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ABSTRACT
Product search for online shopping should be season-aware, i.e.,
presenting seasonally relevant products to customers. In this pa-
per, we propose a simple yet effective solution to improve sea-
sonal relevance in product search by incorporating seasonality
into language models for semantic matching. We first identify sea-
sonal queries and products by analyzing implicit seasonal contexts
through time-series analysis over the past year. Then we introduce
explicit seasonal contexts by enhancing the query representation
with a season token according to when the query is issued. A new
season-enhanced BERT model (SE-BERT) is also proposed to learn
the semantic similarity between the resulting seasonal queries and
products. SE-BERT utilizes Multi-modal Adaption Gate (MAG) to
augment the season-enhanced semantic embedding with other con-
textual information such as product price and review counts for
robust relevance prediction. To better align with the ranking ob-
jective, a listwise loss function (neural NDCG) is used to regular-
ize learning. Experimental results validate the effectiveness of the
proposed method, which outperforms existing solutions for query-
product relevance prediction in terms of NDCG and Price Weighted
Purchases (PWP).
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1 INTRODUCTION
Seasonality is an important dimension for relevance matching in
online shopping product search. Given the same query, a user’s
intent may vary depending on the season when the query is is-
sued. Consequently, the change of user intent would directly affect
query-product relevance matching for product search. As shown in
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Figure 1, the query “jacket for men" has two different sets of rele-
vant products in winter and in summer: it leads to more sales of the
product “Wind Cheater Jacket" in summer/fall season, while more
sales of the product “Bomber Jacket" in winter. Such queries are
called seasonal queries. According to [16], 39% queries are highly
seasonally relevant to the time of search and would benefit from
handling seasonality in ranking.

Figure 1: Monthly Sales of two types of jackets resulting from
the query “jackets for men". In this example, “jackets for men” is
an implicit seasonal query, as customers have different purchase
preferences during different seasons, even though the query does not
explicitly convey the seasonal intent such as “winter" or “summer".
The y-axis has been re-scaled to omit absolute numbers.

It is worth noting that the majority of seasonal queries are implic-
itly seasonal, which do not contain explicit seasonal keywords. For
example, “jackets formen" in the previous example is an implicit sea-
sonal query. On the contrary, “winter jacket" is an explicit seasonal
query, whose seasonal intent is explicitly conveyed by including
“winter" in the query keywords. Implicitly seasonal queries pose
great challenges for product search. First, unlike explicit seasonal
queries, because of the absence of seasonal keywords in implicit
queries, it is difficult to infer seasonal relevance between the implicit
queries and products purely based on lexical or semantic matching
between query keywords and product titles. Second, existing works
on detecting seasonal queries [8, 14] mainly rely on analyzing the
temporal dynamics of query frequency, which may fall short when
it comes to implicit seasonal queries.

To explicitly address the seasonality problem, Yang et al.[16]
propose to model the seasonality of a product as the probability
of being purchased in each of the twelve months estimated by the
proportion of a product’s annual sales concentrated in each month
(called MSC score) based on historical sales. A neural model is
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trained, which takes the product title as input, to predict the MSC
score for products without historical sales data. However, the MSC
score is a product-level score that fails to capture the purchase
intent conveyed by query keywords. Incorporating temporal infor-
mation into search ranking has been studied in [3, 7, 16]. Dakka
et al. [3] automatically identify important time intervals for time-
sensitive queries over a news archive, and use these intervals to
adjust the document relevance scores by boosting the scores of
documents published within the important intervals. Kanhabua
and Nørvåg [7] employ both entity-based and temporal features
derived from annotation data to learn a learning to rank model.
The entity-based features aim to capture the semantic similarity
between a query and a document, whereas the temporal features
measure the temporal similarity. Recently, language models such
as BERT have become popular for semantic matching in product
search [1, 4, 6, 12, 13]. To study the temporal effects in language
models, Dhingra et al [4] propose to jointly modeling text with its
timestamp to improve memorization of seen facts and calibration
on predictions about unseen facts from future time periods. Agar-
wal and Nenkova [1] systematically study the temporal effects on
downstream language tasks, including temporal model deteriora-
tion and the benefit from retraining models on more recent data
to improve model performance. Rosin, Guy and Radinsky [12] pro-
pose TempoBERT, which uses time as an additional context of texts
and perform time masking in pertraining to facilitate the acquisi-
tion of temporal knowledge. Later, Rosin and Radinsky [13] extend
multi-head attention to include an additional temporal attention.

