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Abstract
Large language models (LLMs) have demon-
strated remarkable performance across a wide
range of tasks in recent years. While prior work
has explored leveraging LLMs to generate syn-
thetic data for self-improvement, repeated itera-
tions often suffer from diminishing returns due to
the reliance on homogeneous reasoning patterns
and limited exploration of alternative perspectives.
In this paper, we introduce a novel framework that
enriches the reasoning process by encouraging
critical thinking among multiple agents. Rather
than deploying an ensemble of models with iden-
tical prompts, we propose a strategy generator
that produces customized instructions tailored to
each individual LLM. Acting as a critical thinking
agent, the generator is iteratively fine-tuned using
carefully selected strategies that are both diverse
and effective. This approach fosters specializa-
tion within each model while promoting diversity
across reasoning paths, enabling the system to
maintain varied solution trajectories and achieve
sustained performance gains through iterative re-
finement. We demonstrate the effectiveness of our
method across a variety of agentic frameworks
and complex reasoning tasks.

1. Introduction
In recent years, Large Language Models (LLMs) have ex-
perienced unprecedented advancements in domains such
as language generation, comprehension, question answer-
ing, and translation (Touvron et al., 2023; Chowdhery et al.,
2023; Achiam et al., 2023; OpenAI, 2024). These advance-
ments are largely due to research efforts focused on the
reasoning process (Wei et al., 2022; Wang et al., 2022; Yao
et al., 2023; Besta et al., 2024; Gao et al., 2024). While logi-
cal chains have been significantly enhanced, LLMs continue
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to produce incorrect statements that conflict with their origi-
nal claims. To address this issue, research on self-reflection
has been proposed to improve consistency by evaluating
and refining initial responses (Madaan et al., 2023; Kim
et al., 2023; Shinn et al., 2023). However, the improvements
become marginal with deeper self-reflection and multiple
rounds of fine-tuning (Subramaniam et al., 2025). Addition-
ally, constrained by homogeneous reasoning, these methods
struggle to effectively correct mistakes. Without an exter-
nal strategy as guidance, self-reflection ultimately leads to
diminished performance (Huang et al., 2023).

One effective approach to addressing homogeneous reason-
ing is to encourage fine-tuning across multiple models using
subsets of the dataset, promoting both specialization and
diversification in responses. To ensure the quality of data
for fine-tuning, a multi-agent debate (MAD) mechanism is
employed to generate robust pseudo-labels (Du et al., 2023).
An alternative way to conceptualize this issue is through the
lens of a “mental set”—a cognitive bias that hinders the abil-
ity to explore diverse approaches, particularly when faced
with novel or more complex tasks (Öllinger et al., 2008).
Building on this observation, researchers have proposed
the Diverse Multi-Agent Debate framework, which guides
LLMs using predefined and varied reasoning strategies (Liu
et al., 2015). As a result, the use of unique prompting
strategies fosters divergent thinking and improves problem-
solving capabilities.

Despite the success of prior approaches, we argue that pre-
defined strategies are not always accessible and may fail to
cover optimal solution paths. Moreover, customizing fine-
tuning for each individual LLM agent incurs substantial
computational overhead. To address these challenges, we
propose to foster critical thinking through a novel strategy
generator within a multi-agent debate framework—Critical
Thinking with Multi-Agent Debate (CMAD). The core
innovation of the proposed method lies in treating problem-
solving strategies as entirely undefined and fully optimiz-
able. This unconstrained formulation enables broad explo-
ration of the solution space, allowing the model to discover
novel and potentially more effective strategies. However,
the absence of structure introduces a high risk of failure

1



Unfixing the Mental Set: Granting Early-Stage Reasoning Freedom in LLMs

MATH(GPT-4o-mini)

GSM8K(GPT-4o-mini)

GPQA(GPT-4o-mini)

MATH(Nova Micro)

GSM8K(Nova Micro)

GPQA(Nova Micro)

MATH(LLaMA-3-7B)

GSM8K(LLaMA-3-7B)

GPQA(LLaMA-3-7B)

MATH(Qwen2.5-7B)

GSM8K(Qwen2.5-7B)

GPQA(Qwen2.5-7B)
Single Strategy (CoT)
Pre-Defined Strategies
Undefined Strategies

