
Pre-Deployment Security Assessment for Cloud
Services through Semantic Reasoning

Claudia Cauli1, Meng Li2, Nir Piterman1, and Oksana Tkachuk2

1 University of Gothenburg
2 Amazon Web Services

Abstract. Over the past ten years, the adoption of cloud services has
grown rapidly, leading to the introduction of automated deployment tools
to address the scale and complexity of the infrastructure companies and
users deploy. Without the aid of automation, ensuring the security of
an ever-increasing number of deployments becomes more and more chal-
lenging. To the best of our knowledge, no formal automated technique
currently exists to verify cloud deployments during the design phase. In
this case study, we show that Description Logic modeling and inference
capabilities can be used to improve the safety of cloud configurations.
We focus on the Amazon Web Services (AWS) proprietary declarative
language, CloudFormation, and develop a tool to encode template files
into logic. We query the resulting models with properties related to se-
curity posture and report on our findings. By extending the models with
dataflow-specific knowledge, we use more comprehensive semantic rea-
soning to further support security reviews. When applying the developed
toolchain to publicly available deployment files, we find numerous vio-
lations of widely-recognized security best practices, which suggests that
streamlining the methodologies developed for this case study would be
beneficial.

1 Introduction

The term Infrastructure as Code (IaC) refers to the practice of configuring,
provisioning, and updating systems resources from source code files, which are
compiled into atomic instructions and then executed to deploy the desired archi-
tecture [29]. The advantage of handling code, instead of manually provisioning
resources, lies in the capability to use version control systems, orchestration
frameworks, and automated testing tools as part of the deployment process. In
addition to instructions relevant for resource creation, dependencies, and up-
dates, IaC configuration files contain information about settings, dataflow, and
access control. In a time when cloud companies provide customers with simple-
to-launch, albeit extremely powerful infrastructure, it is crucial to automatically
and provably verify the security of such systems.

In this study, we investigate IaC deployment frameworks and how these are
formally modeled and reasoned upon. We explore the usage of description log-
ics (DLs) as a conceptual-modeling formalism that is expressive, decidable, and

2 Claudia Cauli, Meng Li, Nir Piterman, and Oksana Tkachuk

equipped with mature tooling. We argue that formal reasoning techniques ap-
plied to deployment templates are an immensely valuable tool for developers and
security engineers by substantially aiding the automation of time-consuming se-
curity reviews; helping them to detect complex logical errors at earlier stages;
and, containing the costs that finding and fixing security issues at later stages
would cause. As the prevalence of cloud infrastructure increases, in addition to
experts, automated reasoning tools could benefit inexperienced users as well.

System Studied. We focus on the Amazon Web Services proprietary IaC tool,
CloudFormation, the first to be introduced at a large scale, over ten years ago.
AWS, cloud provider within Amazon, serves millions of customers worldwide.
These include private businesses as well as government, education, nonprofit, and
healthcare organizations. While the cloud provider is responsible for the faithful
deployment of the customers’ desired configurations, it is the customer’s duty
to make sure that these comply with the security requirements of their business
context. Few management tools of this scale exist. Notable mentions are Ter-
raform [37], Microsoft Azure’s Resource Manager [28], Google Cloud’s Deploy-
ment Manager [19], and the recently introduced OASIS standard TOSCA [6].

Goal of Study. Our goal is to improve the quality of the security analyses that
are performed over IaC configurations pre-deployment; and by doing so, their
overall security. With this study, we investigate the application of description
logics to the formalization and reasoning over IaC deployments. In particular, we
are interested in three aspects: (i) whether proposed cloud configurations comply
with security best practices, (ii) how to aid customers in building more secure
infrastructure before deploying it, and (iii) to what extent formal automated
techniques can support manual pre-deployment security reviews.

Challenges. Little research has been done so far on the possibility to formalize
IaC languages, and no research has been done to devise a logic that is well-suited
to reason about cloud infrastructure. By nature, cloud infrastructure interacts
with an open environment that is, at best, only partially known. In particu-
lar, external-facing APIs and users participate in these interactions. By design,
cloud services allow for the composition of smaller components into large infras-
tructure, the complexity of which creates a challenge with respect to security.
Our models should capture the connectivity of resources, the flow of information
that spans across multiple paths, and the rich security-related data available
in IaC configuration files. This is further complicated by the need for a query
language for verification and falsification, able to express that mitigations must
be present (vs. may be absent), and security issues must be absent (vs. may be
present). Importantly, we need practical tools that support the implementation
of all these parts and that can scale to real-world IaC configurations.

