
Beyond Detection: A Multi-Agent Framework for Root Cause
Analysis of Financial Discrepancies in Distributed Environments

Dane Thomas

Amazon

danent@amazon.com

Daksha Yadav

Amazon

dakyadav@amazon.com

Boyang Tom Jin

Amazon

boyanjin@amazon.com

Figure 1: A comparison of the existing root cause analysis workflow with the proposed agent assistant workflow.

Abstract
The increasing complexity and fragmentation of financial systems

in large organizations have created significant challenges for fi-

nancial teams, particularly in performing real-time, end-to-end

validation, as existing validation methods relying on static rules or

batch processing are often inadequate for today’s dynamic finan-

cial environments. This paper introduces a novel approach using

Large Language Model (LLM)-based browser agents within a multi-

agent framework to enhance financial validation processes. The

framework leverages domain-specific agents that autonomously

navigate web-based financial platforms to validate data, interpret

discrepancies, and perform root cause analysis, ensuring higher

accuracy, transparency, and auditability compared to traditional

systems. A synthetic dataset and controlled simulation environ-

ment were used to evaluate the framework’s performance across

20 distinct financial scenarios, revealing significant improvements

in validation accuracy (from 40% with a Vanilla agent to 65% with

the proposed approach). The results indicate that the proposed

multi-agent approach, by isolating validation tasks into specialized

agents and orchestrating a coordinated investigation, provides a

more reliable, scalable, and interpretable solution for high-stakes

financial environments.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD’25, Toronto, CA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YYYY/MM

https://doi.org/XXXXXXX.XXXXXXX

CCS Concepts
• Computing methodologies→Machine learning.

Keywords
large language models, agents, machine learning, web use agents,

financial assistant

ACM Reference Format:
Dane Thomas, Daksha Yadav, and Boyang Tom Jin. 2025. Beyond Detection:

A Multi-Agent Framework for Root Cause Analysis of Financial Discrep-

ancies in Distributed Environments. In Proceedings of KDD 2025 Work-
shop on Agentic AI for Enterprise (KDD’25). Toronto, ON, Canada, 8 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Today’s financial landscape, especially within large organizations, is

defined by a growing and critical challenge: the inability to perform

real-time, end-to-end validation across a fragmented and complex

ecosystem of financial systems. This fragmentation arises from

the widespread use of diverse technologies, including legacy main-

frames, on-premise ERPs, cloud-based SaaS platforms, and API-

driven third-party tools. The result is a web of disconnected data

silos that severely hinder finance and audit teams from maintaining

financial integrity. In such environments, validation plays a cru-

cial role, not only in ensuring that anomalies are detected, but in

confirming that insights are accurate, explainable, and actionable

across multiple systems. Without robust validation, financial teams

risk acting on false positives, missing hidden discrepancies, or fail-

ing to trace anomalies back to their root causes, all of which can

have serious operational consequences.

Existing validation methods, which typically rely heavily on

static rules or batch processing, are inadequate for today’s dynamic,

high-velocity financial environments. These outdated approaches

lead to delayed anomaly detection, shallow or incomplete root cause

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


KDD’25, August 03–07, 2025, Toronto, CA Thomas et al.

analysis, and greater exposure to financial risk. The consequences

are far-reaching: missed fraud, unaddressed material misstatements

can result in substantial financial losses, reputational damage, and

costly penalties. Despite technological advances, many enterprises

still depend on manual reconciliation to bridge systemic gaps, an

approach that is resource-intensive, error-prone, and ill-suited to

modern demands. As long as data remains siloed and real-time

validation remains elusive, systemic vulnerabilities will persist,

growing unchecked beneath the surface.

To address these challenges, organizations require more than

just automation. They need intelligent, adaptive systems capable

of reasoning, context-switching, and collaborating across heteroge-

neous environments. This is where Large Language Model (LLM)-

based agents emerge as a transformative solution. Unlike traditional

rule-based bots, LLM agents can interpret unstructured financial

records, navigate disparate data sources, and engage in multi-turn

interactions to synthesize complex information [2]. Their ability to

understand natural language, infer missing context, and generate

human-like insights enables them to go beyond anomaly detection

and contribute to root cause analysis in real time.

