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ABSTRACT
Even though Automatic Speech Recognition (ASR) systems sig-
nificantly improved over the last decade, they still introduce a
lot of errors when they transcribe voice to text. One of the most
common reasons for these errors is phonetic confusion between
similar-sounding expressions. As a result, ASR transcriptions often
contain “quasi-oronyms", i.e., words or phrases that sound simi-
lar to the source ones, but that have completely different seman-
tics (e.g., win instead of when or accessible on defecting instead of
accessible and affecting). These errors significantly affect the per-
formance of downstream Natural Language Understanding (NLU)
models (e.g., intent classification, slot filling, etc.) and impair user
experience. To make NLU models more robust to such errors, we
propose novel phonetic-aware text representations. Specifically,
we represent ASR transcriptions at the phoneme level, aiming to
capture pronunciation similarities, which are typically neglected in
word-level representations (e.g., word embeddings). To train and
evaluate our phoneme representations, we generate noisy ASR tran-
scriptions of four existing datasets - Stanford Sentiment Treebank,
SQuAD, TREC Question Classification and Subjectivity Analysis
- and show that common neural network architectures exploiting
the proposed phoneme representations can effectively handle noisy
transcriptions and significantly outperform state-of-the-art base-
lines. Finally, we confirm these results by testing our models on
real utterances spoken to the Alexa virtual assistant.
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1 INTRODUCTION
Nowadays, voice-enabled systems are gaining more and more pop-
ularity, and virtual assistants, such as Amazon Alexa, Apple Siri or
Google Home, are becoming part of our daily life. In particular, they
have been used, for example, for accessing contents on theWeb, con-
trolling smart devices, and managing calendars, through different
applications, e.g. voice search engine [35] and voice shopping [14].

In such systems, the Spoken Language Understanding (SLU) is
usually performed in two steps: first an Automatic Speech Recog-
nition (ASR) is used to transcribe human speech; then Natural
Language Understanding (NLU) models are applied on ASR tran-
scriptions to interpret users’ requests. Different from traditional
approaches, where NLU is applied on the original text, applying it
on ASR transcriptions poses new challenges, as ASR systems often
generate transcriptions with errors [6, 20]. These ASR errors can
cause failures in downstream applications of virtual assistants, such
as intention classification or slot filling [28], affecting the end-user
experience.

Traditionally, researchers distinguish between three main types
of ASR errors: insertions, deletions, and substitutions. However, all
these errors are just an outcome of a phonetic confusion in the ASR
model, causing a phrase in a human speech to be incorrectly tran-
scribed to a “quasi-oronym", i.e., phrases with different meanings
that sound very similar. Therefore, classic approaches that operate
on word or even character-level representations cannot recover
from such errors. In this paper we explore the usage of lower level
representations, namely phoneme-based representations, to alle-
viate this problem. As phonemes are the smallest units of sound
in a language, we expect the ASR transcription to be more similar
to the correct utterance at the phoneme level than at the character
or word levels. Hence, we argue that injecting phonetic informa-
tion into NLU models can improve their robustness to ASR errors.
More specifically, we propose to represent ASR transcriptions as
sequences of phonemes. Following the deep learning approach for
text processing, we map phonemes to phoneme embeddings and
propose several methods to train phoneme embeddings that are
able to capture pronunciation similarities. Finally, we use these
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pre-trained embeddings as inputs to Neural Network architectures
for solving NLU tasks.

The contribution of this paper is fourfold: (i) we design fourmeth-
ods for training phoneme embeddings using sequence-to-sequence
and word2vec-based models, and evaluate them; (ii) we define a
pipeline for contaminating existing datasets with ASR errors, and
we use this pipeline to generate noisy versions of four well-known
Natural Language Processing datasets1; (iii) we describe how to
integrate phoneme embeddings into existing Neural Network archi-
tectures, e.g., LSTM and CNN, showing how the proposed phoneme
embeddings can be jointly usedwith standard embeddings, i.e., char-
acter and word embeddings; (iv) we conduct an intensive exper-
imental evaluation on the generated datasets, as well as on real
utterances spoken to the Alexa virtual assistant; our experimental
results demonstrate that models exploiting our phoneme repre-
sentation can significantly improve classification performance on
datasets containing ASR errors compared to models operating only
on standard character or word representations.

The rest of the paper is organized as follows: Section 2 discusses
related work. Section 3 describes our phoneme-level representa-
tions and the proposed methods to automatically learn phoneme
embeddings. Section 4 explains the data generation pipeline that
is used to automatically generate datasets containing ASR errors.
We run a qualitative analysis of our phoneme embedding spaces in
Section 5 and report experimental results on the tasks of sentiment
analysis and question classification in Section 6 using the generated
datasets. In Section 7 we confirm these results by investigating
the domain classification task on a real Alexa dataset. Finally, we
provide concluding remarks in Section 8.

2 RELATEDWORK
Some previous works have explored the possibility of using error
detection systems to trigger clarification questions to users. Tam
et al. [33] tackled the error detection task with a Recurrent Neu-
ral Network, while Pellegrini and Trancoso [23] used features ob-
tained from different knowledge sources to complement an encoder-
decoder model.