67.5

75.0

82.5

90.0

88.8

92.5

96.2

100.0

38.8

42.5

46.2

50.0

68.8 72.5 76.2 80.0

91.5

93.0

94.5

96.0

38.8

42.5

46.2

50.0

23.8

27.5

31.2

35.0

73.8

77.5

81.2

85.0

23.8

27.5

31.2

35.0

68.872.576.280.0

88.8

92.5

96.2

100.0

33.8

37.5

41.2

45.0

Figure 1. Undefined and optimizable strategies enhance problem-
solving performance compared to both fixed single-strategy (Wei
et al., 2022) and predefined-strategy baselines. Predefined strate-
gies are instantiated from classic reasoning approaches including
Chain-of-Thought Prompting, Step-Back Prompting, and Program-
of-Thoughts Prompting, following prior paradigms.(Liu et al.,
2015)

due to the stochastic nature of exploration. To mitigate this,
we optimize the strategy space to converge toward a sweet
point between exploration—encouraging diversity and cre-
ativity—and exploitation—ensuring solution quality and
reliability.

More specifically, given a question, the strategy generator is
encouraged to produce diverse yet undefined strategies for
solving the problem. Each distinct strategy is assigned to an
independent agent, which then generates a solution condi-
tioned on its assigned strategy. These agents subsequently
engage in critique and evaluation of each other’s solutions
following established debate frameworks (Du et al., 2023;
Liu et al., 2015). While the initial strategies produced by the
generator may be sub-optimal, we aim to iteratively improve
its capability through a feedback loop grounded in two key
perspectives: the correctness of final answers and the
diversity of reasoning pathways. To assess correctness,
we construct pseudo-labels by aggregating consensus out-
comes from the multi-agent debate and multi-strategy eval-
uations. To measure diversity, we quantify the uniformity
of the generated strategies. These two metrics are then used
to guide sample selection, which in turn is used to fine-tune
the strategy generator. This feedback mechanism fosters the
emergence of novel, specialized reasoning strategies and
drives continuous improvement in LLM performance.

We quantitatively validate the effectiveness of the approach
across a diverse set of reasoning tasks and LLMs, demon-
strating consistent performance gains. The framework is
model-agnostic and integrates seamlessly with both open-

source LLMs—such as Qwen2.5 and LLaMA-3—and pro-
prietary systems like GPT-4o-mini and Nova Micro,
yielding marked improvements in solution quality. As
shown in Figure 1, leveraging undefined and dynamically
optimizable strategies within the critical thinking framework
leads to significantly enhanced problem-solving capabili-
ties, outperforming both fixed single-strategy baselines and
predefined strategy paradigms. Furthermore, performance
improves steadily with additional rounds of fine-tuning,
demonstrating the scalability and robustness of the proposed
framework. Our main contributions are summarized as fol-
lows:

• We propose a novel framework that encourages critical
thinking in LLM agents by enabling them to generate
diverse and undefined reasoning strategies, guided by
a strategy generator.

• We introduce a comprehensive feedback loop that eval-
uates both the correctness and diversity of agent re-
sponses, providing reliable, dynamic, and specialized
guidance to LLMs with minimal computational over-
head.

• We empirically demonstrate that our fine-tuning
paradigm for the strategy generator effectively encour-
ages critical thinking and generalizes robustly across a
wide range of datasets and popular LLMs.

2. Related Work
Multi-Agent LLM Reasoning: Multi-agent LLM rea-
soning enhances performance by enabling interaction and
collaboration among multiple language model agents (Liang
et al., 2023; Wang et al., 2023a; Khan et al., 2024; Chan
et al., 2023). To facilitate more effective communication
and coordination, prior work has explored role assignment
strategies to specialize agent behaviors (Liang et al., 2023;
Wang et al., 2023b; Chan et al., 2023). Another line of
research encourages agents to challenge each other through
iterative rounds of debate, promoting deeper reasoning and
error correction (Du et al., 2023; Khan et al., 2024). While
most debate-based frameworks treat agents as equally im-
portant participants, recent efforts have investigated expert-
guided collaboration via meta-programming, inter-agent
consistency, latent embeddings, and pre-defined reasoning
paths (Hong et al., 2023; Xiong et al., 2023; Pham et al.,
2023). However, existing approaches often overlook the
heterogeneity of reasoning tasks, resulting in suboptimal
performance of LLM solvers. Rather than adhering to a
pre-defined problem-solving paradigm, we advocate for
a dynamic critical thinking process that adapts strategies
based on task demands.
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Fine-tuning for Self-improvement: Fine-tuning has been
widely adopted to improve the performance of LLMs
(Welleck et al., 2022; Hsieh et al., 2023; Huang et al., 2022;
Subramaniam et al., 2025; Zhang et al., 2024b). Consid-
erable fine-tuning methods aim to optimize models using
prior data to encourage strategy generation through self-
iterated learning (Pang et al., 2024; Anthony et al., 2017;
Polu et al., 2022; Parthasarathy et al., 2024). In addition, re-
inforcement learning has emerged as a popular self-training
technique, often demonstrating better generalization (Chen
et al., 2024a;a;b). Notably, most of these approaches rely
on ground-truth data. In contrast, we diverge from these
paths by employing unsupervised multi-agent interaction to
achieve more consistent performance gains, following re-
cent research (Subramaniam et al., 2025). More importantly,
we emphasize the role of diversity in the sample selection
process—an aspect that is frequently overlooked in prior
work.

