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Abstract
Accurate intent classification is critical for efficient routing in cus-
tomer service, ensuring customers are connected with the most
suitable agents while reducing handling times and operational costs.
However, as companies expand their product lines, intent classi-
fication faces scalability challenges due to the increasing number
of intents and variations in taxonomy across different verticals.
In this paper, we introduce REIC, a Retrieval-augmented gener-
ation Enhanced Intent Classification approach, which addresses
these challenges effectively. REIC leverages retrieval-augmented
generation (RAG) to dynamically incorporate relevant knowledge,
enabling precise classification without the need for frequent re-
training. Through extensive experiments on real-world datasets,
we demonstrate that REIC outperforms traditional fine-tuning, zero-
shot, and few-shot methods in large-scale customer service settings.
Our results highlight its effectiveness in both in-domain and out-
of-domain scenarios, demonstrating its potential for real-world
deployment in adaptive and large-scale intent classification sys-
tems.
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• Computing methodologies → Classification and regression
trees; Natural language processing.
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1 Introduction
Customer service [3, 4, 14, 16, 17, 28, 30] is critical for modern e-
commerce but also one of the most resource-intensive departments.
Different agents, either human or model, are trained to handle

specific types of customer issues, making precise intent classifi-
cation, particularly at the issue level, crucial for efficient routing.
High issue-oriented intent accuracy ensures that customers are
connected with the most suitable agents, reducing unnecessary
transfers and lowering handling times. This optimization not only
enhances customer satisfaction but also cuts operational costs by
streamlining interactions and improving overall service efficiency.
For model-based automatic resolvers in chatbot agentic systems
[2, 6], the ability to precisely identify user intent is essential for de-
livering contextually appropriate and solution-oriented responses.

As companies expand their product lines, intent classification
faces two key challenges. First, the number of customer intents
grows over time, requiring models to adapt to new intents quickly.
Second, intent taxonomies can vary across product lines, making
it difficult to maintain a unified classification system. For example
we organize products into different verticals in e-commerce: with
third-party products, customer usually inquire about physical retail
orders or consumer accounts, and intents are categorized into three
levels from coarse to fine-grained. In contrast, first-party products
require more customized customer services due to our proprietary
device and digital product offerings. For instance, a customer seek-
ing device troubleshooting may interact with an agent who can
access real-time diagnostic information and perform specific trou-
bleshooting steps on the user’s behalf. This necessitates a broader
set of intent categories to accommodate diverse customer needs, as
illustrated in Figure 1. This heterogeneity complicates intent clas-
sification, demanding scalable and flexible approaches to ensure
accurate routing and efficient customer service. In this work we
demonstrate our method using two verticals but it can be easily
adapted to more.

In this paper, we propose a novel Retrieval-augmented genera-
tion Enhanced Intent Classification (REIC) approach that reduces
computational complexity and improves scalability for intent classi-
fication. We demonstrate the effectiveness of this approach through
extensive experiments on real-world datasets , showing that our
method outperforms traditional fine tuning and zero-shot or few-
shot methods in large-scale customer service settings. Our results
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Figure 1: We present the heterogeneous intent structure with
examples, highlighting the label hierarchy per vertical.

on both in-domain and out-of-domain intents demonstrate its poten-
tial to improve classification accuracy and enable dynamic updates
without retraining, making it ideal for industry-scale applications.

2 Related Work
2.1 Intent classification
Early work on intent classification for dialogues often relied on
bag-of-words or recurrent models. For example, Schuurmans and
Frasincar [21] evaluated various classifiers on amulti-domain intent
dataset and found that a simple SVM with hierarchical label taxon-
omy outperformed deeper LSTMmodels. With the advance of trans-
former architectures, researchers began to leverage self-attention
and multi-task learning for intent understanding. Ahmadvand et al.
[1] introduced a joint intent mapping model that simultaneously
classifies high-level intent and maps queries to fine-grained product
categories. Wang et al. [27] employed a slowly updated text encoder
and global/local memory networks to mitigate catastrophic forget-
ting and parameter explosion for large-scale intent detection task.
Recent work has pushed toward using large pre-trained models and
retrieval-based prompting to enable cross-domain and zero/few-
shot intent classification. Liu et al. [11] proposed a frameworkwhich
integrates a fine-tuned XLM-based intent classifier with an LLM
to essentially treat multi-turn intent understanding as a zero-shot
task. Yu et al. [29] also explored retrieval-based methods for intent
classification and slot filling tasks in few-shot settings. Our work
adopts similar in-context learning (ICL) setup while focusing on
handling large-scale multi-domain intent classification task from
industry level applications.

