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Abstract
We introduce Griffin, the first foundation model
attemptation designed specifically for Relational
Databases (RDBs). Unlike previous smaller mod-
els focused on single RDB tasks, Griffin unifies
the data encoder and task decoder to handle di-
verse tasks. Additionally, we enhance the archi-
tecture by incorporating a cross-attention mod-
ule and a novel aggregator. Griffin utilizes pre-
training on both single-table and RDB datasets,
employing advanced encoders for categorical, nu-
merical, and metadata features, along with inno-
vative components such as cross-attention mod-
ules and enhanced message-passing neural net-
works (MPNNs) to capture the complexities of
relational data. Evaluated on large-scale, het-
erogeneous, and temporal graphs extracted from
RDBs across various domains (spanning over 150
million nodes), Griffin demonstrates superior or
comparable performance to individually trained
models, excels in low-data scenarios, and shows
strong transferability with similarity and diversity
in pretraining across new datasets and tasks, high-
lighting its potential as a universally applicable
foundation model for RDBs. Code available at
github.com/yanxwb/Griffin.

1. Introduction
Foundation models have revolutionized domains such as
natural language (Brown, 2020; Touvron et al., 2023),
vision (Wang et al., 2023; Yuan et al., 2021), tabular
data (Zhang et al., 2023b; Yang et al., 2024), and graphs (Liu
et al., 2023; Tang et al., 2024), offering scalable and gener-
alized frameworks for diverse tasks. However, foundation
models for RDBs—where tables are interconnected through
complex relationships—remain underexplored, despite the
practical importance and widespread use of RDBs.
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An RDB foundation model is defined as a predictive model
that works across diverse RDBs with varying sizes, schemas,
and domains. Integrating RDBs into the foundation model
paradigm presents challenges, including structural complex-
ity, lack of processing pipelines, and unique computational
patterns that differ from single-table data. While traditional
machine learning and deep learning methods could han-
dle single-table data pretty well (Chen & Guestrin, 2016;
Ke et al., 2017; Prokhorenkova et al., 2018; Huang et al.,
2020; Arik & Pfister, 2021; Gorishniy et al., 2021), they fail
to address RDB-specific complexities. On the other hand,
flattening relational data into a single table often results
in significant information loss (Cvitkovic, 2020; Chepurko
et al., 2020). Recently, graph-based methods using Graph
Neural Networks (GNNs) (Kanter & Veeramachaneni, 2015;
Cvitkovic, 2020; Bai et al., 2021; Zhang et al., 2023a; Wang
et al., 2024; Robinson et al., 2024) attempt to capture these
relationships but are limited to task-specific models rather
than proposing a universal RDB foundation model.

In this work, we introduce Griffin, a Graph-centric
RelatIonal database FoundatIoN model attemptation, which
integrates pretraining on both single-table and RDB datasets.
Griffin is designed for broad generalization across diverse
tasks and demonstrates superior performance over task-
specific GNN approaches through several key innovations.

The first challenge is how to handle different task types
(classification and regression) and different RDBs with dis-
parate input feature spaces (categorical, numerical, textual,
etc. of diverse semantic meanings). Griffin unifies input
data encoders and task decoders. Unlike earlier methods
that apply a single embedding layer to all categorical fea-
tures and directly input raw numerical values, Griffin uses
a pretrained text encoder for categorical inputs and a pre-
trained float encoder for numerical ones. It also incorporates
RDB metadata, including table names, column names, and
edge types, to distinguish tasks and capture the structure
that connects them. In contrast to prior work that uses sepa-
rate prediction heads for each task, Griffin applies a shared
float decoder (pretrained jointly with the float encoder) for
all regression tasks, and a unified classification head that
integrates the text embeddings of target categories. This
allows Griffin to manage classification tasks with varying
numbers of categories and regression tasks with different
ranges using a consistent architecture.
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Another key design consideration is selecting an effective
GNN architecture for RDBs. Griffin addresses this by in-
corporating a cross-attention module that flexibly gathers
information from cells within a row (treated as a node in
the graph), mitigating the loss introduced by mean aggrega-
tion in standard GNNs. Additionally, Griffin enhances its
message passing neural network (MPNN) by performing
intra-relation aggregation before merging features across
relation types.