Motivated by the above, we explore the use of language models
for semantic relevance prediction, enhanced by the additional time
context. However, our investigation focuses on the seasonality, and
how it can be utilized to better measure the relevance between a
seasonal query and products. We start by defining seasonality at
the query level and obtain corresponding seasonal products. Then
we propose to explicitly introduce the seasonal context by directly
concatenating the time token at the beginning of query texts. Built
upon popular BERT-based language models, we propose a season-
enhanced BERT model (SE-BERT) to learn the semantic similarity
between the query texts and product texts (product title, material,
etc.). The semantic embedding is augmented by other contextual
information such as product price and review counts for robust rele-
vance prediction through a Multi-modal Adaption Gate (MAG) [11].
We study the effects of different loss functions on the learning out-
come and demonstrate the effectiveness of the proposed model in
predicting query-product relevance by incorporating seasonality.
Comprehensive experiments reveal the importance of incorporat-
ing the seasonal signals into semantic matching and highlight the
necessity of season-aware language models for product search.

2 PROBLEM FORMULATION AND MODELING
Let Q be the set of all possible queries and A be the set of all
products. For a given query 𝑞 ∈ Q, let 𝐴𝑞 = {𝑎𝑖 }

𝑛𝑞
𝑖=1 ⊂ A be the

subset of 𝑛𝑞 matched products. Let a query-product pair (𝑞, 𝑎𝑖 )
be represented by a 𝑝-dimensional feature vector x𝑞

𝑖
∈ R𝑝 . Our

goal is to learn a scoring function 𝑓\ : R𝑝 → R that can assign
a score 𝑠𝑞

𝑖
(𝑡) to each (𝑞, 𝑎𝑖 ) pair from its corresponding vector

representation, conditioning on a specific season 𝑡 , i.e., (x𝑞
𝑖
|𝑡) ↦→
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Figure 2: The overview of SE-BERT.

𝑠
𝑞

𝑖
(𝑡). Specifically, 𝑡 is taken as an input to 𝑓\ . The items can then

be ranked in descending order of scores.

2.1 Learning seasonal semantic relevance
To address the challenge of capturing the seasonal semantic rele-
vance between the text of query and products, we propose Season-
enhanced BERT (SE-BERT) model. As shown in Figure 2, SE-BERT
involves a pretrained BERT as a language model to capture the
season-related semantic relevance between the semantic context
of a query and a product. As behavior signals are important for
product search and reflect the short-term and long-term relevance
between a query and products, we incorporate behavior informa-
tion such as product price and review counts as additional contexts
to improve relevance prediction through a Multi-modal Adaption
Gate (MAG) [11]. Compared with other feature fusing approaches
such as concatenation, MAG highlights the relevant information
from non-text data conditioned on the current embedding vector.
The architecture of our proposed SE-BERT is shown in Fig. 2.
Seasonal query identification. Constructing the seasonal query
set is one of the keys to learn seasonal semantic relevance. Given a
query 𝑞, the bestselling product set in month𝑚 is defined as 𝐴𝑞𝑚 ,
where 1 ≤ 𝑚 ≤ 12. If 𝑞 is a seasonal query, customers tend to pur-
chase different sets of products depending on the season/occassion,
resulting in a varying 𝐴𝑞𝑚 as𝑚 changes. Therefore, to capture such
implicit seasonal contexts, we use the Jaccard Index to discrimi-
nate season queries. For query 𝑞, the Jaccard Index matrix 𝐽𝑞𝑚1,𝑚2

between 𝐴𝑞𝑚1 and 𝐴
𝑞
𝑚2 , where 1 ≤ 𝑚1,𝑚2 ≤ 12 and𝑚1 ≠ 𝑚2, is

defined as

𝐽
𝑞
𝑚1,𝑚2 = |𝐴𝑚1 ∩𝐴𝑚2 |/|𝐴𝑚1 ∪𝐴𝑚2 |. (1)

The mean Jaccard index of query 𝑞 over 12 months is

𝐽𝑞 =
1

12 × 12

12,12∑︁
𝑚1=1,𝑚2=1

𝐽
𝑞
𝑚1,𝑚2 . (2)

We then define the seasonal query set as {𝑄, 𝑡,𝛾} = {𝑞 |𝐽𝑞 ≤ 𝛾},
where 𝛾 is the seasonality threshold.
Season-enhanced semantic relevance. As a common approach
to capture the relevance between two sentences, a language model
takes the tokenized sentences with a separator [SEP] in between.
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However, it is challenging to capture seasonality when the seasonal
time token is not explicitly present in the tokenized sentences.
To better learn the seasonal semantic relevance, we propose to
explicitly prepend the seasonal time token at the beginning of the
query texts.