Our Contribution. We provide a framework to encode IaC into description
logic, and investigate its effectiveness in answering configuration queries and
reasoning about dataflow, trust boundaries, and potential issues within the sys-
tem. Specifically, we test DLs reasoning capabilities to infer new facts about
underspecified resources (such as those not included in a given deployment but
used by it) and leverage DLs open-world assumption to perform verification and

Security Assessment for Cloud Services through Semantic Reasoning 3

refutation, depending on the property being checked. We formalize additional se-
curity knowledge that allows for checking system-level semantic properties; i.e.,
properties that consider the nature of the cloud environment and more complex
reachability over an inferred graph representation of the infrastructure.

Throughout the study, we make four novel contributions: (i) the formaliza-
tion and logical encoding of AWS CloudFormation (Section 3); (ii) a technique
to express security properties (Section 4); (iii) the experimental evaluation of
encoding and query times, accounting for the most common security issues that
we found over publicly available IaC templates (Section 5); and (iv) an extension
that enables semantic dataflow reasoning (Section 6). Our tool is implemented
in Scala and available online [14]. We include preliminaries in Section 2; discuss
related work in Section 7; and conclude in Section 8.

2 Preliminaries

Description Logics DLs are a family of logics well suited to model relation-
ships between entities. They provide the logical foundation of the well-known
Web Ontology Language [23,20,32], for which extensive tool support exists (e.g.,
the Protégé editor and off-the-shelf reasoners such as FaCT, HermiT, and Pel-
let [30,39,18,36]). We introduce the description logic ALC [34,1,24], Attributive
Logic with Complement, and two additional features that are relevant for our
study. ALC formulae are built from symbols from the alphabets NC , of atomic
concept names; NR, of role names; and NI , of individual names. These are the
DL equivalents of FOL unary predicates, binary predicates, and constants, re-
spectively. ALC concept expressions are built according to the grammar:

C,D ::= ⊥ | > | A | ¬C | C tD | C uD | ∃r.C | ∀r.C

where A is an atomic concept from the set NC ; C,D are possibly complex con-
cepts; and r is a role from the alphabet NR. Terminological knowledge is repre-
sented via general concept inclusion axioms CvD. As an example, in the remain-
der of this paper we will refer to two standard axioms that enforce the domain
and range of binary relations: dom(r, C) ≡ ∃r.>vC and ran(r, C) ≡ ∃r−.>vC.
Assertional knowledge is represented via concept assertions C(a) and role as-
sertions r(a, b). In this paper, we will use three additional operators: inverse
roles, functionality constraints, and complex role inclusions. The first, denoted
r−, encodes the converse of the binary relationship r. The second enforces bi-
nary relationships to be functional. The third, written r ◦ sv t, establishes that
the chaining of the two relationships r and s implies the relationship t, and can
be used to implement transitivity (when r = s = t). A model of a DL knowl-
edge base is an interpretation I, over a domain ∆, that satisfies all the axioms
and assertions contained and implied by the knowledge base. For the purpose of
our application, we leverage two classical inference problems: satisfiability and
instance retrieval, whose full definitions are found in standard textbooks [2,3].

4 Claudia Cauli, Meng Li, Nir Piterman, and Oksana Tkachuk

AWS CloudFormation AWS CloudFormation, cfn, provides users with a
declarative programming language and a framework to provision and manage
over 500 resources spread across 70 services [15].3 Services are products such as
storage, databases, and processors, and their interface is implemented through
resources, which are the actual modules that users declare and deploy. Their
declaration is done by writing one or more so-called CloudFormation Templates
(JSON-formatted configuration files). Within a template, users configure settings
and communication of the desired resource instances. As an example, let us
consider one of the most widely known storage products within AWS: the Simple
Storage Service S3 (also illustrated in Listings 1.1 and 1.2). The CloudFormation
interface for S3 consists of two resources: S3::Bucket and S3::BucketPolicy. A
Bucket is a single unit of storage whose properties include encryption, replication,
and logging settings, which can be viewed as the bucket’s own configuration
parameters. They could also be references to other resources that are connected
to the current one, e.g., the unique ID of another bucket where logs are stored.
A BucketPolicy is a resource that links an access control policy to a bucket. All
the properties that can be instantiated and the structure of resource-types such
as S3::Bucket and S3::BucketPolicy are given in the CloudFormation Resource
Specification [15]. The resource specification is a collection of files that prescribe
resource properties and their allowed values. Provided that a configuration file is
valid with respect to the specifications, an IaC deployment environment compiles
it into instructions that are then executed to provision the requested resources
in the correct dependency order and with the desired settings.