2.2 In-context Learning
The performance of LLM has been significantly enhanced in few-
shot and zero-shot NLP tasks through ICL. Recent ICL research
focus on how to effectively identify and interpret retrieved con-
text. Guu et al. [7] first showed how to pre-train masked language
models with a knowledge retriever in an unsupervised manner.
Karpukhin et al. [10] proposed a training pipeline in which retrieval
is implemented using dense representations alone and embeddings
are learned from a small number of questions and passages with
a dual-encoder. Ram et al. [18] considered simple alternatives to
only prepend retrieved grounding documents to the input, instead
of modifying the LLM architecture to incorporate external infor-
mation. Similar approaches have proven particularly effective in
the application of RAG on dialogue systems [23, 24], specifically

goal-oriented and domain-specific dialogs from customer service
scenarios [22, 31, 32]. In our work, we utilize ICL in both LLM
fine-tuning stage for data generation and at inference-time with an
intent candidate retriever.

3 Preliminary
Intent classification for queries is typically framed as a multiclass
text classification problem. Specifically, given a customer query
𝑞 ∈ 𝑄 , the goal is to map it to one of the 𝑘 pre-defined intents
𝑡 ∈ 𝑇 = {𝑡1, ..., 𝑡𝑘 } using a model M so that the predicted intent
𝑡 = M(𝑞) maximizes the probability of correctly classifying 𝑞.
Formally, this can be expressed as:

𝑡 = argmax
𝑡 ∈𝑇

𝑃 (𝑡 | 𝑞;𝜃 ) (1)

where 𝑃 (𝑡 | 𝑞;𝜃 ) denotes the probability of intent 𝑡 given query 𝑞,
parameterized by 𝜃 of the modelM.

Flat classification assumes independence among intent labels,
which is often unrealistic in practice. Two key challenges arise
at industry scale: 1) Scalability—a large number of labels makes
flat classification inefficient and hard to maintain; 2) Label corre-
lation—related intents (e.g., “Order Issue” vs. “Track Order”) are
treated independently, ignoring useful hierarchical structure. To ad-
dress this, we adopt hierarchical intent classification, where queries
are classified progressively from general to specific intents. This
improves both efficiency and accuracy.

Note that for a more generalized setting, intents from differ-
ent verticals and domains may have entirely different hierarchy
and ontology. In Figure 1, we demonstrated some examples of in-
tent hierarchy in our application, which involves customer service
query intent detection with two business verticals: Third-Party
or 3P business (customer contacting about third-party physical
retail orders or consumer accounts) and First-Party or 1P busi-
ness (customer contacting about first-party digital or device issues).
If we use the traditional single-head flattened intent labels, the
total intent ontology set size would be at 103 level which create
major challenges for accurate intent classification. By creating hi-
erarchical intent ontology across different business verticals, each
classification head only needs to handle less than 50 intents that are
more manageable for language models. In the following sections
of this paper, we utilize this intent ontology setup for experiments
and comparisons.

4 Method
Adapting Large Language Models (LLMs) to domain-specific intent
detection is challenging due to specialized terminology, organiza-
tional language, and unique customer scenarios. To address these
limitations and enhance the accuracy of customer intent identifi-
cation, we introduce a novel approach REIC for RAG-Enhanced
Intent Classification. REIC consists of three components: index con-
struction, candidate retrieval, and intent probability calculation (as
illustrated in Figure 2).

Index Construction. We first construct a dense vector index con-
taining (query, intent) pairs from a held-out annotated dataset. Each
query is encoded using a pre-trained sentence transformer model
to generate dense vector representations. The corresponding intent
labels are stored alongside these embeddings. The intent labels
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Figure 2: The proposed REICmethodmaps customer queries to routing intents using vector retrieval and probability estimation.

follow a hierarchical structure with 𝑑 dimensions which represents
different intent domain knowledge and might range from different
domains.