A particularly promising application of LLMs in financial opera-

tions lies in the development of LLM-based browser agents [1, 3],

autonomous agents that interact with web-based financial plat-

forms in a human-like manner. These agents can extract reports,

interpret dashboards, follow audit trails, and cross-reference infor-

mation, all through a browser interface, without requiring direct

API integration. In fragmented environments where critical data is

locked behind proprietary interfaces, these agents serve as intelli-

gent surrogates for human users, capable of adapting to changing

UIs and delivering structured, explainable outputs.

In this paper, a multi-agent framework is proposed that employs

LLM-based browser agents, each specialized in a specific accounting

domain such as General Ledger (GL), Sub-Ledger (SL), and others.

Unlike anomaly detection systems that surface statistical outliers

or rule-based exceptions, the focus here is on post-detection vali-

dation, a critical phase in high-stakes financial environments. The

framework consumes alerts or insights from upstream systems (e.g.,

reconciliation engines, BI dashboards, custom detectors) and orches-

trates a coordinated investigation across otherwise disconnected

platforms. This emulates the workflow of a forensic accounting

team but offers higher speed, consistency, and auditability.

Each domain-specific agent operates autonomously within a

browser environment, using LLM capabilities to navigate financial

systems, locate supporting evidence (e.g., journal entries, invoice

trails, tax filings), and validate key attributes such as transaction

amounts, dates, and GL codes. These agents apply contextual rea-

soning to identify causes of discrepancies, ranging from timing

mismatches and posting errors to inter-system reconciliation fail-

ures. Their structured findings are passed to a central Supervisor

Agent, which performs cross-agent synthesis, applies meta-level

validation logic, and compiles a comprehensive audit trail that in-

cludes root cause narratives and confidence scores.

This layered architecture is particularly important in enterprise

finance where correctness, transparency and traceability are de-

sired. Root cause analysis must go beyond numeric deviation to

incorporate semantic understanding of financial workflows, system-

specific logic, and evolving compliance requirements. Moreover,

auditability demands that each validation step be reproducible and

interpretable by human reviewers. By enabling browser-native,

domain-aware reasoning without deep integration or centralized

data pipelines, the proposed system bridges both technical and or-

ganizational silos, delivering explainable, resilient validation across

complex financial landscapes.

As financial operations grow more complex and distributed,

the case for intelligent, autonomous agents becomes imperative.

LLM-based agents represent a paradigm shift, moving from passive

validation to active investigation, from isolated rule engines to

collaborative multi-agent systems. In the sections that follow, we

describe the architecture and implementation of this system and

evaluate its performance in realistic enterprise scenarios.

2 Related Works
Recent advancements in LLMs have catalyzed the development

of autonomous web agents capable of performing complex tasks

across diverse online environments. A significant contribution in

this domain is AgentOccam, which emphasizes the importance of

aligning an agent’s observation and action spaces with the LLM’s

inherent capabilities. By refining these interfaces, AgentOccam

achieved notable performance improvements on the WebArena

benchmark, surpassing previous methods without relying on in-

context examples or elaborate prompting strategies [8].

The WebArena environment [9] itself represents a leap forward

in creating realistic and reproducible settings for evaluating web

agents. It encompasses fully functional websites across domains

such as e-commerce, social forums, collaborative software devel-

opment, and content management. Despite these advancements,

evaluations within WebArena revealed that even state-of-the-art

agents like those powered by GPT-4 achieved only a 14.41% success

rate on complex tasks, highlighting the challenges that remain in

this field.

In the realm of user experience (UX) design, UXAgent [4] in-

troduces an innovative framework for automated usability testing.

Leveraging LLM agents, UXAgent simulates user interactions with

web interfaces, enabling UX researchers to conduct large-scale

testing without human participants. This approach facilitates the

collection of both qualitative and quantitative data, streamlining

the iterative design process .

Benchmarking the practical capabilities of LLM agents in real-

world tasks, TheAgentCompany [7] provides an extensible frame-

work that simulates a professional work environment. Within this

setting, agents perform tasks such as browsing the web, coding,

and collaborating with simulated coworkers. Findings indicate that

while agents can autonomously complete simpler tasks, complex,

long-horizon tasks remain challenging, with the best-performing

agents achieving a 24% completion rate .