3 Formalization and Encoding of IaC Deployments

While setting up this case study, we found it convenient to come up with a
formalization, of both IaC resource specifications and IaC configuration files,
to use as an intermediate representation during the encoding process. This was
also needed since we could not find suitable research in the area (although some
preliminary research on IaC formalization does exist: e.g. the PhD thesis in [12]).

"ResourceType":
"S3:: Bucket ": {

"Properties":{
"BucketName" : "String",
"LoggingConfiguration ": {

"Type": "LoggingConfiguration",
"Required": false } ... }},

"PropertyTypes": ...,
"S3:: Bucket.LoggingConfiguration ":{

"Properties": {
"DestinationBucketName ":{

"Type": "String",
"Required": false },

"LogFilePrefix ":{
"Type": "String",
"Required": false }}}

Listing 1.1. S3::Bucket specification

As mentioned in Section 2, users con-
sult the resource specifications to find out
what fields and values are allowed when
declaring a resource. Intuitively, these
provide a sort of type-system, or JSON
schema, against which configuration files
must validate. Configuration files contain
the resource declarations of the instances
that the user wishes to deploy. Let us il-
lustrate this with some examples. List-
ing 1.1 shows a snippet of the S3::Bucket
resource-type specification. In addition to
the main resource type, the specification

3 As of August 2020, exact number is Region-dependent.

Security Assessment for Cloud Services through Semantic Reasoning 5

includes definitions for its subproperties, their types, and whether these are re-
quired. Although the example only shows string properties, in general, allowed
properties values range over objects, arrays, and primitive types such as inte-
gers, doubles, longs, strings, and booleans. Listing 1.2, on the other hand, shows
a common usage scenario of the S3 storage service, where a bucket with basic
configuration is used to store the desired data. The instance has logical

"ConfigS3Bucket ": {
"Type": "AWS::S3::Bucket",
"Properties":
"BucketName ": “ConfigStore”,
"LoggingConfiguration ": {

"DestinationBucketName ":“ConfigStore”,
"LogFilePrefix ":“config-bucket-logs/”}}

Listing 1.2. S3::Bucket instance declaration

ID ConfigS3Bucket, is of type
S3::Bucket, and specifies two top-
level properties, BucketName and
LoggingConfiguration. It is easy
to see that this instance declara-
tion validates against the resource
specification of Listing 1.1. This
snippet is taken from one of the benchmark deployments evaluated in Section 5
(StackSet 15) and, incidentally, it violates a security best practice: “no bucket
should store its own logs.” Such formalization has been instrumental to capture
infrastructure configurations, resources settings and inter-connections, and to
precisely and automatically encode it into DL.

Encoding We translate IaC specifications into DL terminological knowledge, and
IaC configurations into assertional knowledge. The conceptual modeling features
needed to model the former include axioms to define domain and range of prop-
erties, requiredness, and functionality. These give us enough expressivity to infer
qualities of nodes that are underspecified, such as those that are referenced by a
template but not declared in it (e.g., already deployed and running elsewhere),
whose configuration is unknown. To give readers an intuition of the encoding
procedure, let us look at the equation below, which contains some of the axioms
and assertions generated by the translation of the code in Listings 1.1 and 1.2.

SpecS3::Bucket = { dom(bucketName,BUCKET), ran(bucketName,String),

(Funct bucketName), ..., dom(destinationBucket, LOGCONFIG),

ran(destinationBucket,BUCKET), ... }

Config = { BUCKET(ConfigS3Bucket), bucketName(ConfigS3Bucket, “ConfigStore”),

loggingConfig(ConfigS3Bucket, x), destinationBucket(x,ConfigS3Bucket),

logFilePrefix(x, “config-bucket-logs”) }

4 Security Properties Specification

We group properties into three categories that reflect their high-level meaning:
security issues, mitigations, and global protections to security concerns. We view
these in analogy to must and may specifications, which one would use to express
that an issue may be present (vs. must be absent) or that a protection must be
in place (vs. may be missing). Each property type is matched to a corresponding

6 Claudia Cauli, Meng Li, Nir Piterman, and Oksana Tkachuk

query structure, which aids the translation of security requirements into formal
specifications and implements different fail/pass logics. Queries are written as
description logic expressions whose outcome can be one of UNSAT, SAT with no
instance found (SAT/0), and SAT with instances (SAT/+). These are achieved
by running a satisfiability check, possibly followed by an instance retrieval call.