Other works tried to directly correct the ASR transcriptions.
Sarma and Palmer [27] proposed an unsupervised method based
on lexical co-occurrence statistics for detecting and correcting ASR
errors. Shivakumar et al. [29] designed a noisy channel model for
error correction that can learn from past ASR errors. D’Haro and
Banchs [5] proposed an correction procedure using a phrase-based
machine translation system.

In all the above approaches, the benefit comes at the cost of
introducing additional components in the NLU pipeline. In our
work, instead, we explore a different research direction: we aim
to make downstream models more robust to ASR errors by using
phonetic-aware text representations. In particular, we propose to
adopt phoneme embeddings to replace or complement common text
representations, e.g., word embeddings [18, 24, 25], or character
embeddings [11].

Few existing works studied phoneme embeddings. Li et al. [13]
explored the application of phoneme embeddings for the task of
speech-driven talking avatar synthesis to create more realistic and

1https://registry.opendata.aws/asr-error-robustness

expressive visual gestures. Silfverberg et al. [30] proposed an ap-
proach to learn phoneme embeddings that can be used to per-
form phonological analogies. Toshniwal and Livescu [34] discussed
the usage of phoneme embeddings for the task of grapheme-to-
phoneme conversion. To our best knowledge, no previous work
focused on the application of phoneme embeddings to improve
NLU models operating on transcriptions containing ASR errors.

Another line of works handle ASR errors at downstream tasks.
The general approach is to pass intermediate ASR results, in the
forms of lattices or embeddings, to the downstream model. Lattices
can be either at the word level or at the phoneme level [15]. Other
solutions consist of developing end-to-end models for SLU [2]. In
this case ASR and SLU models are integrated and typically need a
lot of data to be trained. Conversely, our proposed approach can rely
on off-the-shelf ASR systems (which typically do not give access to
intermediate results) and train only SLU models, which typically
require much less data.

3 PHONEME-LEVEL REPRESENTATIONS
In deep learning methods for NLP, text is typically represented as a
sequence of tokens, e.g., words or characters, which are modeled us-
ing embeddings. This approach is proven to be effective for written
text [10, 11, 36], however, it is not inherently robust to ASR errors.
Table 1 lists three typical examples of ASR transcriptions contain-
ing quasi-oronym errors2. In the first example, the words what
& canadian are incorrectly transcribed to words with completely
different meanings, i.e., well & comedian. Since word embeddings
typically reflect word semantics, the word embeddings of these
misrecognized words will be very dissimilar from the reference
ones. On the other hand, when an ASR model does not correctly
recognize a word or a phrase, it typically confuses it with a quasi-
oronym, e.g., canadian vs. comedian and affecting vs. defecting in
the first and the third example in Table 13. This suggests that the
sequence of phonemes of an ASR transcription tends to be similar
to the sequence of phonemes of the correct text.

A common metric to evaluate the performance of speech recog-
nition or machine translation systems is Word Error Rate (WER). It
measures the percentage of incorrectly transcribed words (Substi-
tutions (S), Insertions (I), Deletions (D)). It is defined as follows:

𝑊𝐸𝑅 =
𝑆 + 𝐷 + 𝐼

𝑁
(1)

where 𝑁 is the number of words in the reference text. In the same
vein, we further define two additional metrics, Character Error
Rate (CER) and Phoneme Error Rate (PER), as the extensions of
WER to characters and phonemes, respectively. Intuitively, if ASR
confuses similar sounding words or phrases, PER will be smaller
than CER and WER (see Table 1). In Section 4 we further confirm
this intuition on entire datasets. Hence, we argue that representing
text as a sequence of phoneme embeddings can help when dealing
with ASR errors.

2The ASR transcriptions were created by the data generation pipeline, as described in
Section 4.
3We convert text to phonemes using the phonemizer tool (github.com/bootphon/
phonemizer), which is based on the speech synthesis system Festival [1]. A phoneme
is represented by 2-letter notation.

https://registry.opendata.aws/asr-error-robustness
github.com/bootphon/phonemizer
github.com/bootphon/phonemizer
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Table 1: Examples of ASR errors. WER, CER and PER are word, character and phoneme error rates, respectively.

Reference text (followed by its phonemes) Transcribed text (followed by its phonemes) WER CER PER
What Canadian city has the largest population Well, comedian city has the largest population

0.285 0.205 0.142w-ah-t k-ax-n-ey-d-iy-ax-n s-ih-t-iy hh-ae-z dh-ax l-
aa-r-jh-ax-s-t p-aa-p-y-ax-l-ey-sh-ax-n

w-eh-l k-ax-m-iy-d-iy-ax-n s-ih-t-iy hh-ae-z dh-ax l-
aa-r-jh-ax-s-t p-aa-p-y-ax-l-ey-sh-ax-n

What is amitriptyline One is amateur delete 1.000 0.631 0.529w-ah-t ih-z ae-m-iy-t-r-ih-p-t-ax-l-ay-n w-ah-n ih-z ae-m-ax-t-er d-ax-l-iy-t
Remarkably accessible and affecting Remarkably accessible on defecting

0.500 0.093 0.074r-ax-m-aa-r-k-ax-b-l-iy ax-k-s-eh-s-ax-b-ax-l ae-n-d
ax-f-eh-k-t-ax-ng

r-ax-m-aa-r-k-ax-b-l-iy ax-k-s-eh-s-ax-b-ax-l ax-n d-
ax-f-eh-k-t-ax-ng

p1 p2 p3 pad

ASR or REF utterance

w ah t k ax n ey d iy ax n

p4 p5 p6 p7 p8 p9 p10 p11

What Canadian

Figure 1: Context window with size 2 around p4 in p2vc.

