, H.; and Bansal, M. 2021. Unifying
Vision-and-Language Tasks via Text Generation. In ICML.
Cho, J.; Lu, J.; Schwenk, D.; Hajishirzi, H.; and Kembhavi,
A. 2020. X-LXMERT: Paint, Caption and Answer Questions
with Multi-Modal Transformers. In EMNLP.
Clark, K.; Luong, M.-T.; Le, Q. V.; and Manning, C. D.
2020. Electra: Pre-training text encoders as discriminators
rather than generators. In ICLR.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In NAACL.
Ding, Z.; Jiang, G.; Zhang, S.; Guo, L.; and Lin, W. 2023.
SKDBERT: Compressing BERT via Stochastic Knowledge
Distillation. Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 37(6): 7414–7422.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; Uszkoreit, J.; and Houlsby, N. 2021.
An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. ICLR.
Elliott, D.; Frank, S.; Sima’an, K.; and Specia, L. 2016.
Multi30K : Multilingual English-German Image Descrip-
tions. In ACL Workshop, 70–74.
Fang, Z.; Wang, J.; Hu, X.; Wang, L.; Yang, Y.; and Liu, Z.
2021. Compressing Visual-linguistic Model via Knowledge
Distillation. ICCV.
Gou, J.; Yu, B.; Maybank, S. J.; and Tao, D. 2021. Knowl-
edge distillation: A survey. International Journal of Com-
puter Vision, 129(6): 1789–1819.
Goyal, Y.; Khot, T.; Agrawal, A.; Summers-Stay, D.; Batra,
D.; and Parikh, D. 2019. Making the V in VQA Matter: Ele-
vating the Role of Image Understanding in Visual Question
Answering. International Journal of Computer Vision.
Gu, X.; Lin, T.-Y.; Kuo, W.; and Cui, Y. 2021a. Open-
vocabulary Object Detection via Vision and Language
Knowledge Distillation. In ICLR.
Gu, Y.; Han, X.; Liu, Z.; and Huang, M. 2021b. PPT:
Pre-trained Prompt Tuning for Few-shot Learning. ArXiv,
abs/2109.04332.
He, K.; Gkioxari, G.; Dollár, P.; and Girshick, R. 2017. Mask
r-cnn. In Proceedings of the IEEE international conference
on computer vision, 2961–2969.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In CVPR, 770–778.
He, R.; Sun, S.; Yang, J.; Bai, S.; and Qi, X. 2022. Knowl-
edge Distillation as Efficient Pre-training: Faster Conver-
gence, Higher Data-efficiency, and Better Transferability. In
CVPR, 9161–9171.

Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distilling the
Knowledge in a Neural Network. In NIPS Deep Learning
and Representation Learning Workshop.
Ho, C.-H.; Appalaraju, S.; Jasani, B.; Manmatha, R.; and
Vasconcelos, N. 2022. YORO-Lightweight End to End Vi-
sual Grounding. In European Conference on Computer Vi-
sion - ECCV CAMP Workshop.
Houlsby, N.; Giurgiu, A.; Jastrzebski, S.; Morrone, B.;
De Laroussilhe, Q.; Gesmundo, A.; Attariyan, M.; and
Gelly, S. 2019. Parameter-efficient transfer learning for
NLP. In International Conference on Machine Learning,
2790–2799. PMLR.
Huang, Z.; Zeng, Z.; Liu, B.; Fu, D.; and Fu, J. 2020. Pixel-
BERT: Aligning Image Pixels with Text by Deep Multi-
Modal Transformers.
Hudson, D. A.; and Manning, C. D. 2019. GQA: A new
dataset for real-world visual reasoning and compositional
question answering. In CVPR. ISBN 9781728132938.
Ji, M.; Heo, B.; and Park, S. 2021. Show, attend and distill:
Knowledge distillation via attention-based feature matching.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, 7945–7952.
Jiao, X.; Yin, Y.; Shang, L.; Jiang, X.; Chen, X.; Li, L.;
Wang, F.; and Liu, Q. 2020. TinyBERT: Distilling BERT for
Natural Language Understanding. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020, 4163–
4174. Online: Association for Computational Linguistics.
Karpathy, A.; and Fei-Fei, L. 2015. Deep Visual-Semantic
Alignments for Generating Image Descriptions. In CVPR.
ISBN 9781467369640.
Kim, J.-h.; Jun, J.; and Zhang, B.-t. 2018. Bilinear Attention
Networks. In NeurIPS, 1–12.
Krishna, R.; Zhu, Y.; Groth, O.; Johnson, J.; Hata, K.;
Kravitz, J.; Chen, S.; Kalantidis, Y.; Jia-Li, L.; Shamma,
D. A.; Michael Bernstein; and Fei-Fei, L. 2016. Visual
Genome: Connecting Language and Vision Using Crowd-
sourced Dense Image Annotations. International Journal of
Computer Vision.
Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.;
and Soricut, R. 2020. Albert: A lite bert for self-supervised
learning of language representations. In ICLR.
Lei, J.; Yu, L.; Bansal, M.; and Berg, T. L. 2018. Tvqa:
Localized, compositional video question answering. In
EMNLP.
Lester, B.; Al-Rfou, R.; and Constant, N. 2021. The Power
of Scale for Parameter-Efficient Prompt Tuning. In EMNLP.
Li, C.; Fehérvári, I.; Zhao, X.; Macêdo, I.; and Appalaraju,
S. 2022a. SeeTek: Very Large-Scale Open-set Logo Recog-
nition with Text-Aware Metric Learning. 2022 IEEE/CVF
Winter Conference on Applications of Computer Vision
(WACV), 587–596.
Li, J.; Li, D.; Savarese, S.; and Hoi, S. 2023. BLIP-2: Boot-
strapping Language-Image Pre-training with Frozen Image
Encoders and Large Language Models. In ICML.