Mitigations are configurations of single resources that reduce the likelihood of a
security event. In order to pass, these checks must be verified. Examples are:

M1 “All buckets must keep logs,”

M2 “Only buckets that host websites can have a public preset ACL,” and

M3 “Data stores must have backup or versioning enabled.”

Security Issues are configurations that potentially increase exposure to security
concerns. In order to pass, these checks must be falsified. Examples are:

I1 “There may be a bucket that is not encrypted,”

I2 “Encrypted bucket that sends events to a not-encrypted queue,” and

I3 “There may be a networking component that opens all ports to all.”

Global Protections are more general mitigations, applied on single resources
or as configuration patterns, whose presence and proper configuration ensures
protection over the system as a whole. Examples are:

P1 “There is an alarm configured to perform an action when triggered,” and

P2 “There is a configuration recorder logging changes to the infrastructure.”

We refer the reader to the repository in [14] for the properties specification files.4

5 Application to Existing Infrastructure

We now discuss the application of our approach to real-world IaC deployments.
We analyze AWS CloudFormation specification and configuration files, showing
that the approach is practical, scalable, and identifies potential security issues.

Operation of the Tool We develop a tool that performs three main tasks. First,
the encoding of the cfn resource specifications into formal models (Resource
Terminologies).5 Second, the encoding of the actual cfn configuration files, also
called StackSet, into formal models (Infrastructure Model). Third, inference and
query answering for a set of predefined queries. We use the OWLApi [22] for the
encoding phase, and JFact [39] as the inference engine.

4 https://tiny.cc/PropertiesSpecifications
5 Available here: https://tiny.cc/ResourceTerminologies

Security Assessment for Cloud Services through Semantic Reasoning 7

Table 1. Evaluation results (mean times in millisec).

ID N NRT ENC Nα INF USAT SAT0 SAT+

05 6 6 44.53 814 30.64 0.67 – 2.46
11 8 8 79.22 917 37.09 0.72 – 2.86
03 10 7 59.94 886 35.65 0.64 2.23 1.56
09 10 9 76.33 940 38.66 0.68 5.03 2.96
02 11 8 76.73 1194 49.99 0.85 2.66 2.02
01 16 7 94.95 1007 43.38 0.66 3.96 1.83
08 19 8 87.66 1051 50.93 0.78 5.40 3.23
10 30 9 89.07 1177 71.23 0.86 2.62 2.08
06 30 12 102.00 1666 108.30 1.05 – 4.91
12 31 21 185.06 2798 301.61 4.99 24.93 36.43
13 51 32 241.17 3835 608.09 7.16 38.56 47.93
14 73 31 264.56 4143 847.36 2.83 51.36 19.20
15 79 21 313.40 4596 901.18 2.86 – 17.55
04 132 33 363.58 4834 2100.85 2.94 162.95 23.21
07 508 21 1005.46 10161 15834.14 7.34 40.86 13.52

Experimental Setup We run our tool on 15 CloudFormation StackSets openly
available on GitHub. Regarding metrics, we define the infrastructure size as
the numbers of both declared resources (N) and their types (NRT). The latter
determines which resource terminologies are imported into the final encoded
model and thus influences its size, measured in number of logical axioms (Nα).
The smallest StackSet has 6 resources and 6 resource types, the largest has 508
resources and 21 resource types. We implement 50 properties from the ScoutSuite
collection [35] that are applicable at design time and, thus, over IaC deployment
files. Of the 50 properties, 29 are mitigations, 18 are security issues, and 3 are
global protections. We conduct our evaluation on an Intel Core i5 with 16GB
RAM and perform warmup runs and clear the heap before each measurement.
This tuning helps to minimize the impact of just-in-time compilation and to
reduce the likelihood of garbage collection during the measured benchmark runs.