Critical Thinking for LLMs: Critical thinking is a power-
ful capability for promoting error correction and uncovering
inconsistencies. It has been employed to detect noncom-
pliance in statements (Kamath et al., 2020; Brahman et al.,
2024), identify knowledge conflicts and misinformation,
and reveal inconsistencies in problem framing (Xie et al.,
2023; Zhou et al., 2023; Xu et al., 2023; Chen & Shu, 2024).
These studies have significantly advanced LLMs’ ability
to recognize limitations, resolve contradictions, resist bias,
and manage uncertainty. More recently, critical thinking has
been adopted to enhance the reasoning capabilities of LLMs.
This includes incorporating diverse reasoning paths, lever-
aging self-correction mechanisms (Tyen et al., 2023; Huang
et al., 2023), quantifying reasoning quality through step-
by-step scoring (Golovneva et al., 2022), and evaluating
performance on specialized reasoning benchmarks (Zeng
et al., 2024). Our work deviates from prior efforts by apply-
ing critical thinking to explore and enrich solution batches
without pre-defined constraints on the reasoning process.
This design enhances LLMs’ ability to tackle more complex
problems and improves the robustness of their outputs.

3. Method
While sticking to a single approach or a narrow set of strate-
gies may lead to sub-optimal or dead ends, switching to un-
explored methods can sometimes resolve challenging tasks
more effectively. In this section, we present the framework
for enabling diversified and critical thinking without relying
on pre-defined strategies. We begin with an overview of
the proposed approach in Section 3.1, illustrating how strat-
egy generation guides the multi-agent system to complete
a task. Section 3.2 then details the pipeline for extract-
ing high-quality strategies from multi-agent interactions for
fine-tuning.

3.1. Overall Framework

We present the overall workflow in Figure 2. Given a task
x sampled from questions set Pq expressed in natural lan-
guage, a strategy generator G(x) takes x as input and pro-
poses a set of high-level strategies that could potentially
solve the task. We define this strategy generation process
as:

S1, S2, . . . , SM = G(x), x ∼ Pq (1)

Based on this, we denote the generated strategy set as S =
{Si | i = 1, 2, . . . ,M} . Correspondingly, we initialize M
LLM agents, denoted as A = {Ai | i = 1, 2, . . . ,M} . In
the first round of debate, each agentAi is assigned a strategy
Si and tasked with generating a reasoning trajectory and
a final answer, denoted as y1,i, where the first subscript
the subscript corresponds to the agent index and second
indicates the debate round. Formally, the generation process
in the first round is defined as:

yi,1 = Ai(x;Si), i = 1, 2, . . . ,M. (2)

In subsequent rounds, the responses and reasoning traces
from the first round,i.e., y1,1, y2,1, . . . , yM,1, are aggregated
into a shared historical context h1, following the paradigm
established in (Du et al., 2023). This shared history is then
made available to all agentsAi. Conditioned on this history,
the agents generate their second-round responses. This
process is repeated iteratively in the following rounds. We
define the general formulation as:

yi,n = Ai(x;hn−1), i = 1, 2, . . . ,M, n = 2, 3, . . . , N.
(3)

3.2. Finetuning Strategy Generator with Selected
Samples

To empower the strategy generator with critical thinking,
we first carefully choose samples that actively guide the
generator to solve the given problem x in correct and di-
verse ways. Correspondingly, we need metrics to quantify
the correctness and diversity without knowledge of ground
truth.