Similar to word or character embeddings, phoneme embeddings
can be directly learned during the training process of a Neural Net-
work that is designed to solve a specific task. However, these learned
phoneme embeddings do not necessarily capture pronunciation
aspects. Therefore, in Sections 3.1 and 3.2 we propose four methods,
including a sequence-to-sequence (seq2seq) model and variants of
word2vec, to train phoneme embeddings reflecting pronunciation
similarity. For readability purposes, we denote the correct utterance
as the reference (REF), while we denote the text transcribed by an
ASR model as the ASR utterance. Note that, different from standard
word embeddings, our phoneme models require both REF and ASR
utterances for training.

3.1 Phoneme2Vec
Word2vec [17, 18] is widely used to learn word embeddings using a
shallow neural network trained on language modeling tasks. There
are two variants of word2vec, namely the continuous bag-of-words
and the skip-gram model. In the skip-gram architecture, the model
uses the current word to predict the surrounding words in a context
window. To learn phoneme embeddings we design phoneme2vec,
a modified skip-gram model that operates at the phoneme level,
instead of the word level. We propose three variants by considering
different definitions of context.

3.1.1 p2vc: phoneme2vec on surrounding phonemes. This is
the natural extension of word2vec to phonemes: given a phoneme
we want to predict its surrounding phonemes. Specifically, an ut-
terance (either a REF or an ASR utterance) is represented by its
sequence of phonemes (the padding symbol is used to separate
words). The traditional word2vec procedure is then applied on the
phoneme sequence to predict phonemes in the same context win-
dows. Figure 1 illustrates an example with a 2-size context window:
given the central phoneme 𝑝4, p2vc has to predict phonemes 𝑝3, 𝑝5
and 𝑝6, as well as the padding symbol (pad).

We decided not to limit the context of a phoneme to its word as
the ASR might have failed the word segmentation. However, we
explicitly consider the padding symbol as it represents the “absence
of sound” captured by the ASR.

Word2vec was designed to generate word embeddings reflect-
ing semantic and syntactic aspects; however, we aim to capture
pronunciation similarities. Intuitively, two phonemes are similar if
the ASR often confuses them. Following this intuition we propose
two variants of phoneme2vec, as well as a sequence-to-sequence
model for training phoneme embeddings in the rest of this section.
In p2vc , ASR or REF utterances are always analyzed individually.
Conversely, our proposed models operate on <ASR, REF> pairs, to
leverage their dissimilarity and automatically learn which sounds
the ASR confuses.

3.1.2 p2vm: phoneme2vec on mixed REF and ASR utteran-
ces. In this approach we mix REF and ASR utterances at phoneme
level in an alternating way, as shown in Figure 2: if 𝑝𝑅1 , 𝑝

𝑅
2 , . . . and

𝑝𝐴1 , 𝑝
𝐴
2 , . . . are the sequences of phonemes in the REF and ASR

utterances, respectively, 𝑝𝑅1 , 𝑝
𝐴
1 , 𝑝

𝑅
2 , 𝑝

𝐴
2 . . . is the resulting mixed se-

quence. Given a phoneme, the model aims to predict the surround-
ing phonemes in the mixed sequence. For example, let us consider
the REF utterance “when (w-ih-n) iPhone 7 was released" and its ASR
counterpart “win (w-eh-n) iPhone 7 was released". The underlying
idea is trying to make two confused phonemes (in this case, eh and
ih) appear in their reciprocal context windows. The assumption
is that, if the ASR utterance contains few errors, phonemes with
a similar pronunciation appear in very similar, possibly the same,
positions and therefore they will be close in the mixed sequence.
This means that they will occur in their reciprocal contexts, allow-
ing phoneme2vec to learn embeddings reflecting pronunciation
similarities.

3.1.3 p2va: phoneme2vec on aligned REF and ASR utter-
ances. The previous approach relies on the hypothesis that REF
and ASR utterances have a similar number of phonemes, and that
the two phoneme sequences naturally align when mixed. Although
this is often true, we propose a more general solution that involves
an explicit alignment. We directly pair phonemes in a REF utter-
ance with their aligned phonemes in the ASR utterance using the
Needleman-Wunsch alignment algorithm [19], as shown in Figure 3.
Then the context of a given phoneme in the REF [ASR] utterance
is its aligned phoneme in the ASR [REF] utterance as well as the
phonemes surrounding it. For example, if we consider a window
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p1 p1 p2

REF utterance ASR utterance

p1 p2 p3 p4 p5 p1 p2 p3 p4 p5

p2 p3 p3 p4 p4 p5 p5

w ih n ... w eh n ...

w w ih eh n n ...