A further challenge involves leveraging large-scale data for
training. To this end, we constructed a diverse and extensive
dataset collection for both single-table and RDB tasks and
developed a multi-stage pretraining and fine-tuning pipeline.
Griffin is initially pretrained on single-table datasets using a
random masked cell completion task that does not require
labeled data. This is followed by joint supervised fine-
tuning (SFT) on realistic tasks from both single-table and
RDB datasets, and finally by task-specific fine-tuning and
evaluation on each downstream RDB task. In total, the
pretraining and SFT phases covered over 150 million nodes
(rows), enabling the formation of large, heterogeneous, and
temporal graphs across various domains to support the large
model development.

To assess the effectiveness of the model design and the im-
pact of pretraining, Griffin was evaluated on two recent
graph-centric RDB benchmarks: 4DBInfer (Wang et al.,
2024) and RelBench (Robinson et al., 2024). The evalu-
ation led to the following key findings: (1) Even without
pretraining, the Griffin architecture achieves significant im-
provements on downstream tasks, demonstrating the advan-
tages of its advanced design. (2) Pretraining and SFT solely
on single-table datasets enables Griffin to outperforms its
non-pretrained counterpart. (3) With SFT on RDBs of sim-
ilarity and diversity to downsteam tasks, Griffin achieves
even better results, particularly in scenarios with limited
downstream task samples, highlighting its potential as a
foundation model capable of transferring to downstream
tasks with limited downstream supervision.

In summary, Griffin represents a significant step forward in
the development of foundation models for RDBs by com-
bining robust generalization capabilities with architectural
innovations that address the complexities of relational data.

2. Preliminary
A Relational Database (RDB) is formally defined as a col-
lection of tables, denoted by R = {T k}Kk=1, where K
represents the total number of tables, and each table T k is
structured as a matrix with Nk rows (instances) and Mk

columns (features). The individual entry in the i-th row
and j-th column of table T k is represented by T k

i,j . In our
setting, these entries can take various forms, including nu-

merical values, categorical values, text, or hash values used
for indexing.

A key characteristic of an RDB is the relationships between
tables, which are defined by Primary Keys (PKs) and For-
eign Keys (FKs). A PK is a column within a table that
uniquely identifies each row, while a FK is a column in an-
other table that references the PK, thereby inheriting values
from the corresponding PK. Let R denote the total number
of PK-FK pairs across all tables.

The heterogeneous graph derived from an RDB is formally
defined as G = ({Vk}Kk=1, {Er}Rr=1), where the node set
Vk of type k is constructed from the rows of table T k, with
each node corresponding to a row in the table. The feature
vector of each node is the corresponding row in the table,
and the edge set Er of type r is constructed from the r-
th PK-FK pair, which connects rows from the table with
the FK to the referenced rows in the table with the PK. In
this graph-based representation, almost all hash values used
for indexing (such as those for PKs and FKs) are already
encoded in the edge connection patterns. Therefore, we use
only on the numerical, categorical, and textual features for
the node attributes.

A common approach in tabular data prediction is missing
value prediction, where the goal is to infer a missing cell
value using information from the same table or related tables.
In many real-world applications, table rows are associated
with a timestamp, denoted as tki , and the number of rows
can be very large. To maintain temporal causality and re-
duce memory usage, only rows with timestamps earlier than
that of the target row are allowed for use in prediction. In
the graph-based formulation of this task, the problem is
rephrased as sampling a rooted subgraph that includes only
nodes (rows) with earlier timestamps than the queried node.

Let the target column value be represented as T k′

i′,j′ , as-
sociated with the node Vk

i′ . This node serves as the root
of a temporal, rooted computation subgraph: T (L) =(
{V(l)}Ll=0, {E(l)}L−1

l=0

)
, where V(0) = {(Vk

i′ \ T k′

i′,j′)} is
the root node, which does not include the target column’s
feature. The set V(l) contains nodes at hop l from the root
and only includes nodes satisfying that t < tk

′

i′ .

Each edge set E(l) include edges connecting nodes in
V(l+1) to parent nodes in V(l), and satisfies: ∀V(l+1)

p ∈
V(l+1), ∃V(l)

q ∈ V(l) with (V(l+1)
p ,V(l)

q ) ∈ E(l).