For correctness evaluation, we select the majority vote from
the final round of debate across M agents and N rounds
as the pseudo label ŷ. We then construct the dataset Dc,
consisting of samples whose solutions are aligned with ŷ,
formally defined as:

Dc ← {ym,N | ym,N = ŷ,m ∈ {1, 2, . . . ,M}} (4)

While these pseudo labels are reliable with solution sharing
among agents, the debate process inevitably leads to conver-
gence toward similar reasoning trajectories. As a result, the
final-round responses yi,N tend to follow closely aligned
solution paths, producing increasingly similar outputs. This
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Figure 2. Overall Framework of Critical Thinking for Multi-Agent Debate. We first use strategy generation to guide each agent toward
proposing diverse solutions. A majority vote is applied over the final-round answers to construct pseudo labels for fine-tuning (left). These
pseudo labels help identify correct answers and effective strategies. Next, we evaluate the diversity of the generated solutions to further
refine the pre-training data, improving the fine-tuning of the strategy generator and encouraging more diversified and reliable outputs
(right). This figure illustrates a single fine-tuning iteration; applying multiple iterations can lead to further performance improvements.

convergence effect ultimately leads to diminishing returns
in problem-solving performance as the number of agents
and debate rounds increases.

To further encourage diverse critical thinking, we introduce
a diversity metric that evaluates pairwise similarity among
generated solutions. The metric is designed to satisfy three
key properties: (1) asymptotic correctness—converging to
a uniform distribution to ensure maximum diversity, (2)
empirically effective with finite samples, and (3) the ability
to capture non-linear semantic relationships. To this end,
we adopt the Gaussian potential kernel (RBF kernel) (Cohn
& Kumar, 2007; Borodachov et al., 2019), defined as:

Gt(u, v) = e−t∥u−v∥2

= e−t(∥u∥2+∥v∥2−2u⊤v),

t > 0,
(5)

where u, v ∈ Rd are points in a d-dimensional Euclidean
space, and t is a temperature parameter. Based on this,
we define the diversity metric D as the logarithm of the
expected pairwise Gaussian potential:

D(f ; t) = logEx,y∼Ps [Gt(f(x), f(y))]

= logEx,y∼Ps

[
e−t∥f(x)−f(y)∥2

]
,

t > 0,

(6)

where x and y represent independent and identically dis-
tributed samples from Dc, and f represents an embedding
model.

Given the diversity metric, we proceed to select a subset of
correct solutions. We start by including the first solution
from our correct set Dc, then systematically add solutions
that are sufficiently different from those already selected.
Specifically, for each candidate solution, we compute its
pairwise similarity with all previously selected solutions
and only include it if the maximum similarity is below a
predefined threshold τ . This ensures each new addition con-
tributes novel reasoning approaches. Formally, we construct
our filtered dataset as:

Ddiv =

{y1} ∪ {yi ∈ Dc \ {y1} | max
yj∈Ddiv

|Gt(f(yi), f(yj))| > τ}

(7)

where τ is the similarity threshold that controls the diversity
level of selected samples. A larger τ enforces greater diver-
sity but potentially reduces the number of available training
examples. This selection approach ensures that our strategy
generator learns from a set of solutions that are not only
correct but also represent diverse approaches to the same
problem, thereby enhancing its critical thinking capabilities
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across various reasoning paths.

Finally, we introduce an optional strategy refinement stage
for alignment between the concrete solution from the last
round of debate yi,N and initial strategy Si. Specifically,
we introduce another strategy alignment agent Aalign, with
prompt Pref to identify and calibrate the logic of strategy
Si with the pseudo ground truth solutions yi,N . The details
of the prompt can be found in the Appendix. Formally, we
define the process as:

Ŝi = Aalign(Si, Pref; ŷi), i = 1, 2, . . . ,M. (8)

Thereby, we are able to construct a high-quality dataset. For
each question x, we apply Df (x, Ŝi) for the fine-tuning task
of the strategy generator. We illustrate the comprehensive
summary of the procedures in Algorithm 1.

Algorithm 1 Critical Thinking Algorithm
Require: A set of input questions Pq = {xt}; The strat-

egy generator G(x); M model instances {Ai|i =
1, 2, ...,M}; The number of debate rounds N ; The num-
ber of finetuning iterations L; The diversity threshold
τ

1: Initialize dataset Df for finetuning
2: for l = 1 to L do
3: for each x in Pq do
4: for j = 0 to N do
5: S1, . . . , SM ← G(x) {Generate Strategies (Eq.