Results Evaluation The average compilation time of the entire cfn resource spec-
ifications (542 files) was 940ms. Table 1 reports the results of our experimental
evaluation. StackSets are sorted by number of resources. For each, we measure
the time taken by the stackset encoding (ENC), inference (INF), and query an-
swering task (grouped by outcome: UNSAT, SAT with no instances, and SAT
with instances). As we can see from the table, the encoding time increases with
the infrastructure’s size, producing larger models that require longer inference
times. Average query answering times increase accordingly. UNSAT queries have
shorter average answering times than those evaluating to SAT/0 or SAT/+ (UN-
SAT proofs are found before a SAT outcome can be deduced). In addition, once a
query is proved SAT, we invoke a procedure for instances retrieval to determine
whether satisfying instances are present or not. The specific infrastructure con-
figuration and its size are the main influencing factors of query answering times.

8 Claudia Cauli, Meng Li, Nir Piterman, and Oksana Tkachuk

Considering that the average template has about 50-100 resources, and tem-
plates having 100-500 resources are rare, the results suggest that our approach
scales to real-world IaC templates. For example, StackSet 04 has 132 resources,
is encoded in 363ms, classified in 2.1s, and has a max average per-query time of
162ms. Assuming a pool of 100 checks to be run, the automated modeling and
verification of such an infrastructure would take, in the worst-case, around 18s.

5.1 Found Security Issues

Across all 15 deployments, we run 15x50 = 750 checks: 608 pass and 142 fail. Of
the 142 failing checks, 73 do not return any instance and 69 return one or more
instances (i.e., they fail with a SAT/+ outcome). Such a difference is due to the
nature of the single check and its definition of failure. A global protection check
fails when no instance implementing the protection is found; a security issue
check fails whenever is possible (SAT/0 or SAT/+); and a mitigation check fails
when no instance is found. We consider SAT/+ findings particularly important,
as they do not only witness a potential security issue but also an actual mis-
configuration. In particular, the 69 SAT/+-failing checks fail on 239 resource
instances, with the most found issues being:

Missing or misconfigured encryption 131

Missing or misconfigured logging 46

Missing or misconfigured versioning/backup/replication 44

Missing User password reset requirement 12

Misconfigured authorization 3

Misconfigured networking configuration 3

The 73 findings returning no instances fall into two groups: the absence of any
monitoring or alarming system is very frequent, as is the dependency on external
resources whose security posture cannot be assessed.

Absent global monitoring/alarming/logging protection 41

Usage of external resources with unknown configuration 32

6 Semantic Reasoning about Dataflows

To conclude our study, we manually craft two proof-of-concept models of terms
related to cloud security (ontologies). We use these to extend the formalization
of the CloudFormation IaC specification that was automatically generated by
our tool. Such domain-specific ontologies formalize several common cloud terms,
such as account, deployment, authenticated and unauthenticated users; generic
dataflow terms, such as storage, process, nodes, and flows of different kind; and
service-specific dataflow terms. By adding these on top of the underlying IaC
formal specification, we can reason about the higher-level business logic and

Security Assessment for Cloud Services through Semantic Reasoning 9

"CustomerData": {
"Type": "AWS::S3:: Bucket",
"Properties ": {

"LoggingConfig ": {
"DestinationBucket ": "

AccessLog" }}},

"TopicSubscription":{
"Type": "AWS::SNS:: Subscription",
"Properties ": {

"Endpoint ": "devs@mail",
"Protocol ": "email",
"TopicArn ": "AccessTopic" }}

"TestData": {
"Type": "AWS::S3:: Bucket",
"Properties ": {

"LoggingConfig ": {
"DestinationBucket ": "

AccessLog" }}},

"AccessLog": {
"Type": "AWS::S3:: Bucket",
"Properties ": {

"NotificationConfig" : {
"TopicConfig" : {

"Topic ":" AccessTopic" }}}},

"AccessTopic": {
"Type": "AWS::SNS:: Topic" ... }

Fig. 1. Sample template: accounts prod (left) and test (right).

reachability of the infrastructure, and we can abstract it and visualize it in a more
convenient way. This is where the full inference power of description logics comes
into play. Such an inference power would be hard to achieve with an alternative
encoding (e.g. using a modal logic). Let us illustrate how this technique is applied
to system-level analyses of interest for a security review: dataflow and trust
boundary analyses. A trust boundary is a portion of a system whose components
trust each other and where data can securely flow. Multiple trust boundaries may
exist within one system. Dataflows that travel across boundaries may introduce
security issues and should be carefully reviewed. In Fig. 1, we see an example
of such a situation, where the infrastructure is deployed across two accounts,
prod and test, sharing resources AccessLog and AccessTopic. In our encoding,
we use the so-called DLs inclusion axioms to rewrite properties that (when
chained) imply the existence of a more general relation and to infer additional
characteristics of nodes. For example, in the following list axioms 2-7 formalize
the relationships of “logging to” and “sending notifications to” a resource, which
imply the existence of a transitive dataflow between nodes; and axioms 8-9 allow
to infer that the node devs@mail is an external node.