Candidate Retrieval. Given a new query 𝑞, we first encode it
using the same encoder for index construction to obtain its dense
vector representation v𝑞 . We then perform approximate nearest
neighbor search to retrieve the top-k most similar (query, intent)
pairs, denoted as set 𝐸. The similarity is computed using cosine
distance between the query vector and indexed vectors:

𝑠𝑖𝑚(𝑞, 𝑞𝑖 ) =
v𝑞 · v𝑖

∥v𝑞 ∥∥v𝑖 ∥
(2)

where v𝑖 represents the vector encoding of the i-th indexed query.

Intent Probability. For the retrieved set 𝐸, we leverage a fine-
tuned LLM M to perform constrained decoding and calculate the
probabilities of the possible intents. Given a prompt template P,
the LLM takes as input the instantiated prompt, which includes the
original query 𝑞 and the retrieved (query, intent) pairs as context.
For each unique intent 𝑡 𝑗 in 𝐸, we compute:

𝑃 (𝑡 𝑗 |𝑞, 𝐸) = M(P, 𝑞, 𝐸)𝑡 𝑗 (3)

where M(P, 𝑞, 𝐸)𝑡 𝑗 represents the model’s predicted probability
for 𝑡 𝑗 given the query and retrieved examples.
The final intent classification is determined by selecting the intent
with the highest probability:

𝑡 = argmax
𝑡 𝑗 ∈𝐸

𝑃 (𝑡 𝑗 |𝑞, 𝐸) (4)

This approach enables dynamic updates to the intent space by
simply adding new (query, intent) pairs to the index, leveraging
the in-context learning capabilities of the LLM without requiring
model retraining.

The probability-based reranking helps mitigate potential LLM
hallucination by grounding predictions in retrieved examples. With
tradition greedy decoding, sometimes the LLM might generate in-
tents outside of the given candidate list and cause downstream rout-
ing failure. We perform constrained decoding to calculate the prob-
ability of each retrieved intent 𝑡 𝑗 in 𝐸, which ensures the success of
downstream routing. Given prompt P with instructions, retrieved
candidates 𝐸, and customer query𝑞, we append 𝑡 𝑗 at the end to calcu-
late the total logits frommodel forward passL𝑡 𝑗 = M(P(𝐸, 𝑞)+𝑡 𝑗 ).

Then we mask out the positions of P(𝐸, 𝑞) and accumulate the log
probabilities for the intent sequence 𝑡 𝑗 with length 𝑠 𝑗 :

M(P, 𝑞, 𝐸)𝑡 𝑗 = exp (
∑︁
𝑡 𝑗

LogSoftmax(L𝑡 𝑗 )/𝑠 𝑗 ) (5)

During training, we train the intent LLM M by minimizing the
cross-entropy loss between the predicted and ground-truth intents.
During inference, instead of traditional auto-regressive next token
decoding, we perform one model forward-pass calculation with a
batch size 𝑘 for top-k intent candidates and get the 𝑘 probabilities
for re-ranking and final intent prediction.

5 Experimental Setup
5.1 Datasets
We applied data anonymization described in Appendix A and the
final dataset contains 52,499 training samples with 35,041 1P Busi-
ness queries and 17,458 3P Business queries. The test set consists
of 3,647 1P Business queries and 1,717 3P Business queries re-
spectively using random sampling. All of the data samples have
incorporated retrieved intent candidates from the retriever. We also
performed dataset cleaning in the training set to make sure the true
intent is contained in the retrieved list. During inference, we use
the actual noisy retrieved list which also relies on the capability of
the embedding model.

5.2 Compared Methods
We consider the following baselines:
• RoBERTa: We fine-tune RoBERTa-base [12] with multiple clas-
sification heads. This adaptation allowed the model to simultane-
ously categorize utterances across multiple dimensions.

• Mistral Classification1: We fine-tune a Mistral-7B-v0.32 with
a sequence classification head. Instead of directly generating
output sequences, the model projects the pooled embedding into
a space with the same dimension as the number of classes.

• Claude Zero-shot: We employ the Claude 3.5 Sonnet model in
a zero-shot configuration. To facilitate accurate intent prediction,
we craft a comprehensive prompt that explicitly defines each
potential intent.

