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Abstract This paper examines the effectiveness of stratification in experimental design using ev-
idence from multiple large-scale experiments. We analyze data from experiments ranging from
approximately 30,000 to 180,000 units across different business contexts. Our results show that
pre-stratification and post-stratification achieve virtually identical precision improvements - largest
in smaller samples (10% improvement in standard errors) and moderate but positive in larger sam-
ples (5% improvement). In more homogeneous populations, these benefits decrease substantially
in small samples (24-63% reduction) but remain relatively stable in large samples (only 1-5% re-
duction). Post-stratification offers greater flexibility by allowing adjustments for any pre-treatment
variable after randomization without risking accidental bias, while pre-stratification optimizes bal-
ance for chosen variables (reducing imbalances by 54-92%) but may create imbalance in variables
negatively correlated with the stratification variables. The choice between methods ultimately de-
pends on whether the primary goal is to improve precision, maintain implementation flexibility, or
achieve visible balance in specific known covariates for the experimental context.

1. Introduction Experimental design faces a fundamental challenge in achieving sufficient pre-
cision to detect treatment effects. Statistical theory offers two main approaches to address this:
covariate adjustment and stratified randomization. While stratification can provide substantial pre-
cision gains, it often requires more complex implementation. This raises a critical question: when
do stratification’s benefits justify its implementation costs?

Stratification comes in two forms: pre-stratification, which groups similar units before randomiza-
tion, and post-stratification, which incorporates grouping information after assignment. While both
methods achieve equivalent precision improvements, they differ in how they handle balance. Pre-
stratification provides visible balance by design—covariate differences are demonstrably smaller
before any adjustment making it valuable when stakeholders require transparent allocation. Post-
stratification achieves balance through statistical adjustment, offering greater flexibility: it can adjust
for any pre-treatment variable ex-post, avoids accidental bias in non-stratified variables, and requires
simpler infrastructure. The choice between methods ultimately depends on whether visible balance
or implementation flexibility is the priority.

This paper provides empirical evidence on these trade-offs through analyses of multiple large-scale
experiments. Using A/A tests and repeated simulations, we compare three approaches: simple ran-
domization with covariate adjustment, pre-stratification, and post-stratification. We examine how
stratification’s value varies with sample size and population heterogeneity across different experi-
mental contexts. This multi-context approach allows us to establish broader principles about strati-
fication’s value that extend beyond any single experimental setting.

2. Theoretical framework Following Miratrix et al. [2013], we present the key variance com-
parisons that guide our analysis. Let τ be the average treatment effect across K strata, with n total
sample size and nk units in stratum k. Let σ2(1) and σ2(0) denote outcome variances in treat-
ment and control groups, with σ2

k(1) and σ2
k(0) representing their stratum-specific counterparts. Let

σ̄2(1) and σ̄2(0) be the between-stratum variances, and γ̄ and γk represent the between-stratum and
within-stratum covariances between treatment and control outcomes. Treatment assignment propor-
tions are denoted by β1 and β0 overall, β1k and β0k within strata, and pk for the fixed proportion
under pre-stratification.



The efficiency gains of pre-stratification over simple randomization can be decomposed as:
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The first term represents potential gains from between-strata variation - when strata effectively sepa-
rate units with different outcomes. The second term captures possible precision losses from within-
strata random imbalances, which increase as strata become smaller.

The difference between post- and pre-stratification variances is:
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This difference reflects that post-stratification inherits random treatment imbalances within strata,
captured by the deviation of realized assignment proportions (β1k, β0k) from their fixed design
targets (pk, 1− pk). These random imbalances inflate variance in finite samples but diminish at rate
1/n as sample size grows.

This framework generates three testable predictions: (1) Both pre- and post-stratification improve
precision when strata capture systematic outcome variation (i.e., when stratifying variables are pre-
dictive of outcomes). (2) The efficiency gap between post- and pre-stratification, driven by random
treatment imbalances within strata, diminishes at rate 1/n as sample size increases. (3) For pre-
stratification, precision gains shrink as the number or granularity of strata increases, since very small
strata inflate sampling variance and may offset the benefits of balance, see Miratrix et al. [2013].

3. Methodological Approach Our methodology compares three approaches: simple randomiza-
tion, pre-stratification, and post-stratification. We construct strata using three key characteristics in
each experimental context, yielding between 48 and 64 strata. To examine heterogeneity effects, we
create ”less heterogeneous” versions of each dataset by reducing extreme unit sizes while maintain-
ing the overall structure.

We evaluate methods through A/A tests with N = 100 iterations of random treatment assignment,
generating distributions of treatment effects {τ̂n0 }Nn=1 and standard errors {σ̂n}Nn=1. For precision
evaluation, we use two metrics: direct precision measured as Precisionn = 1

(σ̂n)2 and precision ratio
= (1/SE with simple randomization)/(1/SE with stratification). For balance assessment, we exam-
ine treatment-control differences ∆X

k = X̄kT − X̄kC through mean absolute differences E[|∆k|],
and balance improvement ratio = E[|∆k,simpleX |]

E[|∆k,stratX |] .

4. Main Findings Our analysis reveals consistent patterns about stratification’s effectiveness
across experimental contexts. Using one experimental setting as illustration, we demonstrate three
key findings while noting similar patterns hold in our other experiments.

First, both pre- and post-stratification achieve virtually identical precision improvements over simple
randomization (Figure 1). These gains are largest in smaller samples (10% improvement in standard
errors) and moderate but positive in larger samples (5% improvement).

Second, pre-stratification provides important balance benefits through its controlled treatment as-
signment (Figure 2). Pre-stratification reduces covariate imbalances by 54-92%, with these im-
provements extending beyond variables directly used in stratification.

Third, sample size reveals distinct patterns for precision and balance (Figure 3). For precision, gains
diminish from 10%-11.5x in small samples (2k-30k) to 5%-4.0x in large samples (115k 187k),
with pre- and post-stratification achieving nearly identical performance at scale. For balance, pre-
stratification maintains stable benefits across all sample sizes, consistently reducing covariate im-
balances by 54-92%.
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Figure 1: Precision summary for all metrics and all methods
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Figure 2: Balance gains from stratification

Additional analyses reveal that benefits decrease by 24-63% in more homogeneous populations,
particularly in smaller samples, while larger samples prove more resilient to heterogeneity reduction
(only 1-5% reduction) (Figure 4). Regarding strata complexity, while more strata can theoretically
capture greater variation, our results suggest that moderate strata numbers (16-64) can capture most
benefits while maintaining implementation feasibility.
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Figure 3: Precision gains in less heterogeneous samples

5. Conclusions This paper demonstrates how stratification methods can improve experimental de-
sign through both precision and balance gains. Our analysis reveals that pre- and post-stratification
achieve virtually identical precision improvements, particularly valuable in smaller samples. How-
ever, their implementation trade-offs differ substantially. Post-stratification offers greater flexibility
by allowing adjustments for any pre-treatment variable after randomization. Pre-stratification, while
requiring more complex implementation, ensures better balance across treatment groups - a crucial
advantage when stakeholder trust requires visible balance in treatment assignment.

These findings suggest that the choice between methods should depend on three key factors: sample
size, population heterogeneity, and the importance of demonstrable balance. While precision gains
diminish with sample size and homogeneity, balance improvements remain stable. Understanding
these trade-offs can help experimenters make informed decisions about when and how to implement
stratification, considering both statistical benefits and practical constraints.
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Figure 4: Precision and balance gains across sample sizes
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