Mixed utterancecontext windows

R R R R R A A A A A

AAAAAR R R R R

Figure 2: Mixing ⟨REF, ASR⟩ utterances in p2vm.

p1 p2 p3 p4

p1 p2 p3 p4

REF utterance

ASR utterance

Alignment

p1 p2 p3 p4

p1 p2 p3 p4

pair

REF utterance

ASR utterance

w ih n ... w ih n ...

w eh n ... w eh n ...context
windows

R R R R R R R R

A A A A A A A A

Figure 3: Aligning ⟨REF, ASR⟩ utterances in p2va.

h1 h2 h3 hN

p1 p2 p3 pN...

h2 h3 hN+1h1

GO p1 p2 pN...

p1 p2 p3 EOS...
Encoder 

Decoder

what is the capital of yugoslavia wedding the capital of yugoslavia

Embedding

Layer

ASR utteranceREF utterance

R R R R A A A

A* A* A*

E E E E D D DD

Figure 4: Training phoneme embeddings by s2s.

size of 1, the context phoneme of ih are w, eh and n, as shown in
Figure 3.

3.2 Phoneme Embeddings from Seq2Seq - s2s
A very intuitive way of training phoneme embeddings is to use a
seq2seq model [9, 32], since it can map the entire REF utterance
(i.e., the input) to its ASR utterance (i.e., the output). An advantage of
the seq2seqmodel is that it does not require any phoneme alignment
procedure.

Figure 4 shows our seq2seq model, where LSTM layers are used
in both the encoder and decoder. A REF utterance is represented
as a sequence, i.e., {𝑝𝑅1 , 𝑝

𝑅
2 , ..., 𝑝

𝑅
𝑁
}. During the encoding phase, at

each time step 𝑡 , the LSTM reads a phoneme of the sentence and
updates the hidden states ℎ𝐸𝑡 :

ℎ𝐸𝑡 = 𝑓 (ℎ𝐸𝑡−1, 𝑝
𝑅
𝑡 ) (2)

where 𝑓 represents LSTM operations [8], and 𝑝𝑅𝑡 indicates the
current phoneme in the REF utterance. After reading the entire
utterance, the last hidden state of the LSTM,ℎ𝐸

𝑁
, is passed to decoder.

The initial state ℎ𝐸0 of the LSTM encoder is a zero vector. At step 𝑡 ,
the hidden state of the LSTM decoder ℎ𝐷𝑡 is calculated as:

ℎ𝐷𝑡 = 𝑓 (ℎ𝐷𝑡−1, 𝑝
𝐴
𝑡−1) (3)

whereℎ𝐸0 = ℎ𝐷
𝑁
, 𝑝𝐴0 is the start symbol “GO", and 𝑝𝐴

𝑡−1 is the (𝑡−1)th
phoneme of the ASR utterance. We train the seq2seq model to
predict the next correct phoneme of the ASR utterance given the
REF utterance and the previous ASR phonemes. The next phoneme
𝑝𝐴∗𝑡 (i.e., output of the LSTM decoder) is predicted using conditional
distribution:

𝑃 (𝑝𝐴∗𝑡 |𝑝𝐴𝑡−1, 𝑝
𝐴
𝑡−2, ..., 𝑝

𝐴
1 , ℎ

𝐸
𝑁 ) = 𝑔(ℎ𝐷𝑡 ) (4)

where 𝑔 is the softmax activation function. As a loss function, we
use the categorical cross-entropy between the prediction 𝑔(ℎ𝐷𝑡 )
and the one-hot encoding of 𝑝𝐴𝑡 .

In this sequence-to-sequence architecture, we add phoneme em-
bedding layers before the encoder and decoder. During the training
process, the REF utterances and their corresponding ASR utter-
ances are transformed into sequences of phonemes that are given
as inputs to the encoder and decoder, respectively4. Finally, the
embedding layer of the decoder is used as pre-trained phoneme
embeddings5.

4 GENERATION OF NOISY DATASETS
The proposed training procedures for learning phoneme embed-
dings require a corpus of corresponding REF and ASR utterances. In
the ASR literature there are several corpora [e.g., in 3, 21] contain-
ing text and the associated human speech, which could be provided
as inputs to an ASR system to obtain the required ⟨REF, ASR⟩ utter-
ance pairs. However, to verify the impact of the proposed phoneme
embeddings on specific prediction tasks, e.g., classification tasks,
we also need such data to be annotated according to a desired class
taxonomy. Unfortunately, to the best of our knowledge, human
annotated speech corpora are not publicly available. Since speech
transcription and annotation are expensive and labor-intensive pro-
cesses, we propose an automatic data generation pipeline, as shown
in Figure 5. In particular, we use this pipeline to automatically
generate ASR transcriptions of existing annotated datasets.

First, we use a Text To Speech (TTS) tool to generate speech
audios of sentences from a textual corpus (REF utterances). To
produce realistic speech, we inject different types of synthetic noise
into the audio. By using SSML tags6, it is possible to directly apply
several effects to the produced speech, such as changing the prosody,
emphasizing or pausing. Moreover, we add 20 types of ambient
noise7 to the audio, e.g., traffic noise, or restaurant noise. Overall, for
4We also tried the opposite, but the results did not show significant differences.
5We also tried the phoneme embeddings from the encoder layer, but we did not observe
substantial differences.
6www.w3.org/TR/speech-synthesis11/
7We use the ambient noise from www.pacdv.com/sounds/ambience_sounds.html.

www.w3.org/TR/speech-synthesis11/
www.pacdv.com/sounds/ambience_sounds.html
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Figure 5: Our data generation pipeline.

a given audio file, we add one random synthetic noise using SSML
tags and one random ambient noise. Based on our manual analysis,
we set the volume of the ambient noise to -5 dB and that of the
audio speech to 0 dB, to obtain reasonably understandable audios.
Lastly, the noisy audios are passed to an ASR tool to generate the
transcriptions. We keep only transcriptions containing ASR errors,
by repeating the process for correctly transcribed utterances.