LoggingConfig ◦ DestinationBucket v logsTo (1)

TopicArn− ◦ Endpoint v sendsNotifications (2)

NotificationConfig ◦ TopicConfig ◦ Topic v sendsNotifications (3)

logsTo v dataflow (4)

sendsNotifications v dataflow (5)

dataflow ◦ dataflow v dataflow (6)

∃Protocol.{“email”} v ∀Endpoint.EmailAddress (7)

EmailAddress v ExternalNode (8)

This encoding enables us to compute a succinct dataflow diagram from
the reasoned IaC configuration (see Fig. 2), and to formally verify properties
that usually require a manual analysis of the infrastructure and its underlying
graph representation. E.g., the question, “can data flow from the customer-data
bucket to the outside?” can now be formalized as a DL formula and, using a

10 Claudia Cauli, Meng Li, Nir Piterman, and Oksana Tkachuk

Fig. 2. Dataflow extracted from Fig. 1

reasoning engine, the existence of a
dataflow that starts on the customer-data
bucket and reaches the devs@mail node
can now be inferred. We note that, due to
the structure of the TopicSubscription

resource, this dataflow could not have
been detected with simple reachability
analysis on a graph built without the
aid of semantic reasoning. Moreover, the
dataflow diagram highlights another potential source of information leakage:
testers being exposed to customer access information. This needs to be mitigated
by enforcing the proper trust boundaries, in particular, by adding a dedicated
access log storage for customer-data bucket in the prod account.

7 Related Work

To the best of our knowledge, the problem of formally verifying the design of a
cloud infrastructure in its entirety has not been addressed before. Formal reason-
ing techniques have been successfully applied to different aspects of the cloud,
e.g. networks and access policies [16,7,4,5]. Non-formal tools exist that recom-
mend and run checks against already deployed resources [35,13], or scan IaC tem-
plates [11,10,38] for syntactical patterns violating security best practices. These
checks overlap considerably and can be expressed in our framework as well.
The disadvantages of such tools are that checks are local to single components,
can be performed only post-deployment, need complex configurations, access
permissions, or even manual interaction. The CFn-Linter [10] has a rule-based
component that users can extend with custom syntax checks, but none of the
rules currently available focus on security. The CFn-nag linting tool [11] checks
compliance to best practices only locally to the single resources; e.g., it cannot
detect issues such as “there is an events queue, receiving from a bucket with
critical functionality, that may not be encrypted” or “there might be a user that
is shared by multiple policies” (which would go against the least privilege prin-
ciple); as well as including in its analysis external resources that are referenced
by the template being linted.

Regarding our choice of logic, large-scale configuration problems have been
tackled with description logic before [26,27]. Simpler first-order logic formulas
with operators to represent object-oriented interface relationships could be used
to model IaC specifications. However, such an encoding would only partially
solve our problem, which is more complex because our overall goal is to do
formal semantic analyses (e.g. dataflow and threat modeling). Semantic-based
approaches, even DL-based, are being used to do conceptual modeling of security
engineers’ expertise with the provable and explainable inference capabilities of
logics. As an example, we refer the reader to the OWASP “Ontology-driven
Threat Modeling” project [31] that aims at the formalization of security-related
knowledge in the context of different types of computer systems by means of

Security Assessment for Cloud Services through Semantic Reasoning 11

description logic ontologies. In contrast to logic programming languages, such
as Datalog, DLs inherently support functionality axioms and the existence of
anonymous individuals within a domain that is assumed to be open. These are
supported out-of-the-box without the need for an additional, more complex,
axiomatization or encoding. In particular, we took advantage of DL’s open-
world assumption to implement, in our properties encoding, verification and
falsification. Another alternative to DLs as a modeling language would be to use
3-valued models with labels on states and transitions and apply model checking
[8,9]. However, expressive branching-time logics [25,33] have not been studied in
the context of 3-valued models and we are also not aware of tool support at the
level available for DLs (cf. [17,21]).