1Due to legal concerns, we are not permitted to use non-commercial LLMs like Llama.
2https://huggingface.co/mistralai/Mistral-7B-v0.3
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Table 1: Intent detection confusion matrix on different business with different methods

Models 3P Business vertical 1P Business vertical Overall
Precision Recall F1 Precision Recall F1 Precision Recall F1

RoBERTa 0.527 0.447 0.483 0.583 0.488 0.531 0.565 0.474 0.516
Mistral Classification 0.215 0.228 0.221 0.301 0.250 0.273 0.269 0.243 0.255
Claude Zero-shot 0.338 0.250 0.287 0.238 0.170 0.199 0.271 0.196 0.227
Claude Few-shot 0.386 0.289 0.331 0.350 0.308 0.328 0.361 0.302 0.329
Claude + RAG 0.473 0.438 0.455 0.415 0.389 0.402 0.434 0.404 0.419

REIC 0.538 0.546 0.542 0.600 0.574 0.587 0.579 0.565 0.572

• Claude Few-shot: Similar to Claude Zero-shot, we incorpo-
rate 20 demonstration examples, with 10 from each vertical, to
enhance coverage of diverse intents across different domains.

• Claude+RAG: Instead of using a fine-tuned LLM, we employ
Claude 3.5 Sonnet as the backbone and incorporate the same set
of retrieved candidates as described in Section 4 into the prompt.
This comparison allows us to assess whether a smaller fine-tuned
LLM can perform competitively against a large foundation model
for this task.

5.3 Implementation Details
The LLM component of our REIC approach utilizes a fine-tuned
model from Mistral-7B-Instruct-v0.23. The retrieval index is im-
plemented using FAISS [5] for efficient similarity search in high-
dimensional space. We experimented with four different retrievers:
BM25 [19], MPNet [25], Contriever-MS MACRO [9] and ColBERT-
v2 [20]. More implementation details are described in Appendix
D.

6 Results
6.1 Intent Detection Ability
To assess REIC’s effectiveness in intent detection, we compared it
against baseline methods (see §5.2), with results shown in Table 1.
The experiments, covering the 3P Business and 1P Business verticals,
evaluated Precision, Recall, and F1-score.

The results indicate that REIC outperforms standard fine-tuning
and prompting-basedmethods.While fine-tunedmodels like RoBERTa
perform reasonably well, they require extensive retraining when
new intents emerge.We hypothesize that the limited performance of
the Mistral Classification model stems from its nature as a decoder-
only architecture, which may be less effective in extracting the
semantic meaning of input query. Prompting-based approaches
(Claude Zero-shot and Few-shot) generally underperformed, with
Claude Few-shot achieving a maximum F1-score of 0.329 overall.
The Claude + RAG method improved performance compared to
standalone prompting but remained inferior to our approach by
26.7%.

These observations confirm that the integration of RAG and
fine-tuned LLM enables greater flexibility, improved precision, and
higher recall rates, making it well-suited for handling diverse and
evolving intent spaces in different applications. We further evaluate

3https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2

the impact of different retrievers and the size of retrieval candidates
in Appendix B and Appendix C.

6.2 Robustness on Unseen Intents
To evaluate REIC’s robustness on unseen intents, we trained our
models exclusively on the 3P Business vertical and tested them
on the 1P Business vertical, simulating a real-world out-of-domain
scenario. As illustrated in Figure 1, 1P Business vertical has 4 intent
category with more than 800 unique intent combinations, while the
training data used from 3P Business vertical has 3 intent category
with only around 70 unique intents. This out-of-domain scenario
helps assess how well REIC generalizes to new, previously unseen
intents. The results are summarized in Table 2.

As seen in the table, Claude Zero-shot performs poorly with 0.17
accuracy, while Claude Few-shot improves to 0.308. RAG-based
methods, particularly Claude + RAG, outperform Claude Few-shot
with 0.389 accuracy, demonstrating the advantage of dynamic re-
trieval. REIC, though slightly lower than Claude + RAG, still out-
performs Claude Few-shot, underscoring its strong performance on
both in-domain and out-of-domain intents. Overall, REIC proves
robust and adaptable to unseen domains.

Table 2: Out-of-domain intent detection accuracy

Models 3P Business 1P Business Overall

Claude Zero-shot 0.250 0.170 0.196
Claude Few-shot 0.289 0.308 0.302
Claude + RAG 0.438 0.389 0.404

REIC 0.538 0.283 0.364

7 Conclusion
This paper presents a novel RAG-Enhanced Intent Classification
(REIC) method that addresses scalability challenges and the hetero-
geneity of intent taxonomies in large-scale customer service sys-
tems. By incorporating a hierarchical intent classification strategy,
REIC significantly reduces computational complexity. Leveraging
the RAG technique, ourmethod dynamically integrates contextually
relevant retrieved examples, outperforming traditional fine-tuning,
as well as zero-shot and few-shot approaches, in intent detection
tasks. Additionally, our results demonstrate strong performance
on both in-domain and out-of-domain test sets, highlighting its
applicability for industry-scale applications.
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Appendix
A Data Anonymization
Due to business considerations, we are not permitted to share the results using the original customer data. As a result, we manually
anonymized both the labels and transcripts to ensure no personal information is included. Additionally, specific product and service names
were denonymized to prevent the identification of the company from the transcript or label descriptions. Despite these modifications, the
conclusions drawn from our experiments remain valid.

