
Differential Data Quality Verification
on Partitioned Data

Sebastian Schelter, Stefan Grafberger, Philipp Schmidt, Tammo Rukat,
Mario Kiessling, Andrey Taptunov, Felix Biessmann, Dustin Lange

Amazon Research
{sseb,stefgraf,phschmid,tammruka,kiesslin,taptunov,biessman,langed}@amazon.com

Abstract—Modern companies and institutions rely on data to
guide every single decision. Missing or incorrect information
seriously compromises any decision process. In previous work,
we presented Deequ, a Spark-based library for automating the
verification of data quality at scale. Deequ provides a declarative
API, which combines common quality constraints with user-
defined validation code, and thereby enables unit tests for data.

However, we found that the previous computational model
of Deequ is not flexible enough for many scenarios in modern
data pipelines, which handle large, partitioned datasets. Such sce-
narios require the evaluation of dataset-level quality constraints
after individual partition updates, without having to re-read
already processed partitions. Additionally, such scenarios often
require the verification of data quality on select combinations of
partitions.

We therefore present a differential generalization of the com-
putational model of Deequ, based on algebraic states with monoid
properties. We detail how to efficiently implement the corre-
sponding operators and aggregation functions in Apache Spark.
Furthermore, we show how to optimize the resulting workloads
to minimize the required number of passes over the data, and
empirically validate that our approach decreases the runtimes
for updating data metrics under data changes and for different
combinations of partitions.

I. INTRODUCTION

Data is a central resource for modern enterprises and insti-
tutions. Online retailers, for example, rely on data to support
customers’ buying decisions, to forecast demand [3] or to
schedule deliveries. Any such decision can be seriously com-
promised by missing or incorrect information with detrimental
impact on downstream processes [6], especially if it is auto-
mated with machine learning [2], [15]. A further complication
is that many modern data sources such as key-value stores and
distributed file systems do not support integrity contraints and
quality checks, and often do not even provide a schema for
the data.

In order to address this challenge, we have recently in-
troduced Deequ1, a Spark-based library for the automation
of data quality verification at scale [14]. Deequ allows its
users to define unit tests for data based on a declarative API,
which combines common quality constraints with user-defined
validation code. Many modern data pipelines, however, oper-
ate on partitioned and evolving datasets that pose particular
opportunities and challenges for data quality verification. For
instance, a dataset may consist of different partitions which are

1https://github.com/awslabs/deequ

US, Sep US, Oct US, Nov

IN, Sep IN, Oct IN, Nov

EU, Sep EU, Oct EU, Nov EU, Sep EU, Oct EU, Nov

IN, Sep IN, Oct IN, Nov

US, Sep US, Oct US, Nov

dataset, partitioned by 
region and month

quality metric states for 
corresponding partitions

Verification()
 .isComplete("customerId", "title")
 .isNonNegative("viewDuration")
 .hasApproxCardinality("city", _ <= 2100)
   .where("country = ‘DE’")
 .hasNoUniqueValues("deviceType")
 .isNonNegative("count")
 .hasCountDistinct("deviceType", _ > 10)
 .isPredictableFrom("state", "zip")

declarative test for quality 
on dataset level

goal: replace partition 
(EU, Oct) with new version, 
if quality check succeeds

1 computation of 
states for new 
partition

2 Addition of computed 
states with existing 
states of other 
partitions

3

EU, Oct
v2

EU, Oct
v2

quality validation on 
aggregated states

update of data and 
states on success

4

 ⊕ all 
partitions

EU, Oct
v2

EU, Oct
v2

EU, Oct
v2

Fig. 1. Ingestion of an updated data partition for a partitioned dataset with
differential data quality validation. Deequ evaluates the quality constraints
using aggregated quality metric states and does not need to touch the existing
data partitions.

updated or replaced individually. In this case, we may want
to evaluate dataset-level constraints without having to re-read
already processed partitions. In another cases we might be
interested in verifying the data quality of certain combinations
of partitions, e.g., for particular timespans. Previous versions
of Deequ do not support these scenarios, only the special case
of strictly growing datasets.