Addressing the dynamic nature of web environments, WebCan-

vas [6] offers a novel evaluation framework that captures the evolv-

ing aspects of web interactions. It introduces the Mind2Web-Live

dataset, comprising 542 tasks with 2,439 intermediate evaluation

states, and provides tools for continuous benchmarking of web

agents. This framework emphasizes the need for adaptability in

agents to maintain performance amidst the ever-changing web

landscape.



Beyond Detection KDD’25, August 03–07, 2025, Toronto, CA

While these works reflect growing sophistication in LLM-driven

web agency, none explore multi-agent coordination or domain-

specific validation in high-stakes contexts such as finance and ac-

counting. Existing agents primarily focus on web navigation, data

extraction, or UI interaction, but do not model the cross-system rea-

soning or traceability required in enterprise financial operations. In

particular, the use of browser-native LLM agents for post-anomaly

validation, coordinating across fragmented systems to replicate

how finance teams conduct forensic investigations, remains an un-

explored direction. This gap is significant given the complexity and

compliance requirements of financial domains, where interpretabil-

ity and auditability are as critical as accuracy.

3 Synthetic Dataset Generation and Simulation
Environment

In this research, a synthetic dataset within a controlled simulation

environment is generated that replicates the complex, intercon-

nected systems of a large organization’s financial ecosystem. This

simulated environment is designed to reflect the challenges faced

in modern enterprise accounting, where multiple distributed sys-

tems and diverse financial operations generate data that require

validation and reconciliation.

3.1 Simulation Environment
In this simulation, series of interconnected web-based platforms

representing key financial domains and business processes within

an enterprise are created. The following systems are simulated

to reflect the core functionalities typically found in a large-scale

accounting environment:

• General Ledger (GL): The central accounting record for all

financial transactions, ensuring consistency across all sub-

sidiary systems.

• Subledger (SL): Contains detailed transaction records for spe-

cific accounts such as accounts payable, accounts receivable,

and inventory management.

• Ordering Systems: Manages customer orders, tracking of

goods, and payment status.

• Shipment Systems: Tracks the shipment and delivery status

of ordered goods and services.

• Payment Processing Systems: Manages inbound and out-

bound payments, including bank transfers, credit card trans-

actions, and digital payments.

• Vendor Management Systems: Tracks vendor contracts, sup-

plier invoices, and purchase orders.

• Invoice Processing Systems: Handles the creation, validation,

and tracking of invoices for products or services rendered.

• Payroll Systems: Manages employee salary and benefit pro-

cessing, including tax calculations and statutory deductions.

These simulated systems are integrated to allow cross-system

dependencies, where data from one system (e.g., a payment trans-

action) may trigger or impact another (e.g., an invoice or shipment

update). The interactions between these systems create an envi-

ronment with realistic, dynamic data flows, akin to those found in

large organizations that rely on multiple interconnected systems

for daily operations.

3.2 Scenario Generation
We synthetically generated a series of complex, multi-dimensional

scenarios, each involving anomalies or inconsistencies within the

simulated environment. These scenarios were designed to reflect a

wide range of common accounting issues that could arise in real-

world settings and require validation by an accounting expert. Each

scenario consists of a set of insights, anomalies, or discrepancies

that need to be validated, cross-referenced, and explained. The

following types of synthetic scenarios are generated:

• Cross-System Inconsistencies: Discrepancies between finan-

cial systems, such as mismatches between GL and SL entries,

missing or erroneous payment information, or unaccounted-

for inventory movements.

• Data Entry Errors: Incorrect or incomplete data entries (e.g.,

incorrect vendor details, payment amounts, or payroll dis-

crepancies) that require rectification.

• Fraud Detection Scenarios: Anomalous behavior suggesting

potential fraud (e.g., duplicate invoices, irregular employee

payroll, or unusual payment patterns).

• Data Delays: Data inconsistencies due to delays between

connected systems (e.g, system outage delaying payment

processing or delayed customer payments).

These scenarios are designed to simulate real-world issues that

would require the expertise of an accounting professional to val-

idate, interpret, and resolve. Each scenario involves interactions

between multiple systems, resulting in complex chains of data that

need to be analyzed and cross-validated. In total 20 such scenarios

are generated, comprising 12 Valid Insights and 8 False Alarms. The

full list of scenarios, including system interactions and expected

validation logic, is provided in Appendix B.