Through this transformation, the RDB task of predicting
a column value from multiple related tables is converted
into a graph-based prediction problem over a temporally
constrained rooted subgraph, defined as follows:

• Input: A sampled rooted subgraph T (L) constructed for
the target column T k′

i′,j′ .

• Output: Predicted value of the target column T k′

i′,j′ .
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Figure 1: Overview of the Griffin Model Framework. The framework first transforms RDBs into a graph structure
by representing each row as a node and using primary key–foreign key relationships as edges. Given a target column, a
temporally constrained subgraph is sampled and processed using a unified encoder module before being passed to a MPNN.
Finally, the unified task decoders generate predictions based on whether the task is classification or regression.

3. Model Design
In this section, we present the model design of Griffin, as il-
lustrated in Figure 1. The framework consists of three main
components for processing a sampled subgraph and gener-
ating prediction values: a unified data encoder, a MPNN
tailored for RDBs, and a unified task decoder.

3.1. Unified Data Encoder

A core innovation of Griffin is the unification of different
RDB input data. Previous RDB models typically use sep-
arate embedding layers for categorical features and direct
numerical inputs, which makes them difficult to generalize
to new data. In contrast, Griffin handles all categorical and
text features using a pre-trained text encoder, while numeri-
cal features are normalized and processed with a pre-trained
float encoder. This approach ensures that input distributions
are more consistent across tasks. Additionally, Griffin uses
RDB metadata and task-specific information to create task
embeddings, allowing the same model to perform different
tasks based on the task embedding provided at the input.

Categorical and Textual Feature For categorical features,
we first convert them into text representations using the meta-
data from the RDB. Both categorical and text features are
then passed through a single, pre-trained text encoder (Nuss-
baum et al., 2024). Each feature (or “cell”) is encoded into
a fixed-length vector, which captures rich semantic informa-
tion. Cosine similarity between these vectors allows us to

measure the similarity between different texts.

Numerical Feature For numerical data, to avoid issues with
extreme values, we first apply a quantile normalizer (Bolstad
et al., 2003) to standardize the numerical values, transform-
ing the distribution to normal. We then use a pre-trained
Multi-Layer Perceptron (MLP) to convert the normalized
values into the same d-dim embedding vectors. To train the
MLP, we sample x from a normal distribution:

w = ENC(x) ∈ Rd, y = DEC(w) ∈ R, (1)

where ENC encodes the float into an embedding, and DEC
decodes the embedding back to a float value. The model is
trained using L1 loss (|y − x|), and we apply LayerNorm
(without affine weights) to the encoder’s output to prevent
collapse. After pretraining, the encoder and decoder are
fixed and do not participate in the training of the Griffin
model. During inference, the numerical input is first nor-
malized, then passed through the encoder.

Metadata Information Griffin also incorporates flexible
encoding of RDB metadata, such as table names, column
names, and edge types. This metadata is encoded with the
text encoder to provide additional node and edge features.

Task Representations These unified input encoders map
inputs from different tasks to the same space. However, the
model also needs to account for the syntactic differences
between tasks. For example, if two missing cells in the same
row are predicted without additional task-specific embed-
dings, the model’s input for both tasks would be identical,
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leading to the same output representation and poor expres-
sivity. To address this, we introduce a task embedding. This
embedding is generated by the text encoder using the col-
umn name of the cell to be predicted as input, allowing the
model to produce distinct embeddings for different tasks.

With all components unified across different types of data,
the sampled subgraph is extended as follows:

• Input: A sampled rooted subgraph T (H) constructed for
the target column T k′

i′,j′ .
• Output: An enriched rooted subgraph in which each

node i is associated with a feature tensor xi ∈ RLi×d

and a metadata tensor mi ∈ RLi×d, where Li is the
number of cells in the node (which may vary between
nodes). Each edge (i, j) of relation type r carries a
relation-specific metadata vector er ∈ Rd. Additionally,
a task embedding vector t ∈ Rd is provided to represent
task-specific information.