Formally, given a query and season (𝑞𝑖 , 𝑡) ∈ {𝑄, 𝑡,𝛾}, and a
product 𝑎𝑖 , 𝑎𝑖 ∈ 𝐴𝑞 , the product text of 𝑎𝑖 is 𝛿𝑖 . Denote the seasonal
time token as 𝑡 , the tokenized input to a language model is

𝐾 = [[𝑐𝑙𝑠]; 𝑡 ;𝑞𝑖 ; [𝑠𝑒𝑝];𝛿𝑖 ; [𝑠𝑒𝑝]] . (3)

The token embedding vector is

𝑂 = 𝑓𝑙 (𝐾), (4)

where 𝑓𝑙 is the language model. 𝑍𝑞
𝑖
(𝑡) is the semantic embedding

of the [𝑐𝑙𝑠] token, where 𝑍𝑞
𝑖
(𝑡) ∈ 𝑂 . We hypothesize that prepend-

ing the seasonal time token to a seasonal query will help the self-
attentions of language models like BERT to attend on the seasonal
signal during training.
Enhancing seasonal semantic relevance with behavior fea-
tures. Given tabular behavior features Z𝑖 , MAG concatenates the
semantic embedding 𝑍𝑞

𝑖
(𝑡) with Z𝑖 to produce a gating vector [,

where𝑊[ is the weight matrix, 𝑏𝑖 is a scalar bias, and 𝑅 is a non-
linear activation function. The gating vector [ measures the effect
of additional modality conditional on the current context.

[ = R
(
𝑊[

[
𝑍
𝑞

𝑖
(𝑡); Z𝑖

]
+ 𝑏𝑖

)
. (5)

Subsequently, a non-text displacement vector𝐻𝑞
𝑖
(𝑡) is created from

the tabular behavior features Z𝑖 with its gating vectors.

𝐻
𝑞

𝑖
(𝑡) = [ ·

(
𝑊ℎ𝑍

𝑞

𝑖
(𝑡)

)
+ 𝑏ℎ, (6)

where𝑊ℎ is a weight metrix and 𝑏ℎ is a scalar bias. Finally, we take
a weighted summation of the semantic embedding 𝑍𝑞

𝑖
(𝑡) with its

associated non-text displacement.

𝑍
𝑞

𝑖 (𝑡) = 𝑍
𝑞

𝑖
(𝑡) + 𝛼𝐻𝑞

𝑖
(𝑡), (7)

where𝑍𝑞𝑖 (𝑡) is the enhanced semantic embeddingwith behavior fea-
tures. The weight of the displacement vector is controlled through
a scaling factor 𝛼 to ensure that it remains in a reasonable range.

𝛼 = min(
(
∥𝑍𝑞
𝑖
(𝑡)∥2

∥𝐻𝑞
𝑖
(𝑡)∥2

)
∗ 𝛽, 1), (8)

where ∥ · ∥ is the 𝐿2 norm and 𝛽 is a hyperparameter. 𝛽=1.0 in our
experiments.

2.2 Loss functions
While not ideal, pointwise losses such asmean-square error (MSE) [5]
are still used for its simplicity and scalability in product search sys-
tems. MSE measures the error between the predicted relevance
score 𝑠𝑞

𝑖
(𝑡) of a given query-product pair (𝑞, 𝑎𝑖 ) and their ground

truth relevance. Purchase conversion rate is a commonly used surro-
gate for the ground truth (𝑞, 𝑎𝑖 ) relevance, defined as 𝑃𝐶𝑅(𝑞, 𝑎𝑖 , 𝑡) =
𝑃𝑢𝑟𝑐ℎ𝑎𝑠𝑒 (𝑞,𝑎𝑖 ,𝑡 )

𝐼𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠 (𝑞,𝑎𝑖 ,𝑡 ) .
As pointwise loss functions treat the relevance prediction as a

simple regression of the ground truth relevance for each individual
query-product pair (𝑞, 𝑎𝑖 ), they ignore possible interactions be-
tween products. Moreover, pairwise loss functions are only loosely

related to the evaluation metrics for product ranking such as Nor-
malised Discounted Cumulative Gain (NDCG), causing a mismatch
between the optimization objective and the evaluation criterion.
Therefore, we propose to use listwise loss functions that better
align with the evaluation metric in our model [10, 15]. However,
NDCG cannot be directly used as the loss function, as it is non-
differentiable. Therefore, we use a surrogate loss function, Neural-
NDCG [9], to approximate the NDCG score. Below we will first
define NDCG, then summarize NeuralNDCG.