In this paper, we address this gap and extend Deequ’s com-
putational model by introducing states with algebraic monoid
properties (Section II). This enables computation of metrics
from combinations of partition states and flexible adaption to
various scenarios of constraint evaluation on partitioned data.

Figure 1 illustrates how Deequ would execute differential
quality validation in an exemplary scenario of ingesting an
updated partition for a large dataset, which is partitioned
by region and month. 1 We receive a new version of the
(EU, Oct) partition and want update our dataset, under
the condition that the quality test for the dataset as a whole
still succeeds. If this were not the case, we would reject the
update. Deequ allows us to efficiently execute the validation as
follows: 2 we compute states for the metrics of the test from
the new partition, and 3 aggregate them with the existing
states for the remaining partitions (which we receive from
a state store). 4 Afterwards, we execute the data quality
validation on the aggregated states, and ingest the new partition
in case of success. Note that this process is efficient, as we do

https://github.com/awslabs/deequ


not need to touch the remaining data partitions, and the states
are typically small and fast to aggregate.

We show how to implement the proposed abstraction ef-
ficiently and detail how to generate aggregation queries in
SQL for our stateful metrics computation. We describe how to
execute the resulting queries with a highly reduced number of
passes over the data compared to naive execution (Section III).
Finally, we experimentally show that our proposed extensions
give rise to large savings in computational cost (Section V).

In summary, we provide the following contributions:
• We present a formal algebraic computation model for

differential metrics computation and reformulate our data
quality metrics accordingly (Section II).

• We outline an algorithm for the optimized simultaneous
computation of a large set of data quality metrics (Sec-
tion III).

• We provide an experimental evaluation showcasing the
reduction in the number of Spark jobs by our execution
algorithm and the decrease in runtime for computing
metrics on growing datsets, for updating dataset metrics
under data changes, and for computing metrics on differ-
ent combinations of partitions (Section V).

II. COMPUTATIONAL MODEL

In the following, we detail the proposed extension to our
computational model. The basic operation in Deequ is to
compute a metric (typically a single real number) from data
d ∈ D of a specific domain D (e.g., rows in a dataframe with
a given schema) and allow users to define constraints on this
metric (such as a threshold for the ratio of missing values in
a column of the data). In Deequ, so-called analyzers allow
users to compute these metrics, where a single analyzer is in
general modeled as a function D → R. As already discussed
in the introduction, this computational model is unfortunately
not flexible enough to handle various common scenarios: (i)
we might encounter data d(t+1) = d(t) ∪∆d that grows over
time, where a set of new records ∆d is regularly appended2

(e.g., log events of production systems). In such cases we want
to update the metrics for the data based on the small delta ∆d
and not have to re-scan the previous data d(t) ; (ii) the second
scenario is when data is partitioned and individual partitions
get replaced, e.g. a table d =

⋃
p dp with p partitions (e.g.,

log data partitioned by country) where the data for a partition
is updated atomically. Again, we do not want to have to re-
scan the whole dataset to update its metrics, but have our
computation work with the data dj of a particular partition j;
(iii) a third scenario is when we only want to compute the
metrics for a particular subset of the partitions of a dataset.