Even though the above pipeline is generic, in our experiments
we use two standard off-the-shelf tools for TTS and ASR, namely
Amazon Polly8 and Amazon Transcribe9. We invoke the proposed
pipeline to obtain noisy versions of four datasets:

• SST. The Stanford Sentiment Treebank (SST) dataset [31]
contains sentences with their labels from a five-point senti-
ment scale.

• TQ. The TREC Question classification dataset contains ques-
tions with 6 (TQ-6) or 50 (fine-grained, TQ-50) question
types [12].

• SQuAD. This dataset contains approximately 150k crowd-
sourced questions regarding a number of Wikipedia arti-
cles [26]. We randomly select 20 questions from each of a
total of 442 Wikipedia articles10.

• SUBJ. This is the subjectivity dataset (10k sentences) fromPang
and Lee [22]. We randomly select 5k sentences out of 10k10.

We list some statistics of the four datasets in Table 2. The PER
in the four datasets is lower than their WER and CER, confirming
the intuition that a phoneme-based text representation is the least
affected by ASR errors.

5 QUALITATIVE ANALYSIS
As discussed in Section 3, we defined four different models for pre-
training phoneme embeddings: the seq2seq model s2s and three
phoneme2vec variants, i.e., p2vc, p2vm, and p2va. As pre-training
examples, we use ⟨REF, ASR⟩ utterance pairs from the union of
SQuAD and SUBJ datasets (a total of 13,840 pairs). ASR transcrip-
tions contain errors from the specific ASR system adopted in the
data generation pipeline. Therefore, the resulting phoneme embed-
dings should link the phonemes that this particular ASR system
often confuses. We denote such embeddings with the subscript 𝑎𝑠𝑟 ,
e.g., s2s𝑎𝑠𝑟 or p2vm𝑎𝑠𝑟 .

8aws.amazon.com/polly
9aws.amazon.com/transcribe
10We did not transcribe the entire datasets due to budget constraints.

Additionally, we also employ CMU Pronouncing Dictionary11
to extract roughly 8000 words having multiple accepted pronuncia-
tions. For each word, we couple all its alternative pronunciations
and we consider the resulting pairs as ⟨REF, ASR⟩ utterances for
training our phoneme embeddings. In this case the data generation
pipeline is not used, and the phoneme embeddings we generate
express general pronunciation aspects. We denote such embeddings
with the subscript 𝑑𝑖𝑐𝑡 , e.g., s2s𝑑𝑖𝑐𝑡 or p2vm𝑑𝑖𝑐𝑡 . Note that the CMU
Pronouncing Dictionary was also adopted by Hixon et al. [7] to
study phoneme similarities.

The context window parameter in phoneme2vec (see Section 3)
reflects how many phonemes we take into account when predicting
the current phoneme. We set this value to 2 according to some
preliminary experiments. For p2va we also use a 0 context win-
dow (we refer to the resulting models as p2va0

𝑑𝑖𝑐𝑡
and p2va0𝑎𝑠𝑟 ), to

force the model to acquire only pronunciation similarities between
phonemes confused by the ASR. In fact, using a 0 window size
implies that in the context of a given phoneme from an ASR [REF]
utterance, there is only the aligned phoneme in the corresponding
REF [ASR] utterance. Overall, we create 10 different pre-trained
phoneme embeddings. We set the dimension size of the embedding
vector to 20 for all the methods. This setting is reasonable since the
total number of phonemes is only 40.

To visually assess different phoneme embeddings, Figures 6 and 7
show a 2D projection of s2s𝑎𝑠𝑟 and p2vc𝑎𝑠𝑟 obtained by using t-
SNE [16]. We use different colours to highlight three groups of
phonemes. The phonemes in each group are similar in terms of
pronunciation. It is clear that the pre-trained embeddings using
seq2seq (i.e., s2s𝑎𝑠𝑟 ) can reasonably cluster these similar phonemes
together, such as “ay", “ey", “iy" and “oy" (in red cycle in Figure 6).
We observe similar outcomes by using p2va and p2vm. However, as
shown in Figure 7 these similar phonemes are not relatively close
when the training model is p2vc𝑎𝑠𝑟 . This suggests that p2vc, i.e., the
adaptation of the classic word2vec to phonemes, is not suited for
learning pronunciation aspects, while the other proposed models
more effectively capture these desired properties.

6 EXPERIMENTAL EVALUATION ON
GENERATED DATA

In this section, we evaluate the impact the proposed phoneme-
based representations in classification tasks. In addition to the 10
different embedding spaces introduced in the previous section, we
also use randomly initialized vectors (denoted as rnd) to explore
the un-pretrained case.