Li, J.; Li, D.; Xiong, C.; and Hoi, S. 2022b. BLIP: Boot-
strapping Language-Image Pre-training for Unified Vision-
Language Understanding and Generation. In ICML.
Li, L.; Chen, Y.-C.; Yu Cheng, Z. G.; Yu, L.; and Liu, J.
2020a. HERO: Hierarchical Encoder for Video+Language
Omni-representation Pre-training. In EMNLP.
Li, X.; Yin, X.; Li, C.; Zhang, P.; Hu, X.; Zhang, L.; Wang,
L.; Hu, H.; Dong, L.; Wei, F.; Choi, Y.; and Gao, J. 2020b.
Oscar: Object-Semantics Aligned Pre-training for Vision-
Language Tasks. In ECCV.
Li, X. L.; and Liang, P. 2021. Prefix-Tuning: Optimizing
Continuous Prompts for Generation.
Li, Z.; Wang, Z.; Tan, M.; Nallapati, R.; Bhatia, P.; Arnold,
A.; Xiang, B.; and Roth, D. 2022c. DQ-BART: Effi-
cient Sequence-to-Sequence Model via Joint Distillation and
Quantization. arXiv preprint arXiv:2203.11239.
Lin, S.; Xie, H.; Wang, B.; Yu, K.; Chang, X.; Liang, X.; and
Wang, G. 2022. Knowledge Distillation via the Target-aware
Transformer. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 10915–10924.
Lin, T. Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ra-
manan, D.; Dollár, P.; and Zitnick, C. L. 2014. Microsoft
COCO: Common Objects in Context. In ECCV. ISBN 978-
3-319-10601-4.
Liu, F.; Ren, X.; Liu, Y.; Lei, K.; and Sun, X. 2020. Explor-
ing and distilling cross-modal information for image cap-
tioning. arXiv preprint arXiv:2002.12585.
Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.;
Levy, O.; Lewis, M.; Zettlemoyer, L.; and Stoyanov, V.
2019. Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.
Lu, J.; Batra, D.; Parikh, D.; and Lee, S. 2019. ViLBERT:
Pretraining Task-Agnostic Visiolinguistic Representations
for Vision-and-Language Tasks. In NeurIPS.
Ma, Z.; Luo, G.; Gao, J.; Li, L.; Chen, Y.; Wang, S.; Zhang,
C.; and Hu, W. 2022. Open-Vocabulary One-Stage Detec-
tion with Hierarchical Visual-Language Knowledge Distilla-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 14074–14083.
Mao, J.; Huang, J.; Toshev, A.; Camburu, O.; Yuille, A.; and
Murphy, K. 2016. Generation and Comprehension of Un-
ambiguous Object Descriptions. In CVPR.
Miech, A.; Alayrac, J.-B.; Smaira, L.; Laptev, I.; Sivic, J.;
and Zisserman, A. 2020. End-to-end learning of visual rep-
resentations from uncurated instructional videos. In CVPR.
Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W. W.-j. 2002.
BLEU: a Method for Automatic Evaluation of Machine
Translation. In ACL. ISBN 1-55860-883-4.
Park, W.; Kim, D.; Lu, Y.; and Cho, M. 2019. Relational
knowledge distillation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
3967–3976.
Peng, B.; Jin, X.; Liu, J.; Li, D.; Wu, Y.; Liu, Y.; Zhou, S.;
and Zhang, Z. 2019. Correlation congruence for knowledge
distillation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, 5007–5016.

Post, M. 2018. A Call for Clarity in Reporting BLEU
Scores. In WMT, volume 1, 186–191.
Qu, X.; Ding, C.; Li, X.; Zhong, X.; and Tao, D. 2022.
Distillation Using Oracle Queries for Transformer-Based
Human-Object Interaction Detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 19558–19567.
Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.;
Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.;
et al. 2021. Learning transferable visual models from natural
language supervision. arXiv preprint arXiv:2103.00020.
Radford, A.; Narasimhan, K.; Salimans, T.; and Sutskever,
I. 2018. Improving Language Understanding by Generative
Pre-Training.
Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.;
Matena, M.; Zhou, Y.; Li, W.; and Liu, P. J. 2020. Exploring
the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. JMLR, 21: 1–67.
Rebuffi, S.-A.; Bilen, H.; and Vedaldi, A. 2017. Learning
multiple visual domains with residual adapters. In NIPS.
Rebuffi, S.-A.; Bilen, H.; and Vedaldi, A. 2018. Efficient
Parametrization of Multi-domain Deep Neural Networks.
2018 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 8119–8127.
Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster
R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks. In NIPS.
Sanh, V.; Debut, L.; Chaumond, J.; and Wolf, T. 2019. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper
and lighter. arXiv preprint arXiv:1910.01108.
Su, W.; Zhu, X.; Cao, Y.; Li, B.; Lu, L.; Wei, F.; and Dai, J.
2019. VL-BERT: Pre-training of Generic Visual-Linguistic
Representations. In ICLR.
Sun, C.; Myers, A.; Vondrick, C.; Murphy, K.; and Schmid,
C. 2019. Videobert: A joint model for video and language
representation learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, 7464–7473.
Sun, Z.; Yu, H.; Song, X.; Liu, R.; Yang, Y.; and Zhou,
D. 2020. MobileBERT: a Compact Task-Agnostic BERT
for Resource-Limited Devices. In Proceedings of the 58th
Annual Meeting of the Association for Computational Lin-
guistics, 2158–2170. Online: Association for Computational
Linguistics.
Sung, Y.-L.; Cho, J.; and Bansal, M. 2022. Vl-
adapter: Parameter-efficient transfer learning for vision-and-
language tasks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 5227–5237.
Tung, F.; and Mori, G. 2019. Similarity-Preserving Knowl-
edge Distillation. In 2019 IEEE/CVF International Confer-
ence on Computer Vision (ICCV), 1365–1374.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention Is All You Need. In NIPS.
Vedantam, R.; Zitnick, C. L.; and Parikh, D. 2015. CIDEr:
Consensus-based Image Description Evaluation. In CVPR.

Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; and
Bowman, S. R. 2018. Glue: A multi-task benchmark and
analysis platform for natural language understanding. In
ICLR.
Wang, J.; Hu, X.; Zhang, P.; Li, X.; Wang, L.; Zhang, L.;
Gao, J.; and Liu, Z. 2020a. MiniVLM: A Smaller and Faster
Vision-Language Model.
Wang, P.; Yang, A.; Men, R.; Lin, J.; Bai, S.; Li, Z.; Ma, J.;
Zhou, C.; Zhou, J.; and Yang, H. 2022a. Ofa: Unifying archi-
tectures, tasks, and modalities through a simple sequence-to-
sequence learning framework. In International Conference
on Machine Learning, 23318–23340. PMLR.
Wang, W.; Bao, H.; Huang, S.; Dong, L.; and Wei, F. 2021.
MiniLMv2: Multi-Head Self-Attention Relation Distillation
for Compressing Pretrained Transformers. In ACL Findings.
Wang, W.; Wei, F.; Dong, L.; Bao, H.; Yang, N.; and Zhou,
M. 2020b. Minilm: Deep self-attention distillation for task-
agnostic compression of pre-trained transformers. Advances
in Neural Information Processing Systems (NeurIPS).
Wang, Z.; Codella, N.; Chen, Y.-C.; Zhou, L.; Dai, X.;
Xiao, B.; Yang, J.; You, H.; Chang, K.-W.; Chang, S.-f.;
et al. 2022b. Multimodal Adaptive Distillation for Leverag-
ing Unimodal Encoders for Vision-Language Tasks. arXiv
preprint arXiv:2204.10496.
Williams, A.; Nangia, N.; and Bowman, S. R. 2017. A
broad-coverage challenge corpus for sentence understand-
ing through inference. In NAACL.
Wu, H.; Gao, Y.; Zhang, Y.; Lin, S.; Xie, Y.; Sun, X.; and
Li, K. 2022a. Self-supervised Models are Good Teaching
Assistants for Vision Transformers. In ICML.
Wu, K.; Zhang, J.; Peng, H.; Liu, M.; Xiao, B.; Fu, J.; and
Yuan, L. 2022b. Tinyvit: Fast pretraining distillation for
small vision transformers. In ECCV, 68–85. Springer.
Xu, J.; Mei, T.; Yao, T.; and Rui, Y. 2016. Msr-vtt: A large
video description dataset for bridging video and language.
In CVPR.
Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov,
R. R.; and Le, Q. V. 2019. Xlnet: Generalized autoregressive
pretraining for language understanding. In NeurIPS.
Yang, Z.; Li, Z.; Jiang, X.; Gong, Y.; Yuan, Z.; Zhao, D.; and
Yuan, C. 2022. Focal and global knowledge distillation for
detectors. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 4643–4652.
Yu, L.; Lin, Z.; Shen, X.; Yang, J.; Lu, X.; Bansal, M.; and
Berg, T. L. 2018. MAttNet : Modular Attention Network for
Referring Expression Comprehension. In CVPR.
Yu, Y.; Kim, J.; and Kim, G. 2018. A joint sequence fusion
model for video question answering and retrieval. In ECCV.
Yuan, L.; Chen, D.; Chen, Y.-L.; Codella, N.; Dai, X.; Gao,
J.; Hu, H.; Huang, X.; Li, B.; Li, C.; et al. 2021. Florence: A
new foundation model for computer vision. arXiv preprint
arXiv:2111.11432.
Zagoruyko, S.; and Komodakis, N. 2017. Paying more at-
tention to attention: Improving the performance of convolu-
tional neural networks via attention transfer. ICLR.

Zellers, R.; Bisk, Y.; Schwartz, R.; and Choi, Y. 2018. Swag:
A large-scale adversarial dataset for grounded commonsense
inference. In EMNLP.
Zhang, P.; Li, X.; Hu, X.; Yang, J.; Zhang, L.; Wang, L.;
Choi, Y.; and Gao, I. 2021. VinVL: Making Visual Repre-
sentations Matter in Vision-Language Models.
Zhou, L.; Palangi, H.; Zhang, L.; Hu, H.; Corso, J. J.; and
Gao, J. 2020. Unified Vision-Language Pre-Training for Im-
age Captioning and VQA. In AAAI.
Zhou, L.; Xu, C.; and Corso, J. J. 2018. Towards automatic
learning of procedures from web instructional videos. In
AAAI.
Zhu, L.; and Yang, Y. 2020. ActBERT: Learning Global-
Local Video-Text Representations. In CVPR.
Zhu, Y.; Groth, O.; Bernstein, M.; and Fei-Fei, L. 2016.
Visual7W: Grounded Question Answering in Images. In
CVPR. ISBN 978-1-4673-8851-1.

No Head Left Behind - Multi-Head Alignment Distillation for Transformers -

Supplemental

Tianyang Zhao
1,2*, Kunwar Yashraj Singh

1 †
, Srikar Appalaraju

1 ‡
, Peng Tang

1
,

Vijay Mahadevan
1
, R. Manmatha

1
, Ying Nian Wu

1,2

1AWS AI Labs, 2University of California, Los Angeles
tyzhao@ucla.edu, {sinkunwa, srikara, tangpen, vmahad, manmatha, wunyin}@amazon.com

Appendix / Supplementary Material

In this Appendix, we provide a further illustration on the
matrix-form loss derivation and formulation of different
AMAD variants in Section A; more ablation results and a
reverse experiment of distilling a smaller Teacher to a larger
Student in Section B; implementation details including
training environment, training time, and hyper-parameters in
Section C; an additional illustration of the distillation work-
flow for our experimental setup and the architecture of VL-
T5 in Section D; visualizations of AMAD distilled cross-
and self- attention maps in Section E; and PyTorch code for
the proposed AMAD loss in Section F.

A. Derivation and Discussion on AMAD Loss

We provide a further illustration on the matrix-form loss for-
mulation of different AMAD variants in this subsection. The
derivation and interpretation of Equation 6 and its equiv-
alence to Equation 2 - Equation 5 in the main paper are
straight-forward, and we illustrate it here for better readabil-
ity to broader reader group.

For each data sample (not batched), for AMAD Variant 1
for instance, we first compute the pair-wise cosine similarity
matrix W 2 RHt⇥Hs :

W := TST =

0

BBB@

tT1 /kt1k2
tT2 /kt2k2

...
tT
Ht

/ktHt
k2

1

CCCA

⇣
s1

ks1k2

s2
ks2k2

· · · sHs

ksHs
k2

⌘

(1)

=

0

B@
w11 · · · w1,Hs

...
. . .

...
wHt,1 · · · wHt,Hs

1

CA (2)

where each of its entry wij = ti · sj/(ktik2 · ksjk2) is the
cosine similarity between the i-th head flattened attention
matrix ti of Teacher and the j-th head flattened attention
matrix sj of Student.