Introduction of algebraic states. In order to gain the required
flexibility to tackle the mentioned scenarios, we enhance
the computational model underlying Deequ’s analyzers. We
redesign the analyzer to provide a function s : D → S to
compute a state of a domain S for a metric from data, and a

2We proposed a non-general incremental extension for this case in [14],
which is only a special case subsumed by the model outlined in this work.

second function m : S → R to compute the actual metric from
the state (which must have sufficient information for the metric
to be computed). Given data d ∈ D, we compute a metric by
composing s and m as m(s(d)). Additionally, we introduce a
generalized addition function ⊕ : S ×S → S for the states of
a metric, and enforce the algebraic structure of a commutative
monoid on (S,⊕,0). That means that the generalized addition
must be associative: ∀d1, d2, d3 ∈ D : [s(d1)⊕ s(d2)] ⊕
s(d3) = s(d1) ⊕ [s(d2)⊕ s(d3)]. Furthermore, we require
the existence of an identity element 0 (the state of an empty
set), such that ∀d ∈ D : s(d) ⊕ 0 = 0 ⊕ s(d) = s(d)
holds, and we enforce commutativity: ∀d1, d2 ∈ D : s(d1) ⊕
s(d2) = s(d2)⊕ s(d1). These algebraic properties allow us to
implement the state computations as parallel aggregations in in
Apache Spark: associativity and commutativity enable parallel
execution of the computations [4] and the identity element
allows us to handle edge cases like columns which only consist
of NULL values. Finally, we require the property that state
computation and generalized addition distribute over the union
of disjoint sets of data tuples: ∀d1, d2 ∈ D, d1 ∩ d2 = ∅ :
s(d1∪d2) = s(d1)⊕s(d2). This allows us to compute metrics
from aggregated states of parts of the data instead of the
dataset as a whole, which is the basic requirement that we need
to tackle our use cases: m(s(d1 ∪ d2)) = m(s(d1)⊕ s(d2)).

Examples. The completeness metric denotes the ratio of
non-missing values in a column. The corresponding monoid
is (N2,+, [0, 0]), states are 2-tuples from a subset of N2

which represent the number of non-null values in a column
as well as the overall number of rows. Merging two of these
states requires simple addition and the identity element is the
zero tuple. Another example is estimating the cardinality of a
column using hyperloglog (HLL) sketches [10]. The monoid
for this metric is ({0, 1}d,∨, [0, . . . , 0]); states correspond
to the d-dimensional bitstring in which the sketch stores its
counters, addition is conducted by logical disjunction of two
such bitstrings and the identity element is the zero string.
Another simple example is the Maximum metric which de-
notes the maximum value in a numeric column and uses the
(R,max,−∞) monoid: states are real numbers, the addition
of two states reduces the computation of the maximum be-
tween the two values and the identity element is represented
by negative infinity. We provide a list of the metrics supported
by our library and their corresponding states and addition
functions in Table I.

In the following, we elaborate how these algebraic proper-
ties enable the previously mentioned use case scenarios.

Scenario 1: Append-only growth of a table. This lets us
easily handle the case of incrementally growing data d(t+1) =
d(t) ∪ ∆d where we already have access to the state s(d(t))
from the previous version t. We compute the state s(∆d) for
the new records and merge it with the existing state s(d(t))
without needing to re-scan d(t) as follows m(s(d(t+1))) =
m(s(d(t) ∪∆d)) = m(s(d(t))⊕ s(∆d)).

Scenario 2: Partition replacement. For a partitioned table
d =

⋃
p dp with p partitions, where we updated a single parti-

tion dj , we recompute the metrics by aggregating the states of



TABLE I
SUPPORTED DIFFERENTIAL ANALYZERS WITH CORRESPONDING TYPE OF STATE AND ADDITION FUNCTION FOR MERGING STATES.

Analyzer Semantic State Addition function
Analyzers that only require a shareable scan of the input data

ApproxCountDistinct hyperloglog (HLL) cardinality estimate HLL sketch [10] HLL sketch merge
ApproxQuantile approximate quantile of column values quantile sketch [9] quantile sketch merge
Completeness fraction of non-missing values in a column (#non-null values, #rows) element-wise addition
Compliance ratio of values matching a predicate (#matches, #rows) element-wise addition
Correlation correlation between two columns online covariance statistics [5] online covariance update
DataType data type inference for a column type match counts element-wise addition
Maximum maximal value in a column current maximum max()
Mean mean value in a column (sum, #rows) element-wise addition
Minimum minimal value in a column current minimum min()
PatternMatch ratio of values matching a regex (#matches, #rows) element-wise addition
Size number of records current size addition
StandardDeviation standard deviation of column values 1st and 2nd central moment online update of moments [12]