6.1 Neural Models on Phonemes
We integrate the proposed phoneme embeddings in standard neural
network models for sentence classification, i.e., Convolutional Neu-
ral Networks (CNNs) and Recurrent Neural Networks (RNNs). For
the CNN-based model, we extend the CNN proposed in Kim [10]
to operate on multiple inputs, as shown in Figure 8. We consider
different types of inputs, i.e., the sequences of word, character and
phoneme embeddings; for each input sequence a convolutional
layer and a max pooling layer are applied to create a sentence

11speech.cs.cmu.edu/cgi-bin/cmudict

aws.amazon.com/polly
aws.amazon.com/transcribe
speech.cs.cmu.edu/cgi-bin/cmudict


SIGIR ’20, July 25–30, 2020, Virtual Event, China Anjie Fang, Simone Filice, Nut Limsopatham, and Oleg Rokhlenko

Table 2: Datasets. “C" is the number of classes. “V" is the vocabulary size. “L" is the average sentence length.

C V L Train Dev Test WER CER PER
SST 5 17,836 17.38 8,534 1,099 2,210 0.244 0.113 0.113
TQ 6/50 9,492 8.89 5,452 - 500 0.319 0.187 0.148

SQuAD - 13,240 12.28 8,840 - - 0.241 0.118 0.107
SUBJ 2 14,410 18.66 5,000 - - 0.229 0.100 0.097

Figure 6: 2D visualization of s2s𝑎𝑠𝑟 embeddings.

Figure 7: 2D visualization of p2vc𝑎𝑠𝑟 embeddings.

vector; finally, the sentence vectors from different inputs are con-
catenated and classified using a fully connected layer with the
softmax activation function.

In addition, we employ a multi-input variant of the character-
level neural network proposed in Kim et al. [11]. As shown in Fig-
ure 9, this is an LSTM-basedmodel, where the information extracted
from different input types (i.e., word, character and phoneme) is
aggregated at the word level. This architecture consists of four main
steps: (i) the sequences of character and/or phoneme embeddings
are passed to the corresponding inputs in groups of words; (ii) each
group12 is processed by a convolution layer followed by a max
pooling layer that creates word vectors; (iii) these word vectors are
12Basically each group corresponds to a word and it is represented as a matrix whose
rows are character/phoneme embeddings.

w1
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wn
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p2

pn
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Max pooling 
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Flatten 
layer

Fully 
connected 

layer

A sentence represented 
by words

Word Input

A sentence represented 
by phonemes/characters

Phoneme/Character Input

Figure 8: The multi-input CNN.

concatenated with the word embeddings provided by the word in-
put to create a sequence of enriched word embeddings; (iv) an LSTM
operates on this sequence, and its final hidden state is classified by
a dense layer with the softmax activation function.

For the sake of simplicity, we denote the CNN-based and the
LSTM-based models as cnn and lstm, respectively. To prevent con-
fusion, lowercase is used for referring to the entire architectures
and the uppercase for the CNN and LSTM layers.

We test the proposed Neural Models with various combinations
of the three available inputs, i.e., words (w), characters (c) and
phonemes (p). We specify which input is used in the model prefix,
e.g., wp-lstm means that the model is the LSTM-based architecture
operating on words and phonemes, while c-cnn is the CNN-based
model using only the character input.

6.2 Experimental Settings
We run an extensive experimental evaluation on the SST and TQ
datasets. On the TQ dataset we performed experiments with both
the 6-class and 50-class settings. We use word embeddings (300
dimensions) trained on Wikipedia from GloVe [24]. The character
embeddings (20-dimensional) are randomly initialized and trainable,
whereas the pre-trained phoneme embeddings are not trainable13,
except the randomly initialized ones (rnd model).

For all the convolutional layers used in the cnn and lstm models,
we set the filter windows (𝑤 ) to {1, 2, 3, 4} with 256 as the filter
size. The pooling size is 𝑙 −𝑤 , where 𝑙 is the length of the sentence

13In our preliminary experiments, we verified that making them trainable hurts the
performance.
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Table 3: The upper-bound (↑) and lower-bound (↓) accuracy
of classification models.

SST TQ-50 TQ-6
↑ ↓ ↑ ↓ ↑ ↓

w-cnn 0.436 0.406 0.844 0.627 0.899 0.751
c-cnn 0.378 0.350 0.693 0.549 0.829 0.662
wc-cnn 0.439 0.400 0.842 0.648 0.910 0.752
w-lstm 0.452 0.414 0.804 0.628 0.917 0.743
c-lstm 0.288 0.293 0.704 0.564 0.842 0.678
wc-lstm 0.430 0.409 0.832 0.632 0.910 0.756
[15] 0.233 0.450 0.558

sequence. In the lstm model, we set 128 as the number of units. We
set the dropout rate using a tuning stage on the development set14.
Each experiment is repeated 5 times for conducting significance
tests (i.e., Student’s t-test).

6.3 Results and Analysis
Upper- and Lower-bounds: As a first experiment, we assess the

upper-bound and the baseline (lower-bound) for the evaluated
datasets. The upper-bound, indicated as ↑, is defined as the accuracy
of the models on clean data, i.e., REF utterances. Models are also
trained and tuned on REF utterances. The baseline (indicated as ↓
) is the accuracy that the model achieves on noisy data, i.e., ASR
utterances. In this case, ASR utterances are used during both the
training and tuning stages. We also tried to use REF utterances
for training the model to be tested on ASR utterances, however,
we observed that this was generally hurting the performance, due
to the data distribution mismatch between the train and test data.
Table 3 reports the upper- and lower-bound performance of the
two types of neural models in the three tasks. It is clear that there
are rather large margins between the baseline and the upper-bound
accuracy. The margin is 3.8% for the SST dataset, while it is much
higher for the TQ-50 and TQ-6, i.e., 19.6% and 16.1%, respectively.
The larger margin in the question type classification tasks can
be explained by the higher WER that affects the TQ dataset (see

14In TQ, the dev set is a random sample of the train set without replacement.