1)}
6: if j = 0 then
7: y1,1, . . . , yM,1 ←

A1(x;S1), . . . ,AM (x;SM ) {Generate
Solutions (Eq. 2)}

8: else
9: hj−1 ← Summarize the responses from

agents in round j − 1
10: y1,j , . . . , yM,j ←

A1(x;hj−1), . . . ,AM (x;hj−1) {Refine
Solutions (Eq. 3)}

11: end if
12: end for
13: ŷ ←Majority Vote of {y1,N , · · · , yM,N}
14: Dc ← Select samples aligned with ŷ {Correctness

Selection (Eq. 4)}
15: Ddiv ← Select samples for diversity {Diversity

Selection (Eq. 7)}
16: Ŝ1, · · · , ŜM ←

Aalign(S1, Pref ), · · · ,Aalign(SM , Pref ) {Re-
fine Strategies (Eq. 8)}

17: end for
18: Df = Df ∪ {(x, Ŝ1), · · · , (x, ŜM )}
19: G← finetune (G,Df )
20: end for=0

4. Experiments
We evaluate the proposed method on three widely used
benchmarks, as detailed in Section 4.1, and compare its
performance against six recent strong baselines described
in Section 4.2, as well as four representative large lan-
guage models. The evaluated LLMs include two closed-
source models—GPT-4o-mini by OpenAI (Achiam et al.,
2023) and Amazon Nova Micro (Intelligence, 2024)—and
two publicly available models—LLaMA-3-8B-Instruct
(Grattafiori et al., 2024) and Qwen2.5-7B-Instruct (Yang
et al., 2024).

4.1. Benchmarks

MATH is a widely used benchmark comprising problems
from high school mathematics competitions, spanning seven
distinct subjects (Hendrycks et al., 2021). Accuracy is mea-
sured by comparing model predictions against ground truth
answers, and correctness is determined through exact match.

GSM8K is a benchmark dataset comprising math word
problems that require multi-step reasoning to solve (Cobbe
et al., 2021). Each example consists of a problem statement,
a corresponding numerical answer, and a step-by-step expla-
nation. The problems primarily focus on basic arithmetic
and introductory algebra.

GPQA is a challenging dataset consisting of 448 multiple-
choice questions meticulously crafted by domain experts in
biology, physics, and chemistry (Rein et al., 2024).

4.2. Baselines

We compare our proposed method against several state-of-
the-art baselines. For our method, we employ three agents
(M = 3), and for all debate-based approaches, we conduct
two rounds of debate (N = 2). The baselines are as follows:

Chain-of-Thought Prompting (CoT) (Wei et al., 2022)
This approach enables large language models to decom-
pose complex problems by generating intermediate reason-
ing steps that lead to the final answer, thereby enhancing
problem-solving capabilities through explicit step-by-step
reasoning.

Step-Back Prompting (Zheng et al., 2023) This method
improves reasoning by first prompting the model to abstract
the problem to higher-level concepts and principles, then
applying these abstractions to solve the original problem, ef-
fectively separating conceptual understanding from solution
execution.

Multi-Agent Debate (Du et al., 2023) This framework fa-
cilitates multi-agent interaction where agents iteratively cri-
tique and refine solutions through structured debates, lever-
aging diverse perspectives to converge toward more robust
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Method
GPT-4o-mini Nova Micro

MATH GSM8K GPQA MATH GSM8K GPQA

CoT 67.32 91.55 39.20 67.20 91.23 39.31
Step-Back Prompting 65.60 90.31 32.80 66.58 90.00 32.44
Multi-Agent Debate 70.57 92.91 40.36 70.34 92.44 41.23
Self-Reflection 67.75 90.25 39.28 66.74 91.25 38.62
Self-Contrast 62.43 90.13 37.93 63.76 90.18 36.57
DMAD 71.54 93.27 42.11 71.02 92.45 42.94

CMAD (Ours) 74.52 94.42 44.29 73.87 94.12 45.15

Method
LLaMA-3-8B Qwen2.5-7B

MATH GSM8K GPQA MATH GSM8K GPQA

CoT 25.43 76.10 27.84 70.43 90.27 35.18
Step-Back Prompting 24.87 75.31 24.43 69.52 88.29 33.52
Multi-Agent Debate 30.82 78.56 28.96 75.52 92.03 37.15
Self-Reflection 26.32 77.48 26.92 69.85 89.31 34.72
Self-Contrast 27.31 76.17 23.65 68.52 88.94 34.61
DMAD 31.24 78.42 30.37 76.80 92.46 37.86

CMAD (Ours) 33.30 82.26 31.87 78.26 93.86 39.40

Table 1. Quantitative comparison of the proposed method against six baseline approaches and four mainstream large language models.
Best-performing scores are highlighted in gray.

answers.