*Work conducted during an internship at Amazon.
†Corresponding Author
‡Corresponding Author

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Note that for Variant 4, instead of sharing a common
W for all different query attention vectors, each group of
l-th query attention vectors have their own weight matrix
Wl = TlST

l
, so that they can attend to the Student heads

in different ways: Let each query attention vector tT
h,l

or sT
h,l

refers to the l-th row vector in the Teacher / Student attention
map Ah. In attention mechanism, for a given head h, the l-
th query attention vector encodes how the l-th query vector
in Qh should attend to the key vectors in Kh. In all pre-
vious variants, different query attention vectors in the same
Teacher head share the same set of soft alignment weights
for the corresponding query attention vectors in different
Student heads. In this variant, different row vectors in the
same Teacher head attention map can attend to the vectors
of different Student heads independently.

After Equation 2, we then apply softmax by each row
(for each Teacher head) to get the Teacher-Student soft-align
weight matrix. Denote aij :=

exp(wij)P
Hs

m=1 exp(wim)
, we have:

softmax(TST) =

0

B@
a11 · · · a1,Hs

...
. . .

...
aHt,1 · · · aHt,Hs

1

CA (3)

We then multiply the Teacher-Student soft-align weight
matrix on the left of the Student matrix to get the soft-
aligned weighted sum of all Student heads for each Teacher
head:

softmax(TST)S =

0

B@
a11 · · · a1,Hs

...
. . .

...
aHt,1 · · · aHt,Hs

1

CA

0

BBB@

sT1 /ks1k2
sT2 /ks2k2

...
sT
Hs

/ksHs
k2

1

CCCA

(4)

=

0

BBB@

P
Hs

j=1 a1j ·
sT
j

ksjk2

...
P

Hs

j=1 aHt,j
· sT

j

ksjk2

1

CCCA
(5)

Finally, we compute the difference between the Teacher
and the soft-aligned Student. Note that each Teacher head

is getting different weighted sums according to the soft-
aligned weights. Each Teacher head contributes to all Stu-
dent heads, but contributes more to the Student heads which
are similar to it:

T� softmax(TST)S =

0

BBB@

tT1
kt1k2

�
P

Hs

j=1 a1j ·
sT
j

ksjk2

...
tT
Ht

ktHt
k2

�
P

Hs

j=1 aHt,j
· sT

j

ksjk2

1

CCCA

(6)

LAMAD : = kT� softmaxdim=row(TST)Sk22 (7)

=
HtX

i=1

LAMADi
=

HtX

i=1

������
ti

ktik2
�

HsX

j=1

aij ·
sj

ksjk2

������

2

2
(8)

We have also formulated a Student-to-Teacher (S2T) vari-
ant of AMAD during exploration. In this variant, instead of
letting each Teacher attends to the Student heads, here we
let each Student attends to the Teacher heads:

LAMAD = kS� softmaxdim=row(ST
T)Tk22 (9)

Note that for this S2T Variant, when we attend Student to
Teacher instead, we have,

LAMAD : = kS� softmaxdim=row(ST
T)Tk22 (10)

=
HsX

j=1

LAMADj
=

HsX

j=1

�����
sj

ksjk2
�

HtX

i=1

ãij ·
ti

ktik2

�����

2

2

(11)

where ãij :=
exp(wij)PHt

m=1 exp(wmj)
6= exp(wij)P

Hs

m=1 exp(wim)
= aij .

The difference is that, in this formulation of S2T Variant,
the optimization w.r.t. AMAD loss might lead to a degraded
trivial solution that all Student heads are mostly soft-aligned
to a same small subset of Teacher heads (or even to one
single Teacher head). This might happen, e.g., in this ex-
ample toy case: for each Student head j 2 {1, 2, · · · , Hs},
ã1,j ⇡ 1.0 and ãi,j ⇡ 0.0 for 8i 6= 1. In this case, only the
co-reference knowledge of Teacher head #1 is inherited to
the Students, the knowledge in all other heads is lost. Vari-
ant 1, instead, will not degrade into this solution, because we
always have

P
Hs

j=1 aij = 1, 8i. In our experiments, we have
not observe severe degradation with S2T Variant when the
Student is pre-trained, but do observe a small performance
drop. We sometimes also observe more severe degradation
in S2T Variant when the Student is not pre-trained and thus
might not be well-initiated and falls into the ill-conditioned
solution.

B. More Ablation Results

More Ablation Results. We present more ablation results in
different settings here in Table 1-3.

A Reverse Experiment: Distilling a Smaller Teacher to

a Larger Student. Previous studies show that, especially
for self-distillation when Teacher and Student are identi-
cal models, the distilled Student sometimes outperforms
the Teacher on test / validation data. (Mobahi et al. 2020)
explained this mathematically by regularization in Hilbert
space: the number of basis functions for representation is
limited during distillation, thus may reduce over-fitting. We
hope to understand this in future work. However, here we do
conduct a reverse experiment: We distill a small Teacher
(VL-T5 small) to a larger Student (VL-T5 base), using
only logits KD (w/o proposed AMAD, w/o supervision from
ground-truth labels), and we surprisingly find that, on VQA-
2.0 validation set, the small Teacher achieves 67.43% accu-
racy, but the large Student achieves 68.27%, higher than the
Teacher. We hypothesis that this might attribute to the larger
scale pre-training of larger model.

BLIP Model #Params B C M S

Teacher (Li et al. 2022) 446M 40.4 136.7 - -
Student (Li et al. 2022) 210M 39.7 133.3 - -
Student (reproduced) 210M 39.6 132.9 30.7 23.7

Student w/ AMAD 210M 40.0 134.1 31.0 23.9
� +0.4 +1.2 +0.3 +0.2

Table 1: Results on COCO Captioning karpathy test split.
All BLIP Students are first VL pretrained. Student then dis-
tilled with AMAD outperforms the GT fine-tuned Student.

VL-T5 #Params LKD LAMAD B C M S

Teacher 220M 34.2 115.1 28.3 21.6

Student 60M 30.8 101.4 26.3 19.5
Student 60M 3 32.4 107.2 26.9 20.3
Student 60M 3 3 33.3 112.9 28.0 21.3

Table 2: Results on COCO Captioning karpathy test split.
All VL-T5 Students are w/o VL pretrain. AMAD boosts
the Student’s performance by a large margin.