4 Proposed Approach
This work proposes a modular, multi-agent framework powered

by LLM-based browser agents to assist accounting and finance

teams in performing root cause analysis of financial discrepancies

across distributed and siloed systems. Unlike traditional anomaly

detection tools, which focus on identifying deviations using rules

or statistical models, the proposed system operates downstream,

after anomalies have been flagged, focusing instead on validation,

contextual interpretation, and explainable root cause tracing. This

approach is particularly critical in modern enterprise settings where

financial data spans heterogeneous systems such as legacy ERPs,

cloud-based SaaS platforms, and third-party vendor portals, many

of which lack robust API access and require human-like interaction

via web interfaces.

As shown in Figure 2, the architecture comprises a set of LLM-

enhanced browser agents, each specialized in a specific financial

domain. These agents are capable of navigating complex enterprise

web applications, extracting structured and unstructured data, inter-

preting domain-specific semantics, and applying accounting logic

in real-time. They operate autonomously within secure browser

environments, mimicking the behavior of expert human analysts.

Examples of such agents include:

• GL Agent: Validates journal entries, checks consistency in

account balances, and ensures that high-level transactions



KDD’25, August 03–07, 2025, Toronto, CA Thomas et al.

Figure 2: Overview of the proposed multi-agent framework for automated financial validation. The system comprises a Planner
that generates the validation workflow, a Supervisor that delegates tasks to specialized agents (e.g., SL Agent, GL Agent, Invoice
Agent), and a Replanner that handles task reassignments or failures. Each agent interacts with simulated enterprise systems
via an LLM-powered browser interface to retrieve and reason over financial data.

recorded in the General Ledger align with underlying sub-

ledger entries. It flags anomalies such as duplicate postings,

missing entries, or misclassified expenses.

• SL Agent: Focuses on transactional detail within Subledgers,

such as accounts payable, accounts receivable, and inventory

adjustments. It ensures that entries are correctly posted, rec-

onciles them with the GL, and identifies timing mismatches

or data integrity issues.

• Invoice Agent: Navigates invoice processing systems to vali-

date invoice generation, approval workflows, and payment

status. It cross-references invoices with purchase orders,

delivery records, and payment confirmations to detect in-

consistencies, such as phantom invoices or double billing.

• Vendor Agent: Reviews vendor contracts, purchase orders,

and associated invoices. It validates contract terms against

billing behavior, ensures vendor master data integrity, and

flags duplicate vendors, suspicious contract amendments, or

mismatched invoice amounts.

• Order Agent: Operates within customer ordering systems

to verify order integrity, customer fulfillment timelines, and

revenue recognition compliance. It detects incomplete order-

to-cash cycles or inconsistencies between order entries and

downstream financial records.

• Shipment Agent: Validates the linkage between order fulfill-

ment and logistics systems by checkingwhether goods/services

were shipped according to contractual terms and verifying

that shipment status aligns with billing and delivery records.

• Payment Agent: Monitors inbound and outbound payments

to ensure completeness and accuracy. It validates payment

references, matches them to invoices or payroll records, and

detects anomalies such as payment duplication, routing er-

rors, or policy violations.

• Payroll Agent: Navigates payroll systems to verify salary dis-

bursements, tax calculations, and benefits deductions. It en-

sures compliance with internal policies, and flags anomalies

such as overpayments, classification errors, or unapproved

bonuses.

At the top of the framework is a Planner Agent responsible for

laying out the overall workflow. Upon receiving a system-generated

anomaly or insight (e.g., an invoice mismatch, unreconciled journal

entry, or duplicate payment), the planner decomposes the problem

and delegates investigative sub-tasks to relevant domain agents.

This plan is received by the Supervisor Agent which orchestrates

the execution of tasks by the system expert Agents until an answer

is determined. Each agent performs a focused analysis, querying

appropriate systems, validating data consistency, and returning a

structured response consisting of a verdict, supporting evidence,

and a natural language explanation. Each response is passed to a

Replanner Agent, which updates the shared agent memory with

logs of actions taken and insights gathered, maintaining a transpar-

ent trace of the workflow. This updated state is then returned to

the Supervisor to inform subsequent task execution.