Self-Reflection (Madaan et al., 2023) This technique en-
ables models to evaluate and refine their initial outputs by
critically analyzing their own reasoning, identifying poten-
tial errors or limitations, and generating improved solutions
based on this introspection.

Self-Contrast (Zhang et al., 2024a)The proposed method
generates diverse reasoning paths, identifies their discrepan-
cies, and distills these differences into a structured checklist.
The model then reflects on this checklist to iteratively revise
each reasoning path, aiming to reach a coherent consensus.

DMAD (Liu et al., 2015) This method applies a set of pre-
defined reasoning strategies to generate diverse solution
paths, encouraging exploration of multiple problem-solving
approaches to enhance solution quality and robustness.

4.3. Quantitative Results

We report the performance of the proposed method com-
pared to six baseline approaches and four mainstream large
language models. Notably, the strategy generator is fine-
tuned for only a single iteration, i.e., L = 1. Results with
additional refinement rounds are presented in Section 5.3.

As shown in Table 4.1, the proposed method consistently
outperforms all baselines. The average improvement over
the second-best method ranges from 1.2% to 9.8%. These
results demonstrate that the proposed approach effectively
generates feasible strategies to guide LLMs in solving com-
plex questions.

5. Discussions and Visualizations
In this section, we present additional analyses and visual-
izations of results on GPT-4o-mini and LLaMA-3-8B.
Specifically, we investigate the following questions: (1)
What is the contribution of each component within the pro-
posed framework? (2) How does the method perform with
additional rounds of fine-tuning? (3) How does the diversity
of solutions evolve across different stages of fine-tuning?
(4) How does the threshold for diversity affect the overall
performance of the framework?

5.1. Ablation Studies

We are interested in the variants of CMAD in the following
settings:

CMAD with Pre-defined Strategy: We adopt three pre-
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Method
GPT-4o-mini LLaMA-3-8B

MATH GSM8K GPQA MATH GSM8K GPQA

CMAD with Pre-defined Strategies 70.62 92.89 42.07 32.11 78.20 29.23
CMAD w/o Sample Selection 70.23 91.39 40.34 30.62 77.62 28.63
CMAD w/o Diversity Selection 71.03 91.54 41.74 30.77 78.04 30.04
CMAD w/o Correctness Selection 71.83 92.82 41.21 31.16 78.28 29.35
CMAD w/o Strategy Refinement 74.22 93.85 43.27 33.02 81.88 31.43

CMAD (Ours) 74.52 94.42 44.29 33.30 82.26 31.87

Table 2. Ablation Results: We analyze the contributions of individual components of the proposed method to overall performance.

defined reasoning strategies suggested by prior work (Liu
et al., 2015) to generate fixed strategies for the guidance of
solution generation.

CMAD w/o Sample Selection: All generated strategies
are used for fine-tuning, regardless of their correctness or
diversity.

CMAD w/o Correctness Selection: Only diverse strategies
are used for fine-tuning, without explicitly matching them
to pseudo labels.

CMAD w/o Diversity Selection: Strategies aligned with
pseudo labels are used for fine-tuning, without explicitly
enforcing diversity constraints.

CMAD w/o Strategy Refinement: Strategies aligned with
pseudo-label diversity are used directly for fine-tuning, with-
out any iterative refinement or revision.

The results are summarized in Table 4.3. We observe that
fixed strategies guided by pre-defined templates yield sim-
ilar results to previous research (Liu et al., 2015). Our
experiments demonstrate that sample selection significantly
improves the overall performance of the framework, sug-
gesting that high-quality examples are critical for effective
fine-tuning. Specifically, correctness-based selection pro-
duces gains by aligning the strategy generator with correct
solutions. Although the improvement is modest, incorpo-
rating diversity further enhances performance. Moreover,
strategy refinement contributes additional improvement by
calibrating the initial strategies based on insights derived
from alternative solutions.