Let 𝑟 𝑗 denote the relevance of the product ranked at the 𝑗-th
position, 𝑔(·) denote a gain function and 𝑑(·) denote a discount func-
tion. The Discounted Cumulative Gain (DCG) at the 𝑘-th position
is defined as DCG@𝑘 =

∑𝑘
𝑗=1 𝑔

(
𝑟 𝑗

)
𝑑 ( 𝑗), and NDCG at the 𝑘-th

position is defined as

NDCG@𝑘 =
1

maxDCG@𝑘
DCG@𝑘 (9)

where maxDCG@𝑘 represents the maximum possible value of
DCG@𝑘 . Since the sorting operator is the source of discontinuity
in NDCG (and other IR metrics), by substituting it with a differen-
tiable approximation we obtain a smooth variant of the metric. The
NeuralNDCG method aims to approximate the gain function 𝑔(·).

NeuralNDCG𝑘 (𝜏) (𝑠,𝑦) = 𝑁−1
𝑘

𝑘∑︁
𝑗=1

(scale(𝑃) · 𝑔(𝑦)) 𝑗 · 𝑑 ( 𝑗) (10)

where 𝜏 = 1.0 is a temperature parameter controlling the accuracy
of approximation. 𝑁−1

𝑘
is the maxDCG at 𝑘-th rank, 𝑃 is the per-

mutation matrix to approximate the sorting operator, 𝑦 represents
the ground truth labels, 𝑠𝑐𝑎𝑙𝑒(·) is Sinkhorn scaling and 𝑔(·) and 𝑑(·)
are their gain and discount functions.

3 EXPERIMENTAL SETTINGS
Dataset To train the model, we sampled seasonal queries from a
year of customer search record from an online shopping platform.
All queries in the candidate pool is required to have at least one
purchase. Additionally, we require a (query, product, season) triplets
with at least 20 impressions to ensure reliable PCR estimation. As
a result, the final train set consists of 2,800 queries together with
an average of 120 associated impressed products. To ensure a fair
evaluation, we created our test set by sampling queries queries
from January to June of the following year. Specially, the test set
contains about 40% new products not seen in the training set.

For training with the listwise loss function, the 120 products
associated with a given query is randomly sampled into groups of
16 products with replacement. The listwise loss function minimizes
the loss on these groups. Our model was trained with Adamw
optimizer with a learning rate of 0.00003 and a dropout rate of 0.1.

Evaluation MetricsWe compare the performance of all mod-
els using both relevance and business metrics. We report ranking
performance by measuring NDCG at rank cutoffs at 8 and 22, and
examine the business impact with Price Weighted Purchases (PWP)
with the same cutoffs (i.e., PWP@K for 𝐾=8, 22)1.We use NDCG as
the primary metric for model selection and evaluation as it is the
standard objective for relevance model training. PWP@𝐾 serves as
secondary metric as it indicates business impact.
1To compute the PWP@𝐾 , we first sort the query-product in each query group in
the evaluation data in descending order of the output score of the model. We then
compute the average of PWP in the top 𝐾 results



WWW ’23 Companion, April 30-May 4, 2023, Austin, TX, USA Haoming Chen and Yetian Chen, Jingjing Meng, Yang Jiao, Yikai Ni, Yan Gao, Michinari Momma, Yi Sun

Table 1: Summary of methods performances without or with seasonal signal (With MSE as loss function)

Without seasonal signal With seasonal signal

Method NDCG@8 NDCG@22 PWP@8 PWP@22 Method NDCG@8 NDCG@22 PWP@8 PWP@22

Semantic relevance
BERT 0.2502 0.3661 1.0 1.0 SE-BERT 0.2530 (+1.12%) 0.3687 (+0.71%) 1.009 (+0.89%) 1.007 (+0.70%)

+ Behavior features
BERT+MAG 0.2770 0.3834 1.090 1.076 SE-BERT+MAG 0.2835 (+2.35%) 0.3887 (+1.38%) 1.102 (+1.04%) 1.077 (+0.10%)
BERT+Con - - - - SE-BERT+Con 0.2830 0.3882 1.109 1.091
BERT+Add - - - - SE-BERT+Add 0.2827 0.3880 1.108 1.088

PWP@K (K=8 or 22) are normalized by PWP@K for the baseline method (BERT without seasonal signal and without behavior feature) to omit absolute numbers.
+𝑥% in parentheses indicate the percentage gain of corresponding metrics against the models trained with the similar method but without using seasonal signal.
These highlight the effect of adding seasonal signal for relevance modeling. Con: concatenation, Add: addition.