The Supervisor Agent performs three core functions upon re-

ceiving domain-level inputs: (1) cross-agent validation, ensuring
coherence across responses and resolving conflicting interpreta-

tions; (2) root cause synthesis, assembling a traceable, explainable

narrative of the discrepancy; and (3) audit trail generation, com-

piling a structured report including system interactions, extracted

data, validation steps, and justifications.

By decomposing the validation process into modular, domain-

specific tasks and leveraging browser-based automation for sys-

tem interoperability, the proposed framework delivers significantly

improved accuracy, transparency, and adaptability in performing

financial root cause analysis.



Beyond Detection KDD’25, August 03–07, 2025, Toronto, CA

5 Experimental Evaluation
5.1 Experimental Setup
To rigorously evaluate the performance of the proposed multi-agent

framework, 20 distinct validation scenarios were designed (outlined

in Section 3), each executed five times, resulting in 100 total runs.

In every run, the agent classifies an alert as “Valid Insight,” “False

Alarm,” or “Needs Manual Review” (the latter treated as valid, since

it defers judgment to a human expert). This setup thus reduces to

a binary decision problem: insight versus non-insight, while pre-

serving a safety valve for low-confidence cases. This experimental

setup serves two critical purposes: first, it assesses the system’s

accuracy in correctly validating insights across diverse financial

conditions, and second, it measures consistency and repeatability,

which are essential for ensuring auditability in enterprise financial

systems. Performance was evaluated using the metrics outlined in

the following sections.

5.2 Evaluation Metrics
To comprehensively evaluate the performance of the proposed

multi-agent framework, we define the following metrics. These

capture both the correctness and operational characteristics of the

agents during validation tasks:

• Per-Run Accuracy: The percentage of individual runs (out
of five per scenario) that resulted in the correct validation

outcome.

• Per-Scenario Accuracy: The proportion of scenarios for

which the correct outcome was obtained in at least 3 out of

5 runs.

• Latency: The average time (in seconds) taken by the system

to complete a validation run, measured from task initiation

to final judgment.

• Number of Steps: The average number of thought-action-

observation cycles executed per run.

• Number of Actions: The average number of browser-based

interactions (e.g., clicks, form submissions, navigations) taken

by agents during a run.

5.3 Human Expert Validation
To ensure the reliability and interpretability of the agent-generated

results, a human expert in enterprise accounting was engaged to

perform a qualitative evaluation of the outputs. This expert was

tasked with reviewing a subset of scenarios from both the Vanilla

Agent and the proposed multi-agent framework. For each scenario,

the expert assessed the reasoning process, the sequence of steps

taken, the accuracy of the conclusions, and the presence of halluci-

nated content. The review focused on the following criteria:

• Reasoning Quality: Assesses whether the agent’s logic re-

flects sound financial analysis and adheres to accounting

principles. Ratings were assigned on a 1–5 scale:

– 1: Severely flawed or illogical reasoning.

– 2: Contains some logical structure but includes key errors.

– 3: Generally logical reasoning; partial or incomplete use

of available data.

– 4: Sound reasoning with clear explanations and sufficient

supporting data.

– 5: Comprehensive and well-structured reasoning with

nearly complete data retrieval and explicit, accurate calcu-

lations.

• Step Validity: Measures how accurately the agent’s naviga-

tion and investigative steps mirror human analytical behav-

ior. Ratings were also on a 1–5 scale:

– 1: Steps are vague or missing.

– 2: Only basic or generic actions are listed.

– 3: Describes page sequence but lacks detail on investigative

intent.

– 4: Specifies data sought on each page, showing purposeful

navigation.

– 5: Clearly documents each visited page and justifies what

was inspected or retrieved at each step.

The above metrics are included as part of the experimental anal-

ysis described subsequently.

5.4 Results and Analysis
To assess the effectiveness of the proposed multi-agent framework,

we conduct a comparative evaluation against a baseline model

referred to as the Vanilla Agent. As shown in Figure 5, the Vanilla

Agent represents a single, general-purpose LLM-powered browser

agent with unrestricted access to all simulated financial systems in

the environment. Unlike the proposed approach, where each agent

is specialized in a specific domain (e.g., GL, SL, Invoice Processing),

the Vanilla Agent is tasked with performing the entire validation

workflow independently, without modular delegation or domain-

specific specialization.