Table 2). Using our phoneme-based approach we aim to reduce this
margin.

Finally, we also compare with a recent approach of Lugosch et al.
[15], which is an end-to-end speech model that directly operates on
the audio signals. We use their pre-trained model with no unfreezing
setting, as the authors reported that it achieves high performance.
We fine tune such model on our training sets. As shown in Table 3,
the results achieved by this model are fairly low. A possible expla-
nation is that it was trained on simple instructions and very clean
speeches, while our datasets include more elaborated utterances
and the audios contain ambient noise.

Impact of Phoneme Embeddings: In the following experiments,
we adopt the word embedding models as baselines (i.e., w-cnn and
w-lstm). For each individual task we select the neural architecture
achieving the best accuracy in Table 3, i.e., lstm for SST and TQ-6,
and cnn for TQ-50. Table 4 reports the results of these models after
activating the phoneme embedding input.

Table 4: Accuracy comparison of pre-trained phoneme em-
beddings. The bold scores suggests a higher accuracy com-
pared to the model without using phoneme embedding
(i.e., None) and “*" indicates that the improvement is statisti-
cally significant (𝑝<0.05). “†" means that the accuracy is sig-
nificantly higher than the accuracy provided by the rnd em-
beddings.

SST TQ-50 TQ-6
(1) None 0.414 0.627 0.743
(2) rnd 0.409 0.648∗ 0.762∗

(3) s2s𝑎𝑠𝑟 0.409 0.653∗ 0.765∗

(4) s2s𝑑𝑖𝑐𝑡 0.417 0.651∗ 0.758
(5) p2vc𝑎𝑠𝑟 0.402 0.643 0.759∗

(6) p2vc𝑑𝑖𝑐𝑡 0.395 0.638 0.754∗

(7) p2vm𝑎𝑠𝑟 0.399 0.664∗† 0.746
(8) p2vm𝑑𝑖𝑐𝑡 0.403 0.655∗ 0.753
(9) p2va0𝑎𝑠𝑟 0.408 0.655∗ 0.751
(10) p2va0

𝑑𝑖𝑐𝑡
0.419∗ 0.646∗ 0.759∗

(11) p2va𝑎𝑠𝑟 0.408 0.643 0.757∗

(12) p2va𝑑𝑖𝑐𝑡 0.407 0.629 0.758∗

We observe that phoneme embeddings (rows 2-12 in Table 4),
even without pre-training (row 2 in Table 4), generally lead to a bet-
ter accuracy. The positive impact is more pronounced in TQ-50/6,
because, as reported in Table 3, there is more margin for improve-
ment. As the results suggest, using phoneme representations is
beneficial across different neural architectures and tasks (i.e., cnn
for TQ-50 and lstm for SST and TQ-6); we argue that the proposed
approach is useful for any task operating on noisy ASR input.

Several pre-training models (rows 3-12 in Table 4) lead to better
accuracy. p2vc𝑎𝑠𝑟 and p2vc𝑑𝑖𝑐𝑡 achieve the worst results. As dis-
cussed in Section 5, this is expected, since p2vc is not designed to
capture pronunciation similarities of phonemes. In contrast, the
other phoneme pre-training models focus on acoustic aspects, and
achieve more competitive results. In particular, the neural network
models with p2va0

𝑑𝑖𝑐𝑡
embeddings perform significantly better than

the baseline models (i.e., None) in the three tasks. This indicates
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that the acoustic information captured by our models helps neu-
ral models to deal with ASR transcription errors. The results for
pre-training the phoneme embeddings on the CMU dictionary data,
rather then on the ASR generated utterances, are not conclusive as
they alternate across different models and tasks.

Table 5: Accuracy of classificationmodels using different in-
puts. The best scores are bold.

SST TQ-50 TQ-6
w 0.414 0.627 0.743
c 0.293 0.549 0.678
p 0.318 0.570 0.702
wc 0.408 0.648 0.756
wp 0.419 0.646 0.758
wcp 0.405 0.650 0.754

Impact of Different Input Types: Next, we examine the impact of
using different combinations of inputs (i.e., words, characters and
phonemes). For the phoneme embeddings, we use p2va0

𝑑𝑖𝑐𝑡
. Table 5

reports the results of this set of experiments. The bestmodels always
include phoneme embeddings, indicating that, when dealing with
ASR errors, using phoneme representations is more effective than
the sole use of word and character representations. Although there
is usually high correlation between representing text in terms of its
character sequence or its phoneme sequence, our results show that
phoneme-based representations are significantly more effective
compared to character-based representations.