VL-T5 #Params B " C " M " S "
1 Teacher 220M 34.2 115.1 28.3 21.6

2 Student (AMAD on final layers) 60M 33.9 114.4 28.3 21.5

3 Student (AMAD on extra layers) 60M 34.0 114.5 28.3 21.5

Table 3: Results on COCO Captioning karpathy test split.
All VL-T5 Students are first VL pretrained. Here, in row 3,
we apply AMAD on additional layers. Note that the Teacher
has 12+12 layers, but the Student has 6+6, so we distill
Teacher layer #2,4,6,8,10,12 to Student layer #1-6, respec-
tively.

C. Implementation Details

We build our code upon the open-source repository of VL-
T5 (Cho et al. 2021) and BLIP (Li et al. 2022, 2023), based

on PyTorch (Paszke et al. 2017) and Hugging Face (Wolf
et al. 2019).
VL-T5 Architecture. We directly use the code from VL-
T5. Briefly, The Teacher and the Student take same image
features and question text as input, and output answer clas-
sification over all possible answer categories for the VQA
task, or auto-regressively generates a sentence for caption-
ing and translation tasks. The VL-T5 (Cho et al. 2021) archi-
tecture consists frozen Faster R-CNNs (Ren et al. 2015) for
image detection and a multi-modal T5 (Raffel et al. 2020)
Encoder-Decoder stack. For VQA task, they build a 3129-
way answer classifier head upon the start-of-sequence token
of the T5 Decoder, and they name it as the ”discriminative
variant”. The classifier is an MLP on top of the Decoder rep-
resentation of a start-of-sequence token following (Cho et al.
2021; Tan and Bansal 2019; Chen et al. 2020). The MLP has
one hidden layer with a dimension twice as the Transformer
hidden dimension dmodel. The MLP contains additional 6M
/ 3M learnable parameters for base and small, respectively.
For captioning and translation, we use the original VL-T5
generative language modeling head. During inference, to-
kens are generated auto-regressively with beam search.
BLIP Architecture. We directly use the code of BLIP.
Briefly, for the captioning task we test on, it contains a train-
able ViT (Dosovitskiy et al. 2021) image-encoding trans-
former and a trainable BERT (Devlin et al. 2019) text mod-
ule, with causal self-attention layers in replace of the bi-
directional self-attention layers. BLIP is detector-free, and
both the ViT large (Teacher) and ViT base (Student) take
an image patch size of 16 ⇥ 16. Using a multi-modal pre-
trained encoder model (Kim, Son, and Kim 2021; Ho et al.
2022) could provide additional improvements.
Vision-Language Pre-training for Teacher. The VL-T5
and BLIP authors released their VL-pre-trained VL-T5 base
/ BLIP large models and we directly use their pre-trained
checkpoints for our Teacher.
Vision-Language Pre-training for VL-T5 Student. For
those experiments where vision-language pre-training for
the Student is involved, we VL pre-train our own small
model, since the VL-T5 authors have not released their
VL-pre-trained small model. We adopt the same hyper-
parameters as in the open-source code of VL-T5.

In some of our ablative settings, to further demonstrate the
strength of AMAD, we do not conduct any VL-pre-training
on our Student models. After loading the Student Trans-
former from the Huggingface language pre-trained check-
point and loading the vision-pre-trained Faster RCNN, we
directly finetune the Student Transformer on downstream
tasks with distillation loss only.
Vision-Language Pre-training for BLIP Student. The
BLIP authors released their VL-pre-trained base model and
we directly use their pre-trained base checkpoint for our Stu-
dent.
Fine-tuning Teacher. We adopt the same hyper-parameters
as in the open-source code of VL-T5 for COCO Captioning.
For VQA, we use the discriminative variant of VL-T5, and
we find that training with more epochs can bring better per-
formance than what the VL-T5 paper reported. We train 60
epochs, and remain all the other hyper-parameters the same

as in the open-source code of VL-T5. We also adopt the
same hyper-parameters as in the open-source code of BLIP.
Fine-tuning Student with Distillation: VL-T5. For both
downstream distilling on VQA-2.0 and COCO Captioning,
it takes roughly 1-1.5 days for fine-tuning distillation with
AMAD on 8 NVIDIA A100 GPUs. We use batch size 300
and 200 for VQA and Captioning, respectively. Beyer et
al., 2022 (Beyer et al. 2022) shown with extensive exper-
iments that a patient and consistent training schedule will
benefit distillation training. Following them, we adopt a pa-
tient training schedule and train 500 epochs and 400 epochs
for VQA and Captioning, respectively. We use AdamW
(Loshchilov and Hutter 2019) optimizer with a learning rate
of 1e-4 with 2% linear warm-up schedule, with clipping gra-
dient norm of 5. We always use ⌧d = 1.0 for logits dis-
tillation temperature in Equation 13 and Equation 14. For
inference stage on COCO Captioning, we auto-regressively
predict each output token with the beam search size at 5. For
↵ in Equation 15, we tune it so that LCLS and ↵LAMAD are
in similar scales when initiated. For our implementation as
in the code below, we use ↵ = 0.2 for all MSE variants,
and ↵ = 100 for all KL variants. The different in scales of
↵ is caused by the specific implementation of reshaping and
normalization, but all resulting in similar scales of LCLS and
↵LAMAD. All hyper-parameters are not heavily-tuned.
Fine-tuning Student with Distillation: BLIP. We use a
batch size of 32, total epochs of 20 (60 for training BLIP
with randomly initialized ViT and BERT in w/o any pretrain
setting). We use the same optimizer settings as in BLIP: us-
ing initial learning rate 1e-5, with AdamW optimizer with
a weight decay of 0.05 and a cosine learning rate schedule.
We use an image resolution of 384 × 384. During inference,
we adopt the same setting as BLIP: we use beam search with
a beam size of 3, and set the maximum generation length as
20. We use the same ⌧d and ↵ as in distilling VL-T5, so that
LCLS and ↵LAMAD scales similarly.
Augmentation: like MixGen (Hao et al. 2023) was not ap-
plied to make the comparison correct. In our experiments,
we found adding such augmentation to teacher could make
the teacher robust to noise and thereby guide a student better.