Analyzers that require a re-partitioning of the input data

CountDistinct number of distinct values in a column (value frequencies, #rows) outer join + summation
Distinctness unique row ratio in a column (value frequencies, #rows) outer join + summation
Entropy entropy of the value distribution (value frequencies, #rows) outer join + summation
MutualInformation mutual information between two columns (value frequencies, #rows) outer join + summation
Uniqueness unique value ratio in a column (value frequencies, #rows) outer join + summation
UniqueValueRatio ratio of unique values to cardinality value frequencies outer join + summation

the remaining partitions with the newly computed state s(dj)
for partition j via m(s(d)) = m (s(dj)⊕ [

⊕
p 6=js(dp)]).

Scenario 3: Different ‘views’ of a dataset We might want
to run tests on different combinations of partitions of a
dataset. An example would be a case where the data is
partitioned by days D and regions R and we are interested
in the metrics for the day ‘2018/08/12’ in all regions
m
(⊕

r∈Rs(d{‘2018/08/12′,r})
)

or the metrics for a week in
a particular region, e.g., ‘EU’ as m

(⊕
d∈Ds(d{d,‘EU ′})

)
.

III. IMPLEMENTATION

We introduce our Scala-based implementation of the pro-
posed computational model. At the heart of the implemen-
tation are analyzers: operators that compute metrics. We
first describe their design and later detail how we execute
them efficiently. As required by our computational model,
every analyzer has a corresponding state with the generalized
addition function ⊕ for other states of the same type:
trait State[S <: State[S]] {
def +(other: S): S /* Addition operation */
}

The analyzer itself then defines the function s : D →
S which computes a state from a Spark dataframe as
computeStateFrom and the function m : S → R
which computes the final numeric metric from the state as
computeMetricFrom. The identity element 0 is repre-
sented by the None variant of Scala’s Option[S].
trait Analyzer[S <: State[S], +M <: Metric[_]] {
/* Compute the state from a partition */
def computeStateFrom(part: DataFrame): Option[S]
/* Compute the metric from the state */
def computeMetricFrom(state: Option[S): M
}

While the implementation presented so far would be suf-
ficient to cover our computational model, it would result in
suboptimal execution behavior, as every analyzer would have
to conduct a pass over the data in its computeStateFrom
method. We designed a special implementation for analyzers
that compute simple aggregations over the data, which can
share scans over the data with other analyzers of this type:

trait ScanShareableAnalyzer[S <: State[S],
+M <: Metric[_]] extends Analyzer[S, M] {
/* Aggregations to compute on the data */
def aggregationFunctions(): Seq[Column]
/* Compute state from the aggregation result */
def fromAgg(result: Row, offset: Int): Option[S]
}

The idea here is that the analyzers generate aggregation func-
tions in aggregationFunctions (instead of accessing the
data directly). These aggregation functions will be executed by
our system in an efficient manner. Each analyzer constructs its
state from the result of the aggregation function via fromAgg
afterwards. Example. We provide a concrete example of how
a metric can be computed based on this design. We choose
the completeness metric, which is defined as the ratio of non-
null values in a column (e.g., a completeness of 1.0 implies
no missing values). The state CState corresponding to the
metric lives in a subset of N2; it consists of the number of
non-null values in the investigated data as well the overall
number of rows. Adding states of this type only requires us
to add the respective counts.

case class CState(nonNull: Long, count: Long)
extends State[CState] {
def +(o: CState): CState =
CState(nonNull + o.nonNull, count + o.count)