B Impact of Retrievers
In order to evaluate the impact of retrievers on the final performance, we experimented four different retrievers in REIC including one sparse
retrieval method and three dense retrievers, details in Appendix D. The intent detection accuracy across different business verticals using
these retrievers is presented in Table 3.

BM25, despite being an unsupervised sparse retrieval method, performs competitively, achieving an overall accuracy of 0.532. Among the
dense retrievers, MPNet outperforms the others, attaining the highest accuracy across both the 3P Business and 1P Business verticals. This
suggests that MPNet’s contrastive learning-based sentence embeddings are highly effective for retrieving relevant candidates that aid intent
classification. In contrast, Contriever exhibits the lowest accuracy across all categories.

Our findings show that retriever selection significantly impacts intent classification. Although BM25 is a strong baseline, dense retrievers
like MPNet consistently outperform it. This highlights the value of high-quality embeddings and extensive fine-tuning on large datasets,
which is why we have chosen MPNet as our final retriever in REIC. We also conducted experiments to study the impact of retrieval candidate
size in Appendix C.

Table 3: Intent detection accuracy on different business verticals using different retrievers in REIC

Retriever 3P Business 1P Business Overall

BM25 0.521 0.537 0.532
Contriever 0.450 0.461 0.457
ColBERTv2 0.503 0.560 0.542
MPNet 0.545 0.573 0.564

C Impact of Retrieval Candidate Size
We investigated the impact of different retrieval candidate numbers (top-k) in REIC to balance intent detection accuracy and inference
latency. The Figure 3 illustrates the trade-off between these two factors, with overall accuracy plotted on the left y-axis (blue) and inference
latency on the right y-axis (red) against different values of top-k. From the accuracy perspective, increasing top-k allows the model to access
a broader range of relevant information, leading to better predictions. Beyond a certain threshold, additional retrieved candidates contribute
minimally to accuracy while still increasing computational complexity. Latency, on the other hand, exhibits a sharp rise as top-k increases.
This indicates a crucial trade-off: although retrieving more candidates can improve accuracy, it also leads to longer inference times, which
may not be suitable for real-time applications.

In our experiments, we select top-k = 10 which ensures a meaningful accuracy boost without incurring excessive computational costs.
However, the ideal top-k may vary depending on application requirements. For instance, real-time systems such as customer service chatbots
or voice assistants may favor a lower top-k to maintain fast response times. Conversely, offline or batch-processing applications could
accommodate higher top-k values if maximizing accuracy is a priority. Our findings emphasize the need to carefully tune retrieval parameters
in REIC to meet specific operational demands.

D Implementation Details
To fine-tune our REIC LLM, we apply 8 NVIDIA-A100 40GB GPUs with 96 vCPUs to conduct PEFT [13] training with LoRA adapters [8]. We
choose a set of LoRA parameters with a rank of 8, an alpha value of 16, and a dropout rate of 0.1. The training batch size is set to 8 per GPU
with a learning rate of 2𝑒−5. We train the model using Cross Entropy Loss for 3 epochs which takes around 3 hours on the instance.

We experimented with the following off-the-shell retrievers for candidate retrieval:
• BM25 [19] is a widely used traditional sparse retrieval method. Although it is unsupervised, it consistently demonstrates strong
performance across a variety of benchmarks[26].

• MPNet4 [25] is a sentence embedding model fine-tuned on one billion sentence pairs using a contrastive learning objective.

4https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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Figure 3: The accuracy and latency when using different retrieval top-k values.

• Contriever-MS MACRO [9] is an unsupervised dense retriever pre-trained with contrastive learning and fine-tuned on MS
MARCO [15].

• ColBERT-v2 [20] is a late-interaction retriever that combines denoised supervision and residual compression to improve retrieval
quality and reduce space footprint.
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