D. Illustration of Workflow and Architecture

We provide an additional illustration of the distillation work-
flow for our experimental setup and the architecture of VL-
T5 (Cho et al. 2021) in Figure 1 for readers not familiar
with literature on VL-T5 and knowledge distillation. The
pipeline of distilling the ViT and BERT modules of BLIP
with AMAD is similar.

E. Visualization of Attention Maps

We present visualization of AMAD distilled VL-T5 (for
VQA-2.0) Decoder cross-attention maps in Figure 2, Fig-
ure 3, Figure 4, and Figure 5. We also present visualization
of AMAD distilled Encoder self-attention maps in Figure 6,
Figure 7, Figure 8, and Figure 9.

Auto-regressive Text Transformer Decoder

Transform
er Block 1

Transform
er Block 2

...

Head 2: t2

Transform
er Block 6

Head 1: t1

Head 3: t3

Attention M
aps of Last D

ecoder Block

Transform
er Block 6

Head 1: t1

Head 3: t3

Attention M
aps of Last Encoder Block

text token

Bidirectional Multi-modal Transformer Encoder

Transform
er Block 1

Transform
er Block 2

...

Head 2: t2

A
M

A
D

 Loss

A
M

A
D

 Loss

text token

text token

image token

image token

image token

image token

text token

text token

text token

text token

text token

LM logits

LM logits

LM logits

LM logits

LM logits

Frozen Faster R
C

N
N

Frozen Teacher

Auto-regressive Text Transformer Decoder

Transform
er Block 1

Transform
er Block 2

...

Head 2: s2

Transform
er Block 4

Head 1: s1

Attention M
aps of Last D

ecoder Block

Transform
er Block 4

Attention M
aps of Last Encoder Block

text token

Head 1: s1

text token

text token

image token

image token

image token

image token

text token

text token

text token

text token

text token

LM logits

LM logits

LM logits

LM logits

LM logits

Frozen Faster R
C

N
N

Student

Bidirectional Multi-modal Transformer Encoder

Transform
er Block 1

Transform
er Block 2

...

Head 2: s2

Sam
e

C
LS D

istillation Loss

Figure 1: Illustration of the distillation workflow for our experimental setup and the architecture of VL-T5 (Cho et al. 2021),
with logits classification (CLS) distillation loss LKD and AMAD loss LAMAD.

Figure 2: Visualization of the similarity matrix between each pair of Student and Teacher head attention maps in the last
Decoder cross-attention layer in VQA: WT 2 RHs⇥Ht , where Hs = 8 and Ht = 12 in this case. The visualization shows
the similarity matrix W after distilled with AMAD, for a randomly-selected image-question pair sample. Each of its entry wij

shows the cosine similarity between the i-th head attention map of AMAD-distilled Student si and the j-th head of the Teacher
tj . Bright yellow represents higher similarity, and dark blue represents lower similarity. The corresponding 12 Teacher head
attention maps and 8 Student head attention maps are shown in Figure 3, and Figure 4, respectively. We can see from this figure
that after AMAD distillation, Student heads #1, #2, #3, #5, #7 are very similar to Teacher heads #0, #1, #2, #4, #5, #6, #8, #10
(cosine similarity > 0.8), and somewhat similar to Teacher heads #7, #9, #11 (cosine similarity > 0.5); While another group
of Student heads, #0, #4, and #6, are quite similar to Teacher head #3, #7, #9 (cosine similarity > 0.5). This shows that with
AMAD, different Student heads focus on learning from different soft-aligned Teacher heads. Each Student head inherits the
co-reference knowledge from all Teacher heads, but different Student heads inherit more knowledge from different soft-aligned
Teacher heads. Please also refer to Figure 3 and Figure 4 to see the detailed distilled effects for each specific head.

(a) Teacher Head 0 (b) Teacher Head 1

(c) Teacher Head 2 (d) Teacher Head 3

(e) Teacher Head 4 (f) Teacher Head 5

(g) Teacher Head 6 (h) Teacher Head 7

(i) Teacher Head 8 (j) Teacher Head 9

(k) Teacher Head 10 (l) Teacher Head 11

Figure 3: Visualization of the cross-attention maps of Teacher’s last Decoder layer, for all its 12 heads. We are using the same image-question
pair sample following Figure 2. Each cross attention map tj is of shape 2 Rq⇥k, where q = 1 in this VQA case, because we are using a
3129-way output classifier built on the Decoder start-of-sequence token. The attention maps can be divided into two similar groups, one group
includes Teacher head #3; and the other group includes all other Teacher heads, featured by a strong attention to the 15-th token in bright
yellow.

(a) Student Head 0 (b) Student Head 1

(c) Student Head 2 (d) Student Head 3

(e) Student Head 4 (f) Student Head 5

(g) Student Head 6 (h) Student Head 7

Figure 4: Visualization of the cross-attention maps of Student’s last Decoder layer, for all its 8 heads. We are using the same image-question
pair sample following Figure 2 and Figure 3. The attention maps of Student can also be divided into two similar groups, one group includes
Student head #0, #4, #6, which are relatively similar to the first group of Teacher; and the other group includes the other Student heads, which
are similar to the second group of Teacher heads, featured by a strong attention to the 15-th token in bright yellow.

(a) (b)

(c) (d)

Figure 5: More visualizations for the similarity matrices between each pair of Student and Teacher head attention maps in the last Decoder
cross-attention layer in VQA: WT 2 RHs⇥Ht for other image-question pair samples. In most cases (a, b, c), for each Teacher head, there
are some Student head(s) similar to it, indicating that the co-reference knowledge in each Teacher head is inherited to the Student heads via
distillation with AMAD to some extent. However, there are still some failure cases, e.g. in (d), none of the 8 Student heads is similar to the
11-th Teacher head.

Figure 6: Visualization of the similarity matrix between each pair of Student and Teacher head attention maps in the last Encoder
self-attention layer in VQA: WT 2 RHs⇥Ht , where Hs = 8 and Ht = 12 in this case. The visualization shows the similarity
matrix W after distilled with AMAD, for a randomly-selected image-question pair sample. Each of its entry wij shows the
cosine similarity between the i-th head attention map of AMAD-distilled Student si and the j-th head of the Teacher tj . Bright
yellow represents higher similarity, and dark blue represents lower similarity. The corresponding 12 Teacher head attention
maps and 8 Student head attention maps are shown in Figure 7, and Figure 8, respectively. We can see from this figure that
after AMAD distillation, for most Teacher heads, there are some soft-aligned Student heads similar to them. With AMAD, each
Student head inherits the co-reference knowledge from all Teacher heads, but different Student heads inherit more knowledge
from different soft-aligned Teacher heads. However, there is still a failure case as of Teacher head #8, for which none of the
8 Student heads is similar to it. Please also refer to Figure 7 and Figure 8 to see the detailed distilled effects for each specific
head.