This comparison aims to isolate the benefits of specialization

and distributed reasoning in complex, multi-system financial envi-

ronments. Both the Vanilla Agent and the multi-agent system were

evaluated on an identical set of 20 validation scenarios, as described

in Section 3, with each scenario executed five times to account for

variability inherent in LLM outputs and web interactions.

As shown in Table 1, the results revealed the efficacy of the pro-

posed multi-agent framework over the Vanilla Agent. In terms of

per run accuracy, the multi-agent system achieved a score of 66%,

compared to 52% for the Vanilla Agent, indicating a more consis-

tent ability to arrive at correct conclusions in individual validation

attempts. As depicted in Figure 3 the proposed agent demonstrated

superior performance, accurately identifying 48 valid insights and

18 false alarms. In contrast, the Vanilla agent correctly identified

only 39 and 13 instances, respectively. Similarly, the per-scenario

accuracy, which measures whether the majority of runs per sce-

nario yield the correct outcome, improved significantly from 40%

under the Vanilla Agent to 65% with the proposed approach. How-

ever, some errors persisted in the multi-agent system, particularly

in cases involving confusing entity names (e.g., "MEGA CORP" vs.

"MEGA INDUSTRIES") or when the agent failed to fully explore

relevant website sections. These cases highlight opportunities for

further refinement in entity disambiguation and browsing strate-

gies.

These improvements suggest that domain specialization and

modular coordination between agents enable more reliable and ac-

curate validation across complex, cross-system financial tasks. The

increased per scenario accuracy further implies that the proposed



KDD’25, August 03–07, 2025, Toronto, CA Thomas et al.

Table 1: Performance Comparison Between Vanilla and Pro-
posed Multi-Agent Systems

Metric Vanilla Agent Proposed

Per-Run Accuracy 52% 66%

Per-Scenario Accuracy 40% 65%

Avg Reasoning Quality

Score

3.05 3.60

Avg Step Validity Score 3.20 4.30

Latency (seconds) 60.80 324.91

Number of Steps NA 3.43

Number of Actions 5.05 19.95

architecture is more robust to variability in LLM outputs and envi-

ronmental noise, making it more suitable for high-stakes enterprise

applications where consistency and correctness are critical.

The human expert evaluation further highlighted the benefits of

the proposed multi-agent framework over the baseline. As shown

in Table 1, the average Reasoning Quality Score for the multi-agent

system was 3.60, representing an approximate 18% improvement

over the Vanilla Agent’s score of 3.05. This indicates that the multi-

agent framework more consistently applied domain-relevant fi-

nancial logic and provided clearer justifications for its conclusions.

Additionally, the Step Validity Score showed an even greater im-

provement: the proposed approach achieved an average score of

4.30, compared to 3.20 for the Vanilla Agent (an approximate 34%

increase). This demonstrates that the multi-agent system followed

more deliberate and human-aligned investigative workflows, re-

flecting structured and purposeful navigation across financial sys-

tems. These qualitative gains are critical for enterprise applications,

where traceability, transparency, and explainability are paramount.

In terms of operational behavior, the proposed multi-agent sys-

tem demonstrated amore deliberate and comprehensive exploration

of the environment compared to the Vanilla Agent. As shown in

Table 1, the average number of actions taken by the proposed sys-

tem was significantly higher (19.95) than that of the Vanilla Agent

Figure 3: Performance of the proposed multi-agent system
and the Vanilla agent across 100 validation runs (combining
valid insights and false alarms) using the Per-Run Accuracy
metric.

(5.05), indicating deeper interaction across systems and more thor-

ough validation steps. While the number of intermediate reasoning

steps was not applicable to the Vanilla Agent due to its monolithic

structure, the multi-agent framework averaged 3.43 reasoning steps

per scenario. This layered reasoning reflects the system’s ability to

coordinate across specialized agents, apply domain-specific logic,

and build traceable evidence chains, behaviors essential for reliable

root-cause analysis and auditability in enterprise settings.