}



Algorithm 1: Optimized execution of a set of analyzers
with potentially pre-existing state to aggregate.
/* Precompute aggregations for shareable

analyzers that do not require grouping */

1 F ← ∅
2 for analyzer a ∈ A with grouping cols(a) = ∅ :
3 if can share scans(a) :
4 F ← F ∪ aggregation functions defined by a
5 R← compute aggregations F on data d
/* Compute states and metrics for all analyzers

that do not require grouping */

6 for analyzer a ∈ A with grouping cols(a) = ∅ :
7 if can share scans(a) :
8 sa ← compute state for a from R
9 else:

10 sa ← compute state on data d
11 ŝa ← previous state for a or 0
12 ma ← compute metric from ŝa ⊕ sa
13 add (a, sa,ma) to result

/* States and metrics for all analyzers that

require a particular grouping of the data */

14 G← set of all sets of grouping columns from A
15 for grouping columns g ∈ G :
16 dg ← group data by g and count values

/* Aggregations for shareable analyzers */

17 Fg ← ∅
18 for analyzer a ∈ A with grouping cols(a) = g :
19 if can share scans(a) :
20 Fg ← Fg ∪ aggregation functions defined by a
21 Rg ← compute aggregations Fg on grouped data dg
22 for analyzer a ∈ A with grouping cols(a) = g :
23 if can share scans(a) :
24 sa ← compute state for a from Rg

25 else:
26 sa ← compute state on grouped data dg
27 ŝa ← previous state for a or 0
28 ma ← compute metric from ŝa ⊕ sa
29 add (a, sa,ma) to result

The following code depicts the actual implementation of
the analyzer. This analyzer can be shared within scans and
therefore has to specify its required aggregation functions.
In the first aggregation, we cast the column values to 1 or
0 depending on whether they are NULL or not, and sum
these up, which gives us the number of non-null values in the
column to investigate. The second aggregation function simply
counts the number of rows. In the fromAgg method, we pick
the results of the aggregrations from the overall aggregation
result and return a CState. Finally, we can compute the
completeness metric by dividing the number of non-null values
by the overall number of rows.

case class Completeness(column: String) extends
ScanShareableAnalyzer[CState] {

def aggregationFunctions(): Seq[Column] =
sum(col(column).isNotNull.cast(LongType)) ::
count(column) :: Nil

def fromAgg(r: Row, offset: Int): Option[CState] =
CState(r.long(offset), r.long(offset + 1))

def computeMetricFrom(state: Option[CState])
: Option[DoubleMetric] =
state.map { cState => DoubleMetric(
cState.numNonNull.toDouble / cState.count) }

}

This implementation pattern works for a large number
of analyzers which only require the execution of a set of
aggregation functions over the data (even for more exotic cases
such as approximate cardinality estimation with hyperloglog
sketches [10]). However, a special case are analyzers which
require to group the data by particular columns (e.g., to
compute the unique value ratio of a column). The state here
corresponds to a vector of cardinalities of the contained values
and the addition function needs to be able to merge such
vectors via outer joins. These joins are costly in presence of
a large number of distinct values. The metrics for which this
is required a shown in the lower part of Table I.

Algorithm for Optimized Execution. Enabling scan-sharing
for the analyzers provides us with the building blocks for
optimizing the execution of a set of analyzers. The resulting
algorithm is depicted in Algorithm 1 and attempts to minimize
the number of passes over the data3. The algorithm is given
a set of analyzers to execute and schedules them as follows:
First, we focus on the subset of analyzers which does not re-
quire us to group the data. We collect the aggregation functions
from all such analyzers that support scan sharing (line 4) and
combine these into a single query which we execute in line 5.
Next we compute the states from either the pre-computed
aggregation result (line 8) or from the data (in line 10) in
case the analyzer does not support scan sharing. Finally, we
load and add potentially existing states and compute the final
metric for the analyzer in lines 11 to 13. Next, we identify all
required sets of grouping columns for the remaining analyzers
and repeat the execution scheme for all analyzers that require
the same grouping columns (lines 14 to 29). A difference is
that we first need to execute a group by query and count the
resulting values in line 16 before we execute the analyzers,
where we again apply scan sharing.