(a) Teacher Head 0 (b) Teacher Head 1 (c) Teacher Head 2 (d) Teacher Head 3

(e) Teacher Head 4 (f) Teacher Head 5 (g) Teacher Head 6 (h) Teacher Head 7

(i) Teacher Head 8 (j) Teacher Head 9 (k) Teacher Head 10 (l) Teacher Head 11

Figure 7: Visualization of the self-attention maps of Teacher’s last Encoder layer, for all its 12 heads. We are using the same image-question
pair sample following Figure 6. Each self attention map tj is of shape 2 Rq⇥k, where q = k = 56 in this self-attention case. Specifically,
following VL-T5 (Cho et al. 2021), in the 56 tokens, the first (left / top) 20 tokens are question text tokens, and the last (right / bottom) 36
tokens are detected image tokens.

(a) Student Head 0 (b) Student Head 1 (c) Student Head 2 (d) Student Head 3

(e) Student Head 4 (f) Student Head 5 (g) Student Head 6 (h) Student Head 7

Figure 8: Visualization of the self-attention maps of Student’s last Encoder layer, for all its 8 heads. We are using the same image-question
pair sample following Figure 6 and Figure 7. Note the light yellow column of the 14-th token, the blue column of the 26-th and 35-th column,
and the top-left corner of text intra-modal attentions, which are similar to those of the Teacher’s attention maps.

(a) (b)

(c) (d)

Figure 9: More visualizations for the similarity matrices between each pair of Student and Teacher head attention maps in the last Encoder
self-attention layer in VQA: WT . For most of the Teacher heads, there are always some Student heads quite similar to it (light yellow or
light green, cosine similarity > 0.7), indicating that their co-reference knowledge is inherited. However, the failure case is that Teacher head
#8 always do not have Student heads very similar to it (max cosine similarity ⇡ 0.5), and Teacher head #11 also have the similar problem,
although slightly better in (a) and (d).

F. Code for AMAD Loss

PyTorch code for our implementation of the proposed
AMAD loss is provided in the following pages.

1 def attention_map_alignment_distillation_loss(teacher_attn, student_attn):
2 # Arguments: teacher attention maps and student attention maps: last layer of Encoder /

Decoder,
3 # torch tensor of shape (batch_size, n_heads, seq_length, key_length);
4 # Return: AMAD loss.
5

6 (batch_size, n_heads_teacher, seq_length, key_length) = teacher_attn.shape
7 n_heads_student = student_attn.shape[1]
8

9 # Reshape
10 teacher_attn = torch.reshape(teacher_attn, (batch_size, n_heads_teacher, seq_length *

key_length))
11 student_attn = torch.reshape(student_attn, (batch_size, n_heads_student, seq_length *

key_length))
12

13 # Compute cosine similarity: W = T Sˆt / norm(S) norm(T)
14 teacher_attn = nn.functional.normalize(teacher_attn, dim=2)
15 student_attn = nn.functional.normalize(student_attn, dim=2)
16 student_attn_transpose = torch.transpose(student_attn, 1, 2)
17 teacher_student_similarity_score = torch.matmul(teacher_attn, student_attn_transpose)
18

19 # Compute Softmax(W) S by dim=2
20 teacher_student_attention_weights = nn.functional.softmax(

teacher_student_similarity_score, dim=2)
21 weighted_sum_student_attn = torch.matmul(teacher_student_attention_weights ,

student_attn)
22

23 # Normalize
24 weighted_sum_student_attn = nn.functional.normalize(weighted_sum_student_attn, dim=2)
25

26 # Compute loss = MSE(., T), differs from L2 error by a factor
27 L2_loss = nn.MSELoss(reduction="mean")
28 loss = L2_loss (input=weighted_sum_student_attn, target=teacher_attn)
29

30 return loss
31

Figure 10: Variant 1.

1 def attention_map_alignment_distillation_loss(teacher_attn, student_attn):
2 # Arguments: teacher attention maps and student attention maps: last layer of Encoder /

Decoder,
3 # If provided with projected attention maps as arguments: Variant 5;
4 # torch tensor of shape (batch_size, n_heads, seq_length, key_length);
5 # Return: AMAD loss.
6

7 (batch_size, n_heads_teacher, seq_length, key_length) = teacher_attn.shape
8 n_heads_student = student_attn.shape[1]
9

10 # Reshape
11 teacher_attn = torch.reshape(teacher_attn, (batch_size, n_heads_teacher, seq_length *

key_length))
12 student_attn = torch.reshape(student_attn, (batch_size, n_heads_student, seq_length *

key_length))
13

14 # Compute similarity: W = T Sˆt / L1-norm(S) L1-norm(T)
15 teacher_attn = nn.functional.normalize(teacher_attn, dim=2, p=1.0)
16 student_attn = nn.functional.normalize(student_attn, dim=2, p=1.0)
17 student_attn_transpose = torch.transpose(student_attn, 1, 2)
18 teacher_student_similarity_score = torch.matmul(teacher_attn, student_attn_transpose)
19

20 # Compute Softmax(A) S by dim=2
21 teacher_student_attention_weights = nn.functional.softmax(

teacher_student_similarity_score, dim=2)
22 weighted_sum_student_attn = torch.matmul(teacher_student_attention_weights,

student_attn)
23

24 # Reshape for KL + normalize
25 teacher_attn = torch.reshape(teacher_attn, (batch_size * n_heads_teacher * seq_length,

key_length))
26 weighted_sum_student_attn = torch.reshape(weighted_sum_student_attn, \
27 (batch_size * n_heads_teacher * seq_length, key_length))
28 # both reshaping to (batch_size, n_heads_teacher * seq_length * key_length) is also

correct,
29 # but will result in a linear scale different by n_heads_teacher * seq_length
30 # since p/C log ((p/C) / (q/C)) = 1/C p log (p / q)
31

32 # Normalize by L1
33 teacher_attn = nn.functional.normalize(teacher_attn, dim=1, p=1.0) # redundant in this

variant
34 weighted_sum_student_attn = nn.functional.normalize(weighted_sum_student_attn, dim=1, p

=1.0)
35

36 # Compute loss
37 eps = 1e-7
38 weighted_sum_student_attn = torch.log(eps + weighted_sum_student_attn)
39 KLD_loss = nn.KLDivLoss(reduction="mean")
40 loss = KLD_loss(input=weighted_sum_student_attn, target=eps + teacher_attn)
41

42 return loss
43

Figure 11: Variant 2.