In terms of latency, a notable difference was observed between

the two approaches. The proposed multi-agent system exhibited a

significantly higher average latency of 324.91 seconds per scenario

compared to just 60.80 seconds for the Vanilla Agent. This increase

is expected due to the added overhead of coordination, planning,

and inter-agent communication in the multi-agent setup. While the

modular approach enhances accuracy and consistency, it introduces

additional time costs stemming from sequential task execution and

the overhead of orchestrating multiple specialized agents. This

trade-off highlights the need to balance performance gains with

operational efficiency, particularly in time-sensitive applications.

6 Conclusion
This work presents a novel multi-agent framework that leverages

LLM-powered browser agents, each specialized in a distinct finan-

cial domain, to perform post-detection validation across simulated

enterprise accounting systems. Unlike traditional monolithic ap-

proaches, the proposed system decomposes the validation task into

domain-specific subtasks, enabling deeper reasoning, greater consis-

tency, and enhanced auditability. Through rigorous scenario-based

testing, the framework outperformed a general-purpose baseline

agent in both accuracy and stability, while demonstrating more

interpretable reasoning steps and a significantly lower hallucina-

tion rate. Importantly, validation by a human accounting expert

confirmed that the multi-agent system produced more trustwor-

thy and explainable outcomes, with better alignment to real-world

accounting logic.

The proposed architecture highlights the value of specialization

and modular coordination in complex, multi-system environments,

especially where traceability and cross-system reconciliation are es-

sential. Bymimicking theworkflows of expert financial analysts and

auditors, the system bridges technical and semantic gaps across dis-

parate systems without requiring centralized data pipelines. Future

work will extend this approach to real-world enterprise datasets,

integrate adaptive feedback loops, and explore broader applications

in internal audit, compliance, and fraud detection.

References
[1] De Chezelles, Thibault Le Sellier, Sahar Omidi Shayegan, Lawrence Keunho Jang,

Xing Han Lù, Ori Yoran, Dehan Kong, Frank F Xu, Siva Reddy, Quentin Cappart,

et al. 2024. The BrowserGym ecosystem for web agent research. arXiv preprint
arXiv:2412.05467 (2024).

[2] Chanyeol Choi, Alejandro Lopez-Lira, Yongjae Lee, Jihoon Kwon, Minjae Kim,

Juneha Hwang, Minsoo Ha, Chaewoon Kim, Jaeseon Ha, Suyeol Yun, et al. 2025.

Structuring the Unstructured: A Multi-Agent System for Extracting and Querying

Financial KPIs and Guidance. arXiv preprint arXiv:2505.19197 (2025).

[3] Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen,

Hao Yu, Hanchen Zhang, Xiaohan Zhang, Yuxiao Dong, et al. 2024. AutoWebGLM:

A large language model-based web navigating agent. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 5295–5306.

[4] Yuxuan Lu, Bingsheng Yao, Hansu Gu, Jing Huang, Jessie Wang, Yang Li, Jiri Gesi,

Qi He, Toby Jia-Jun Li, and Dakuo Wang. 2025. UXAgent: A System for Simulating



Beyond Detection KDD’25, August 03–07, 2025, Toronto, CA

Usability Testing of Web Design with LLM Agents. arXiv preprint arXiv:2504.09407
(2025).

[5] Magnus Müller and Gregor Žunič. 2024. Browser Use: Enable AI to control your
browser. https://github.com/browser-use/browser-use

[6] Yichen Pan, Dehan Kong, Sida Zhou, Cheng Cui, Yifei Leng, Bing Jiang, Hangyu

Liu, Yanyi Shang, Shuyan Zhou, Tongshuang Wu, et al. 2024. WebCanvas: Bench-

marking web agents in online environments. arXiv preprint arXiv:2406.12373
(2024).

[7] Frank F Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao,

Zora Z Wang, Xuhui Zhou, Zhitong Guo, Murong Cao, et al. 2024. TheAgentCom-

pany: benchmarking llm agents on consequential real world tasks. arXiv preprint
arXiv:2412.14161 (2024).