IV. RELATED WORK

Declarative definitions of data quality standards are well-
established [6]–[8], and an integral part of every database
management systen in the form of integrity constraints. Our
differential approach is related to view maintenance in data
warehouses [1] and builds upon well understood algebraic
properties for aggregation functions [4], [11]. Domain-specific
sanity checks and explicit data validation components are

3An Implementation of the algorithm is available at https://goo.gl/Le1H2n.

https://goo.gl/Le1H2n


actively researched as well in the upcoming field of data
management for machine learning [2], [3], [13], [15].

V. EXPERIMENTAL EVALUATION

We evaluate Deequ on a dataset of 54,504,410 reddit
comments with 22 attributes from May 2015 obtained from
Kaggle4. We partition the data into 14 different partitions by
the week day of the comment creation as well as by the
binary controversiality attribute which indicates whether
a particular comment was controversial.

We profile the data and generate two tests. The first basic
test asserts that the columns created_utc, week_day, ups,
downs, id, name, subreddit_id, link_id, subreddit,
author, controversiality and parent_id are complete
and that removal_reason has less than 5% non-null val-
ues. Additionaly, it checks that created_utc, week_day,
ups, downs and controversiality are integer typed
values, evaluates a range constraint on week_day and
controversiality, and tests whether the approximate car-
dinality of subreddit and subreddit_id is within the
approximation error of the true cardinality. Finally, it evaluates
a constraint stating that the 90th percentile of ups must be
less than 10. Note that all these constraints can be evaluated
in a single scan over the data. The second advanced test is
an extended version of the basic test and evaluates additional
constraints on the unique value ratio and exact cardinality of
subreddit and subreddit_id as well as the cardinality of
their combination. Note that the advanced test requires us to
group the data multiple times.

We execute our evaluation on an Elastic MapReduce
cluster in AWS with 4 workers (c4.xlarge instances) running
Apache Spark 2.2 and HDFS 2.7.3 using the emr 5.8.2 profile.

Benefits of Optimized Execution. We first evaluate the bene-
fits of our proposed algorithm for executing a large number of
analyzers (Algorithm 1). We execute both the basic test and
the advanced test with and without the optimized execution
and repeat this for cached inputs. We measure the number
of Spark jobs and stages scheduled and depict the results in
Figure 2. We observe the expected reduction in the number
of passes over the data (due to scan sharing) compared to
the naive execution. We encounter a ten-fold reduction for the
basic test (which does not require a grouping of the data) and
a factor of four less jobs for the advanced test which groups
the data several times. We also observe a huge reduction in
the number of corresponding Spark stages which is larger in
cases where the data is not cached (which we attribute to the
fact that Spark’s query optimizer has better statistics about the
data when it has been cached).

Benefits of Differential Computation. In the next set of
experiments, we evaluate differential computation in the three
different scenarios outlined in Section II: append-only growth
of a dataset, replacement of partitions in a partitioned dataset

4https://www.kaggle.com/reddit/reddit-comments-may-2015

basic
+caching

advanced
+caching

0

10

20

30

40

50

#
sp

ar
k

jo
bs

23 23

33 33

2 2
8 8

non-optimized
optimized

basic
+caching

advanced
+caching

0

20

40

60

80

100

120

140

160

#
sp

ar
k

st
ag

es

89

47

134

72

5 5

32
20

Fig. 2. Reduction in the number of Spark jobs and stages by our optimized
execution in comparison to naive sequential execution.

and metrics for different combinations of a partitioned table.
We run the basic and advanced test for every scenario, and
compare differential computation (with states stored on HDFS)
to recomputation from scratch (both with optimized execution
activated). We repeat every experiment 5 times and report the
mean runtime.