8 Conclusion and Future Work

Throughout this case study, we investigated the usage of description logics-
based semantic reasoning to evaluate the security of cloud infrastructure pre-
deployment. We encoded Amazon Web Services’ Infrastructure as Code specifi-
cations and configurations into description logic models and verified the presence
and absence of potential security issues. We showed how this approach enables
deeper system-level analyses such as dataflow analysis. All results can be gener-
alized to other existing IaC tools. While working on this project, we interacted
with developers on two occasions. First, for the benchmark templates used in our
experimental evaluation, we contacted the owners, told them about the miscon-
figurations, and discussed potential security implications. Second, within AWS,
security engineers use a technique based on this paper for security reviews of
AWS products before they are launched, helping developers fix real issues pre-
deployment. In the process, we received valuable feedback that we used for im-
proving precision and reducing the number of false-positive results. We plan to
continue researching for an even better-fitting description logic formalism, query
language, three-valued semantics, and decision procedures for verification and
falsification of properties relevant to security analyses, such as dataflows, trust
boundaries, and threat modeling.

Acknowledgements This research is supported by the ERC consolidator grant
D-SynMA under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 772459) and by Amazon Web Services.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press (2003)

2. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press (2017)

12 Claudia Cauli, Meng Li, Nir Piterman, and Oksana Tkachuk

3. Baader, F., Horrocks, I., Sattler, U.: Description logics. In: Handbook of Knowledge
Representation, Foundations of Artificial Intelligence, vol. 3, pp. 135–179. Elsevier
(2008)

4. Backes, J., Bayless, S., Cook, B., Dodge, C., Gacek, A., Hu, A.J., Kahsai, T., Kocik,
B., Kotelnikov, E., Kukovec, J., McLaughlin, S., Reed, J., Rungta, N., Sizemore, J.,
Stalzer, M.A., Srinivasan, P., Subotic, P., Varming, C., Whaley, B.: Reachability
analysis for aws-based networks. In: CAV (2). Lecture Notes in Computer Science,
vol. 11562, pp. 231–241. Springer (2019)

5. Backes, J., Bolignano, P., Cook, B., Dodge, C., Gacek, A., Luckow, K.S., Rungta,
N., Tkachuk, O., Varming, C.: Semantic-based automated reasoning for AWS ac-
cess policies using SMT. In: FMCAD. pp. 1–9. IEEE (2018)

6. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: Portable Automated
Deployment and Management of Cloud Applications, pp. 527–549. Springer New
York, New York, NY (2014)

7. Bouchenak, S., Chockler, G.V., Chockler, H., Gheorghe, G., Santos, N., Shraer,
A.: Verifying cloud services: present and future. Operating Systems Review 47(2),
6–19 (2013)

8. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued tem-
poral logics. In: CAV. Lecture Notes in Computer Science, vol. 1633, pp. 274–287.
Springer (1999)

9. Bruns, G., Godefroid, P.: Model checking with multi-valued logics. In: ICALP.
Lecture Notes in Computer Science, vol. 3142, pp. 281–293. Springer (2004)

10. The AWS CloudFormation Linter (2020), https://github.com/

aws-cloudformation/cfn-python-lint, Last accessed on 2020-10-15
11. The CFnNag Linting Tool (2020), https://github.com/stelligent/cfn_nag,

Last accessed on 2020-10-15
12. Challita, S.: Inferring Models from Cloud APIs and Reasoning over Them: A Tooled

and Formal Approach. (Inférer des modèles à partir d’APIs cloud et raisonner
dessus: une approche outillée et formelle). Ph.D. thesis, Lille University of Science
and Technology, France (2018)

13. Infrastructure Security, Compliance, and Governance (2020), http://www.

cloudconformity.com/, Last accessed on 2020-08-04
14. CloudFORMAL: Prototype Implementation, http://github.com/claudiacauli/

CloudFORMAL, Last accessed on 2020-10-15
15. Resource Specification (2020), https://docs.aws.amazon.com/

AWSCloudFormation/latest/UserGuide/cfn-resource-specification.html,
Last accessed on 2020-08-13