5.2. Performance with Multiple Iterations of Finetuning

To verify the effectiveness of multiple iterations of fine-
tuning, we report the performance of CMAD over five
iterations in Figure 3. CMAD consistently improves
the final results as the training iterations increase, with
GPT-4o-mini varying from 74.52% to 76.80% and
LLaMA-3 from 33.30% to 37.04%. This improvement

stems from the diverse samples selected purposefully.

In contrast, fine-tuning examples without considering di-
versity saturates after one iteration of fine-tuning and even
begins to produce worse results. This observation is at-
tributed to overfitting similar solutions, ultimately leading
to the collapse of the training process. Additionally, we
visualize the results with pre-defined strategy without fine-
tuning as one of the baselines for comparison. We observe
that overfitting with correct but less diverse samples could
lead to worse results than pre-defined strategies, thereby
further proving the importance of data quality and selection
process.

5.3. Diversity with Multiple Iterations of Finetuning

While we encourage the strategy generator G to explore
diverse strategies through simple prompt-level instructions,
a single agent tends to converge toward generating simi-
lar—albeit correct—solutions after multiple rounds of fine-
tuning. To better understand this behavior, we visualize
the diversity of generated strategies, quantified by the uni-
formity metric defined in Equation 7. For more intuitive
interpretation, we present the magnitude of uniformity in
Figure 4. We observe that CMAD maintains diversity within
a relatively stable range, in contrast to variants without
diversity-based sample selection. For comparison, we also
visualize the diversity of human-defined strategies, which
serve as an idealized baseline for diversity. Since no fine-
tuning is applied in these predefined settings, their diversity
remains constant throughout.

5.4. Threshold of Diversity

Based on prior experiments, insufficient diversity leads to
overfitting on semantically similar yet correct samples, as
shown in Figure 3. However, setting the diversity threshold
τ too high reduces the pool of eligible training samples,
thereby constraining the capacity of the fine-tuned strategy
generator. To better understand this trade-off, we analyze
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Figure 3. Critical thinking enhances the performance of LLMs on MATH datasets. While fine-tuning with carefully selected samples can
improve reasoning capabilities, insufficient diversity in training examples ultimately degrades training effectiveness (dashed red lines),
resulting in performance worse than debate methods with predefined strategies (dashed gray lines).
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Figure 4. Left: Diversity under the critical thinking framework on the MATH dataset, measured via the uniformity magnitude (Equation 7).
Diversity decline is mitigated with diversity-based sampling (solid red), while human-defined strategies remain stable due to the absence
of fine-tuning (dashed gray). Right: CMAD accuracy across diversity thresholds τ using MATH, with optimal results near τ = 1.2.

the effect of varying τ , as illustrated in Figure 4. When τ
is low, model performance aligns with the baseline lacking
diversity-based selection. As τ increases, CMAD perfor-
mance improves, peaking at an optimal threshold before
degrading due to insufficient training data. Notably, the
effective range of τ increases with more capable LLMs,
which naturally generate higher-quality and more diverse
strategies.

6. Limitations and Conclusion
Limitations. Compared to prior work that primarily
relies on prompt engineering, the proposed method in-
evitably incurs additional computational overhead due to
the requirement for fine-tuning. Depending on the train-
ing approach—e.g., full supervised fine-tuning (SFT) or
parameter-efficient methods like LoRA—the GPU mem-
ory requirement ranges from 8GB to 120GB. Additionally,
achieving optimal results may require manual tuning of the
diversity selection threshold, as the generative capacity and
inherent diversity of strategies vary across different base

LLMs.

Conclusion. In this paper, we introduced Critical Think-
ing with Multi-Agent Debate (CMAD), a novel framework
that stimulates the latent creativity of LLMs by encourag-
ing the generation of diverse and undefined solutions. By
employing a strategy generator, the proposed method au-
tomatically equips multiple agents with distinct roles and
reasoning pathways to collaboratively address and solve
complex problems. We further introduce a feedback mecha-
nism grounded in Correctness and Diversity to en-
sure the selection of high-quality solutions. These solutions
are then used to fine-tune the strategy generator, promoting
both creativity and reliability. Notably, CMAD enables au-
tonomous self-improvement through iterative fine-tuning,
achieving substantial performance gains without incurring
heavy computational costs. The framework generalizes
well across both closed-source and publicly available LLMs.
We hope this work provides new insights into multi-agent
debate, fine-tuning for self-correction, and the broader de-
velopment of LLMs.
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