Scenario 1: Append only. In the first experiment, we mimick
a growing dataset by adding the two partitions for each week-
day in every run. We compare the differential computation
which updates a persisted state based on the new partition to
the full recomputation of all metrics for every version of the
dataset5. Figure 3 illustrates the resulting runtimes. We observe
the expected behavior: In case of full recomputation, the
runtime grows linearly with the size of the dataset, while the
runtime is roughly constant for the differential computation,
where we operate on a constantly sized new partition in each
run.

2 4 6 8 10 12 14
# partitions in dataset

0

10

20

30

40

50

60

70

ru
nt

im
e

(s
)

basic test
full recomputation
differential

2 4 6 8 10 12 14
# partitions in dataset

advanced test

Fig. 3. Constant runtime for differential computation on growing data (com-
pared to linear growth with the data size in the case of full recomputation).

Scenario 2: Partition replacement. In this set of experi-
ments, we evaluate a scenario where partitions for a particular
weekday change. Without a differential approach, we need to
scan the whole table to re-compute its metrics. In the case of
differential computation, we compute states per partition once
in the beginning, and only have to re-compute the states for
the changed partition; afterwards we can cheaply re-compute
the metrics for the whole table from the aggregated states. The
initial computation of the states in the differential case takes
55 seconds for the basic test and 121 seconds for the advanced

5We presented a similar experiment in our previous work [14], which we
repeat here to showcase that our new algebraic model subsumes the special
case formulation provided previously.

https://www.kaggle.com/reddit/reddit-comments-may-2015


test. The resulting runtimes for the updates are shown in
Figure 4. We see that the differential approach can quickly
amortize the overhead of the initial computation by enabling
cheap updates: Each update can be computed in a fraction of
the time it takes to recompute the metrics for the whole table.
For the basic test this fraction is about one quarter, while it is
about a third in the case of the advanced test. The higher cost
for the latter is due to the joins required to merge the states.

up
da

te
pa

rt
iti

on
1

up
da

te
pa

rt
iti

on
2

up
da

te
pa

rt
iti

on
3

0

50

100

150

200

ru
nt

im
e

(s
)

basic test
full recomputation
differential

up
da

te
pa

rt
iti

on
1

up
da

te
pa

rt
iti

on
2

up
da

te
pa

rt
iti

on
3

advanced test

Fig. 4. Reduction in runtime of the re-computation of dataset metrics after a
partition has changed.

Scenario 3: Different ‘views’ of a dataset. In our final ex-
periment, we execute the tests on four different combinations
of partitions: (a) we first evaluate them for each weekday
individually, (b) then or all non-controversial comments, and
afterwards for two weekday-controversiality combinations ((c)
and (d)). We compare full recomputation against the dif-
ferential approach, which computes states for all partitions
once and aggregates the partitions states for the combinations
afterwards. The initial computation takes 64 seconds for the
basic test and 159 seconds for the advanced test. The results in
Figure 5 show that, while the initial computation of the states
per partition is costly, it enables us to afterwards execute tests
on combinations of partitions almost instantly (e.g., in less
than a second for the basic test).

(a) (b) (c) (d)
partition combination

0

20

40

60

80

100

ru
nt

im
e

(s
)

basic test
full recomputation
differential

(a) (b) (c) (d)
partition combination

advanced test

Fig. 5. Runtime for test execution on several different combinations of
partitions for differential and full-recomputation.

We conclude that the differential approach enables a differ-
ent asymptotical behavior in the case of growing data, where
its runtime scales with the size of the additional delta (and
not the overall data size). For cases where partitions change or
where we are interested in a certain combination of partitions,
the differential approach enables a trade-off for users. While it
requires computation of the individual states for all partitions
once, it subsequently enables much faster tests: We observed
a runtime decrease by a factor of four and three in the case

where a partition changed and we encountered near instant
computation of metrics on selected combinations of partitions.