16. Cook, B.: Formal reasoning about the security of amazon web services. In: CAV
(1). Lecture Notes in Computer Science, vol. 10981, pp. 38–47. Springer (2018)

17. D’Ippolito, N., Fischbein, D., Chechik, M., Uchitel, S.: MTSA: the modal transition
system analyser. In: ASE. pp. 475–476. IEEE Computer Society (2008)

18. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: Hermit: An OWL 2
reasoner. J. Autom. Reasoning 53(3), 245–269 (2014)

19. Google Deployment Manager, https://cloud.google.com/deployment-manager,
Last accessed on 2021-01-28

20. Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P.F., Sattler, U.:
OWL 2: The next step for OWL. J. Web Semant. 6(4), 309–322 (2008)

21. Gurfinkel, A., Wei, O., Chechik, M.: Yasm: A software model-checker for verifica-
tion and refutation. In: CAV. Lecture Notes in Computer Science, vol. 4144, pp.
170–174. Springer (2006)

https://github.com/aws-cloudformation/cfn-python-lint
https://github.com/aws-cloudformation/cfn-python-lint
https://github.com/stelligent/cfn_nag
http://www.cloudconformity.com/
http://www.cloudconformity.com/
http://github.com/claudiacauli/CloudFORMAL
http://github.com/claudiacauli/CloudFORMAL
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-resource-specification.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-resource-specification.html
https://cloud.google.com/deployment-manager

Security Assessment for Cloud Services through Semantic Reasoning 13

22. Horridge, M., Bechhofer, S.: The OWL API: A java API for OWL ontologies.
Semantic Web 2(1), 11–21 (2011)

23. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: the making of a web ontology language. J. Web Semant. 1(1), 7–26 (2003)

24. Krötzsch, M., Simancik, F., Horrocks, I.: A description logic primer. CoRR
abs/1201.4089 (2012)

25. Kupferman, O., Grumberg, O.: Buy one, get one free!!! J. Log. Comput. 6(4),
523–539 (1996)

26. McGuinness, D.L., Resnick, L.A., Jr., C.L.I.: Description logic in practice: A CLAS-
SIC application. In: IJCAI. pp. 2045–2046. Morgan Kaufmann (1995)

27. McGuinness, D.L., Wright, J.R.: Conceptual modelling for configuration: A de-
scription logic-based approach. AI EDAM 12(4), 333–344 (1998)

28. Microsoft Azure Resource Manager (2020), https://azure.microsoft.com/

en-us/features/resource-manager/, Last accessed on 2021-01-28
29. Morris, K.: Infrastructure as code: managing servers in the cloud. ” O’Reilly Media,

Inc.” (2016)
30. Musen, M.A.: The protégé project: a look back and a look forward. AI Matters

1(4), 4–12 (2015)
31. OWASP Ontology-driven Threat Modeling, https://github.com/OWASP/OdTM,

Last accessed on 2021-05-17
32. Patel-Schneider, P., Grau, B.C., Motik, B.: OWL 2 web ontology language di-

rect semantics (second edition). W3C recommendation, W3C (December 2012),
http://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/

33. Sattler, U., Vardi, M.Y.: The hybrid µ-calculus. In: IJCAR. Lecture Notes in Com-
puter Science, vol. 2083, pp. 76–91. Springer (2001)

34. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with comple-
ments. Artif. Intell. 48(1), 1–26 (1991)

35. Multi-Cloud Security Auditing Tool (2020), http://github.com/nccgroup/

ScoutSuite, Last accessed on 2020-08-04
36. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical

OWL-DL reasoner. J. Web Semant. 5(2), 51–53 (2007)
37. Terraform, https://www.terraform.io/, Last accessed on 2021-01-28
38. Static Analysis Security Scanner for Terraform (2020), https://tfsec.dev/, Last

accessed on 2021-05-10
39. Tsarkov, D., Horrocks, I.: Fact++ description logic reasoner: System description.

In: IJCAR. Lecture Notes in Computer Science, vol. 4130, pp. 292–297. Springer
(2006)

https://azure.microsoft.com/en-us/features/resource-manager/
https://azure.microsoft.com/en-us/features/resource-manager/
https://github.com/OWASP/OdTM
http://github.com/nccgroup/ScoutSuite
http://github.com/nccgroup/ScoutSuite
https://www.terraform.io/
https://tfsec.dev/

	Pre-Deployment Security Assessment for Cloud Services through Semantic Reasoning