Finally, we run a complete grid search which explores all 6 input
combinations, all 11 phoneme embeddings models and both neural
architectures. The models that provided the best accuracy on the
development sets are wp-lstm using s2s𝑑𝑖𝑐𝑡 phoneme embeddings,
wp-lstm using s2s𝑎𝑠𝑟 and wp-cnn using p2va0

𝑑𝑖𝑐𝑡
for the SST, TQ-50

and TQ-6 tasks, respectively. Such models achieve 41.7%, 66.7% and
75.9% accuracy on the test sets. This means that they provide 0.3%,
1.9% and 0.7% absolute accuracy improvement w.r.t. the best models
not using phoneme embeddings.

Table 6 reports some examples in which the baseline model (i.e.,
w-cnn) cannot predict the correct class due to ASR errors, while
the model using phoneme embeddings (i.e., wp-cnn) can actually
produce the expected output.

7 EXPERIMENTAL EVALUATION ON
AMAZON ALEXA DATA

In this section, we evaluate our models using a real-world dataset
from the Amazon Alexa virtual assistant. Virtual assistants, e.g.,
Cortana, Alexa, or Google Assistant, perform a wide range of tasks
in different domains, such as Music,Weather, Calendar, etc. Typi-
cally, a sentence is first classified into one of the supported domains,
then domain dependent intent analysis and slot filling (i.e., entity
extraction) are carried out. In our evaluation, we consider live ut-
terances spoken to the top 11 domains of Alexa and we experiment
on the domain classification task. To create a complex scenario and
effectively test the model robustness to ASR errors, in our datasets
we upsample utterances affected by ASR errors. In particular, we

apply a stratified sampling procedure with four different strata,
each one corresponding to a different average WER. In addition to
collecting utterances not affected by ASR errors (i.e., 0 WER), we
use a stratum corresponding to 0.33 WER, a value similar to the one
observed in the TQ dataset (see Table 2). For the other two strata
we select a lower WER, namely 0.24 and a higher WER, namely
0.45. From each stratum we select the same number of samples,
therefore the average WER is 0.2515. The training and development
dataset portions contain 60k and 20k utterances, respectively. In
testing, to better study the impact of the ASR errors to the model
accuracy we keep separated the data sampled from the four differ-
ent strata: we have four different test sets with increasing WER,
i.e., {0.00, 0.24, 0.33, 0.45}. Each of the four test sets has 5k utter-
ances. The overall dataset statistics are reported in Table 7, where
𝑇𝑒𝑠𝑡0.24 indicates a test set with an average WER of 0.24. For all
these datasets (except𝑇𝑒𝑠𝑡0.00), their PER is lower than CER, which
is consistent with what we observe in our generated datasets shown
in Table 2.

We compared the CNN model which uses only the word embed-
ding channel, with the same model where the phoneme embedding
channel is also active (we used the 𝑠2𝑠𝑎𝑠𝑟 phoneme embedding
space, as it was performing effectively in the experiments reported
in Section 6). We selected the hyperparameters of the two mod-
els on the development set (i.e., DEV in Table 7). Table 8 reports
the results. All the experiments are repeated five times in order to
conduct the statistical significance test and the average accuracy is
reported.

Results are consistent with what we observed on the generated
data: the phoneme embeddings allow the model to improve its
robustness to ASR errors. As expected, the gap between the baseline
model and the proposed one increases when ASR errors are more
frequent and the accuracy difference becomes significant when the
word error rate increases.

8 CONCLUSIONS
In this paper, we explored the usage of phoneme-based represen-
tations to make classification models more robust to ASR errors.
We proposed several approaches to learn phoneme embeddings
capturing pronunciation similarities of phonemes. We then showed
how to integrate phoneme embeddings into existing Neural Net-
work architectures, and we demonstrated that their adoptions can
improve classification models when dealing with data containing
ASR errors.

To support our experiments, we introduced a data generation
pipeline that is able to automatically produce noisy ASR transcrip-
tions of textual data. Using this pipeline we created noisy versions of
four NLU datasets that we plan to make available to the community.

We experimented the proposedmodels on these generated datasets,
as well as on a real-world dataset from the Alexa virtual assistant.
Results are consistent and we show that our models can increase
the robustness of NLU models to ASR errors.

As future work, we plan to (i) experiment on other tasks such as
slot filling or intent classification and (ii) extend other state-of-the-
art models, e.g., ELMo [25] or BERT [4], in order to allow them to
take advantage of phoneme representations.

15Note that 0.25 WER does not reflect the real WER of Alexa.
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Table 6: Examples of cases in which the usage of phoneme embeddings can correct the prediction.

Example Gold Label w-cnn prediction wp-cnn prediction
REF: What Canadian city has the largest population Location Number LocationASR: Well, comedian city has the largest population
REF: What is the conversion rate between dollars and pounds ? Number Description NumberASR: What is the conversion rain between dollars and pounds ?

Table 7: Alexa dataset for domain classification.

Dataset #utterances WER CER PER
Train 60k 0.25 0.12 0.10
Dev 20k 0.25 0.12 0.10

Test0.00 5k 0 0 0
Test0.24 5k 0.24 0.11 0.10
Test0.33 5k 0.33 0.14 0.12
Test0.45 5k 0.45 0.20 0.17

Table 8: Accuracy results on the Alexa domain classification
task. “*" indicates that the improvement is statistically sig-
nificant (𝑝<0.05).

Model Test0.00 Test0.24 Test0.33 Test0.45
w-cnn 0.900 0.895 0.900 0.824
wp-cnn 0.903 0.896 0.904 0.831*
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