4 EXPERIMENTAL RESULTS
We first studied the impact of adding seasonal signal as additional
input into the language model to learn the query-product semantic
similarity. We trained a series of models by varying the input to our
model. For input to the language model, we use product title as well
as metadata such as style, color, materials. In addition to textual
information, behavior features such as product price, product sale
velocity, user review rating, number of user reviews, product ages
can provide additional signal to enhance the seasonal relevance
prediction. Thus, we combine the output from the language model
with these behavior features as input to the MLP layers for final
relevance prediction.

We first studied the effect of different time granularity for defin-
ing seasons. We tried two definitions: 1) each month is a “season”;
2) six seasons defined as: Spring (March and April), Summer (May
and Jun), Moonsoon (July and August), Autumn (September and
October) and Pre-winter (November, December) and Winter (Janu-
ary and February)2. Granularity at month-level has a well-defined
boundary across months and is independent of the geo-location,
but it suffers from the sparsity issue for a given (query, product,
time) triplet as there are around 70% of triplets with no purchase
records in purchase data. Our results show that the 6-season defini-
tion outperforms the month-based season classification. Therefore,
we use the 6-season definition for all our following experiments.

4.1 Effectiveness of Seasonal Signal
Table 1 presents the summary of model performance for with and
without seasonal signals. Our first observations is that with only
the textual input, SE-BERT outperforms BERT. Using BERT as the
baseline, SE-BERT improves NDCG@8 and NDCG@22 by 1.12%
and 0.71%, respectively. It also improves PWP@8 and PWP@22
by 0.89% and 0.70%, respectively. It demonstrates the effectiveness
of enhancing the seasonality in semantic relevance matching. Sec-
ondly, we observe that augmenting the semantic embedding with
behavior features improves themodel performance. SE-BERT+MAG
exceeds SE-BERT with a large margin on all metrics. Specifically,
compared with BERT+MAG, which is not seasonal-enhanced, SE-
BERT+MAG achieves 2.35% NDCG@8 and 1.38% NDCG@22 gains.
We hypothesize that the increases in the gain (e.g. the gain for
NDCG@8 is increased to 2.35% from 1.12%) is attributed to the

2This definition of 6 seasons is commonly accepted season classification in India[2].

benefit that MAG brings to SE-BERT in learning seasonal semantic
relevance.

Additionally, we compare two other feature fusion methods with
MAG: concatenation (SE-BERT+Con) and addition (SE-BERT+Add).
For concatenation, we concatenate non-text vector with the seman-
tic embedding of SE-BERT. For addition, we project the semantic
embedding and the behavior feature vector into the same dimen-
sion, then add them element-wise. Compared with SE-BERT+Con
and SE-BERT+Add, SE-BERT+MAG achieves the best performance
on the primary evaluation metrics, NDCG@8 and NDCG@22.

4.2 Effectiveness of Listwise Loss Function
We study the impact of using list-wise loss (NeuralNDCG) over
point-wise loss (MSE). Specifically, we compare two models, both
with seasonal tokens and behavior features, but trained with two
different loss functions:MSE andNeuralNDCG. As shown in Table 2,
training model with NeuralNDCG outperforms MSE consistently
across all metrics.

Table 2: Ranking performance of using different loss functions
(Both models are trained with SE-BERT with MAG to fuse behavior
features with BERT output)

Loss function NDCG@8 NDCG@22 PWP@8 PWP@22

MSE 0.2835 0.3887 1.102 1.077
NeuralNDCG 0.2920 0.3945 1.124 1.096

5 CONCLUSIONS
In this paper, we propose a season-enhanced language model to pre-
dict seasonal relevance of query-product pairs for product search.
We demonstrate that including the season signal can improve the
ranking performance of neural ranking model. We also show the ef-
fectiveness of incorporating multiple modalities (behavior signals)
into existing language model through a MAG adaption. Fine-tuning
the season-enhanced BERT model with listwise loss function (neu-
ralNDCG) further boosts the model performance by bridging the
gap between the loss function and ranking metric. Our future work
includes incorporating other modalities such as product image and
geolocation for seasonal relevance prediction, as we have demon-
strated that additional contextual information can benefit relevance
matching, and product images may contain extra seasonal signals,
especially for fashion products.
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