[8] Ke Yang, Yao Liu, Sapana Chaudhary, Rasool Fakoor, Pratik Chaudhari, George

Karypis, and Huzefa Rangwala. 2024. AgentOccam: A simple yet strong baseline

for llm-based web agents. arXiv preprint arXiv:2410.13825 (2024).
[9] Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar,

Xianyi Cheng, Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. 2023. WebArena:

A realistic web environment for building autonomous agents. arXiv preprint
arXiv:2307.13854 (2023).

A Supplementary Figures

Figure 4: Screenshot of the Invoicing Agent browsing the
Invoice Processing page.

Figure 5: The Vanilla Agent represents a single, general-
purpose LLM-powered browser agent, implemented using
BrowserUse [5] with unrestricted access to all simulated fi-
nancial systems in the environment.

B Simulation Scenarios
The following are some of the scenarios used in the experimenta-

tion:

• The Accounts Payable system shows that 12 invoices from

vendor GlobalTech Inc. were paid twice in April 2025, result-

ing in an overpayment of $157,850.

• The subledger flags an unusual pattern where the total daily

revenue for February 28, 2025, is 45% lower than the expected

value based on historical trends.

• The Ordering Systems report shows that 12 purchase orders

totaling $143,500 were created for IT equipment from Fast-

Tech Supplies in March 2025, but the General Ledger shows

no corresponding fixed assets additions or expense entries

for these purchases.

• The Payroll Systems report for April 2025 shows 15 employ-

ees received duplicate bonus payments totaling $87,500, with

the second payment occurring exactly one week after the

first legitimate payment.

• The Payroll Systems report shows an unusual 18% increase in

total payroll expenses for the North American region in May

2025 compared to April 2025, despite no reported increase

in headcount.

C Prompts
C.1 Planner
You are an accounting assistant tasked with helping the
accountant determine the validity of system insights.
This research requires analysis of multiple systems to
create a holistic picture of the system. For the given
insight determine a simple step by step plan. The plan
should have ordered individual tasks that when executed
correctly will let you determine if an insight is valid
or not. Do not add any unneccessary steps. All
transactions in the system should flow through the
Subledger and General Ledger so you should validate the
data in those systems in all scenarios. You have access
to assistants that are system experts who can complete
research on each of the individual accounting systems
as follows:
{agent_descriptions}

Output only the plan and nothing else.
{format_instructions}

C.2 Replanner
For the given objective, come up with a simple step by
step plan. This plan should involve individual tasks,
that if executed correctly will yield the correct answer.
Do not add any superfluous steps. The result of the final
step should be the final answer. Make sure that each step
has all the information needed - do not skip steps.

Your objective was this:

https://github.com/browser-use/browser-use


KDD’25, August 03–07, 2025, Toronto, CA Thomas et al.

{input}

Your original plan was this:
{plan}

You have currently done the follow steps:
{past_steps}

Update your plan accordingly. If no more steps are needed
and you can return to the user, then respond with that.
Otherwise, fill out the plan. Only add steps to the plan
that still NEED to be done. Do not return previously done
steps as part of the plan.

C.3 Supervisor Response
Using the data collected for you, provide a final analysis
of if the insight is a true or false positive. A true
positive means the insight was correct or a similar issue
is found. For example if the numbers do not match exactly
but the issue still exists, report true positive but
indicate manual follow up is required.
A false positive means the issue mentioned does not exist
at all.
Make the conclusion "Needs Manual Review" if you cannot
validate the insight due to missing data or are unsure

about the final judgement.

Here is the initial result from your subordinates:
{response}

As a reminder the initial insight was:
{insight}

The steps executed to find data were:
{past_steps}

Format your ouput like the following:
<example>
Conclusion: True Positive/False Positive/Needs Manual Review

Reasoning and evidence:
<outline your reasoning and provide evidence>
1. ...
2. ...

Steps:
<explain the steps you took to find the result>
1. ...
2. ...

</example>


	Abstract
	1 Introduction
	2 Related Works
	3 Synthetic Dataset Generation and Simulation Environment
	3.1 Simulation Environment
	3.2 Scenario Generation

	4 Proposed Approach
	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Evaluation Metrics
	5.3 Human Expert Validation
	5.4 Results and Analysis

	6 Conclusion
	References
	A Supplementary Figures
	B Simulation Scenarios
	C Prompts
	C.1 Planner
	C.2 Replanner
	C.3 Supervisor Response