VI. CONCLUSION

We presented a formal algebraic computation model for
differential metrics computation based on monoid properties.
We described how to implement common data quality metrics
in this model and outlined an algorithm for the optimized
execution of a large set of data quality operators, while still
enabling the aggregation of existing states. In an experimental
evaluation, we showcased a reduction in the number of Spark
jobs by our execution algorithm and a decrease in runtime
for computing metrics on growing datasets, for updating
table metrics under data changes and for computing metrics
on different combinations of partitions. A limitation of our
approach is that it only operates on disjoint partitions and
therefore cannot handle cases like upserts of partitions. This
would however require us to track states on a record level
rather than a partition-level, which incurs substantial overhead.

In future work, we aim to investigate additional improve-
ments for the optimized execution of complex metrics com-
putation, e.g., to re-use intermediate results and to make
automated decisions on materializing grouping results. Ad-
ditionally, we aim to apply our differential approach to the
generation of training data for anomaly detection algorithms.

REFERENCES

[1] D. Agrawal, A. El Abbadi, A. Singh, and T. Yurek. Efficient view
maintenance at data warehouses. In SIGMOD Record, volume 26, pp.
417–427. ACM, 1997.

[2] D. Baylor, E. Breck, H.-T. Cheng, N. Fiedel, C. Y. Foo, Z. Haque,
S. Haykal, V. Jain, L. Koc, et al. TFX: A TensorFlow-Based Production-
Scale Machine Learning Platform. KDD, pp. 1387–1395, 2017.

[3] J.-H. Böse, V. Flunkert, J. Gasthaus, T. Januschowski, D. Lange,
D. Salinas, S. Schelter, M. Seeger, and Y. Wang. Probabilistic demand
forecasting at scale. PVLDB, 10(12):1694–1705, 2017.

[4] O. Boykin, S. Ritchie, I. O’Connell, and J. Lin. Summingbird: A
framework for integrating batch and online mapreduce computations.
PVLDB, 7(13):1441–1451, 2014.

[5] T. F. Chan, G. H. Golub, and R. J. LeVeque. Algorithms for computing
the sample variance: Analysis and recommendations. The American
Statistician, 37(3):242–247, 1983.

[6] X. Chu, I. F. Ilyas, S. Krishnan, and J. Wang. Data cleaning: Overview
and emerging challenges. SIGMOD, pp. 2201–2206, 2016.

[7] X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial constraints.
PVLDB, 6(13):1498–1509, 2013.

[8] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-A. Saita.
Declarative data cleaning: Language, model, and algorithms. VLDB,
pp. 371–380, 2001.

[9] M. Greenwald and S. Khanna. Space-efficient online computation of
quantile summaries. SIGMOD Record, volume 30, pp. 58–66, 2001.

[10] S. Heule, M. Nunkesser, and A. Hall. Hyperloglog in practice. EDBT,
pp. 683–692, 2013.

[11] F. McSherry, D. G. Murray, R. Isaacs, and M. Isard. Differential
dataflow. CIDR, 2013.

[12] X. Meng. Simpler online updates for arbitrary-order central moments.
arXiv:1510.04923, 2015.

[13] S. Schelter, J.-H. Böse, J. Kirschnick, T. Klein, and S. Seufert. Au-
tomatically tracking metadata and provenance of machine learning
experiments. Machine Learning Systems Workshop at NIPS, 2017.

[14] S. Schelter, D. Lange, P. Schmidt, M. Celikel, F. Biessmann, and
A. Grafberger. Automating large-scale data quality verification. PVLDB,
11(12), 2018.

[15] M. Terry, D. Sculley, and N. Hynes. The Data Linter: Lightweight,
Automated Sanity Checking for ML Data Sets. Machine Learning
Systems Workshop at NIPS, 2017.


	Introduction
	Computational Model
	Implementation
	Related Work
	Experimental Evaluation
	Conclusion
	References