1 def attention_map_alignment_distillation_loss(teacher_attn, student_attn):
2 # Arguments: teacher attention maps and student attention maps: last layer of Encoder /

Decoder,
3 # torch tensor of shape (batch_size, n_heads, seq_length, key_length);
4 # Return: AMAD loss.
5

6 (batch_size, n_heads_teacher, seq_length, key_length) = teacher_attn.shape
7 n_heads_student = student_attn.shape[1]
8

9 # Reshape
10 teacher_attn = torch.transpose(teacher_attn, 1, 2)
11 student_attn = torch.transpose(student_attn, 1, 2)
12 # now: (batch_size, seq_length, n_heads, key_length)
13

14 teacher_attn = torch.reshape(teacher_attn, (batch_size * seq_length, n_heads_teacher,
key_length))

15 student_attn = torch.reshape(student_attn, (batch_size * seq_length, n_heads_student,
key_length))

16

17 # Compute similarity with L1-normalization (redundant in this variant): W = T Sˆt /
norm(S) norm(T);

18 teacher_attn = nn.functional.normalize(teacher_attn, dim=2, p=1.0)
19 student_attn = nn.functional.normalize(student_attn, dim=2, p=1.0)
20 student_attn_transpose = torch.transpose(student_attn, 1, 2)
21 teacher_student_similarity_score = torch.matmul(teacher_attn, student_attn_transpose)
22

23 # Compute Softmax(W) S by dim=2
24 teacher_student_attention_weights = nn.functional.softmax(

teacher_student_similarity_score, dim=2)
25 weighted_sum_student_attn = torch.matmul(teacher_student_attention_weights,

student_attn)
26

27 # Reshape for KL + normalize
28 teacher_attn = torch.reshape(teacher_attn, (batch_size * seq_length * n_heads_teacher,

key_length))
29 weighted_sum_student_attn = torch.reshape(weighted_sum_student_attn, (batch_size *

seq_length * n_heads_teacher, key_length))
30

31 # Normalize by L1
32 teacher_attn = nn.functional.normalize(teacher_attn, dim=1, p=1.0) # redundant in this

variant
33 weighted_sum_student_attn = nn.functional.normalize(weighted_sum_student_attn, dim=1, p

=1.0)
34

35 # Compute loss
36 eps = 1e-7
37 weighted_sum_student_attn = torch.log(eps + weighted_sum_student_attn)
38 KLD_loss = nn.KLDivLoss(reduction="mean")
39 # reduction="sum" is also correct, but will differ by a factor
40 loss = KLD_loss(input=weighted_sum_student_attn, target=eps + teacher_attn)
41

42 return loss
43

Figure 12: Variant 4.

References

Beyer, L.; Zhai, X.; Royer, A.; Markeeva, L.; Anil, R.;
and Kolesnikov, A. 2022. Knowledge distillation: A good
teacher is patient and consistent. In Proceedings of the
IEEE/CVF Conference on CVPR, 10925–10934. 3
Chen, Y.-c.; Li, L.; Yu, L.; Kholy, A. E.; Ahmed, F.; Gan,
Z.; Cheng, Y.; and Liu, J. 2020. UNITER: UNiversal Image-
TExt Representation Learning. In ECCV. 3
Cho, J.; Lei, J.; Tan, H.; and Bansal, M. 2021. Unifying
Vision-and-Language Tasks via Text Generation. In ICML.
2, 3, 4, 10
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. North American Chapter of the Asso-
ciation for Computational Linguistics. 3
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; Uszkoreit, J.; and Houlsby, N. 2021.
An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. ICLR. 3
Hao, X.; Zhu, Y.; Appalaraju, S.; Zhang, A.; Zhang, W.; Li,
B.; and Li, M. 2023. Mixgen: A new multi-modal data aug-
mentation. In Proceedings of the IEEE/CVF Winter Confer-
ence on Applications of Computer Vision, 379–389. 3
Ho, C.-H.; Appalaraju, S.; Jasani, B.; Manmatha, R.; and
Vasconcelos, N. 2022. Yoro-lightweight end to end visual
grounding. In European Conference on Computer Vision,
3–23. Springer. 3
Kim, W.; Son, B.; and Kim, I. 2021. ViLT: Vision-and-
Language Transformer Without Convolution or Region Su-
pervision. In Meila, M.; and Zhang, T., eds., Proceedings
of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research,
5583–5594. PMLR. 3
Li, J.; Li, D.; Savarese, S.; and Hoi, S. 2023. BLIP-2: Boot-
strapping Language-Image Pre-training with Frozen Image
Encoders and Large Language Models. In ICML. 2
Li, J.; Li, D.; Xiong, C.; and Hoi, S. 2022. BLIP: Boot-
strapping Language-Image Pre-training for Unified Vision-
Language Understanding and Generation. In ICML. 2
Loshchilov, I.; and Hutter, F. 2019. Decoupled Weight De-
cay Regularization. In ICLR. 3
Mobahi, H. et al. 2020. Self-distillation amplifies regular-
ization in hilbert space. NeurIPS. 2
Paszke, A.; Gross, S.; Chintala, S.; Chana, G.; Yang, E.; De-
Vito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer, A.
2017. Automatic differentiation in PyTorch. In NIPS Work-
shop. 3
Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.;
Matena, M.; Zhou, Y.; Li, W.; and Liu, P. J. 2020. Exploring
the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. JMLR, 21: 1–67. 3
Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster
R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks. In NIPS. 3

Tan, H.; and Bansal, M. 2019. LXMERT: Learning Cross-
Modality Encoder Representations from Transformers. In
EMNLP. 3
Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.;
Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; and
Brew, J. 2019. HuggingFace’s Transformers: State-of-the-
art Natural Language Processing. 3