3.2. MPNN Architecture

The MPNN of Griffin is composed of multiple layers, each
containing two key components: a cross-attention module
that extracts information from node features and a message-
passing module that facilitates information exchange be-
tween nodes. The intermediate embedding of node i across
layers is maintained as ui, while the final output of the
model is the representation of the target node, denoted as z.

Cross Attention Module The node feature vector xi ∈
RLi×d presents three challenges:

• The number of cells Li varies across nodes, so the encoder
must handle variable-length inputs.

• xi contains rich information, some of which may not be
relevant to the task. The encoder must selectively focus
on task-relevant information.

• In RDB data, the column order is meaningless, so the
encoder should be invariant to column permutation for
better generalization.

To address these, Griffin introduces a cross-attention mod-
ule that allows the model to selectively focus on relevant
information from individual cells within a row (treated as
a node in a graph). This enables the model to capture in-
teractions between columns and rows, modeling complex
dependencies critical for relational data analysis.

Each row in a table is represented as an attention-based
aggregation of its column data:

vli = Attentionl (QMLPl(ui, t),mi, xi) , (2)

where l is the layer index, vli is the output of the attention
mechanism for node i, and QMLPl is an MLP that takes
the node representation ui ∈ Rd and task representation
t ∈ Rd as inputs to produce the query for cross-attention.

The keys for cross-attention are the metadata mi ∈ RLi×d

(column names) of node i, and the values are xi ∈ RLi×d,
the input node features. The result, vli, is added to ui to
update the node representation. This cross-attention module
overcomes the information loss typically seen in traditional
GNNs, which often aggregate different columns using sim-
ple methods like mean aggregation. By focusing on specific
cells in a row and attending to their contextual relationships,
the module improves the model’s ability to extract nuanced
information, enhancing task performance.

Hierarchical Aggregation Along with the cross-attention
module, Griffin enhances its MPNN to reduce information
loss. Instead of aggregating all neighbors uniformly, Grif-
fin first aggregates information within each relation type
and then combines features across different relations. This
hierarchical aggregation helps preserve the structure of rela-
tional data by ensuring that information is aggregated within
each relation (e.g., a specific table or type of relationship)
before being combined across multiple relations. This ap-
proach prevents the loss of important relational context and
helps the model learn more informative representations.

Specifically, in cross-table modeling, Griffin uses a tempo-
ral heterogeneous graph representation of the RDB, where
rows are modeled as nodes. These node embeddings are
propagated and updated via a GNN. The embedding for a
node i at the l-th layer, denoted as hl

i, is updated as follows:

hr,l
i = Meanl (AMLPl(uj) | (i, j) ∈ Er) , (3)

hl
i = Maxl

(
hr,l
i ⊙ er | r ∈ R

)
, (4)

where AMLP is an MLP that transforms the aggregated
node representations. First, the representations of neigh-
boring nodes are averaged within each relation. Then, the
maximum aggregation is applied across all relations. This
step ensures that the representations from each relation are
not overwhelmed by others, which can be problematic when
the number of neighbors across relations is unstable. hi is
further added to ui to update node representations.

The subgraph is encoded to one vector by MPNN:

• Input: The enriched rooted subgraph and task vector.
• Output: A fixed-length vector z ∈ Rd.

3.3. Unified Task Decoder

Given a fixed-length embedding from the MPNN output, we
apply a single task decoder per task type.

Classification tasks We directly use the text embeddings
of the target labels as the classification head. For example,
when predicting the value of the (i, j)-th cell in a table,
let z1, z2, . . . , zc ∈ Rd denote the text embeddings of all
candidate categories, and let z ∈ Rd be the output vector
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from Griffin. The prediction probability distribution is:

softmax([⟨z, zi⟩ | i = 1, 2, . . . , c]), (5)

where the logit for each category is obtained by the inner
product between the output vector z and the corresponding
category embedding zi.

Regression tasks The output vector is passed through a
pretrained number decoder, denoted as DEC, to produce the
predicted value. The final output can then be denormalized
according to the specifications of the downstream task.

Different tasks may share similar label embeddings or num-
ber distributions, allowing the model to better capture task-
specific characteristics and adapt to new tasks. Given the
decoder design, the final prediction step is defined as:

• Input: A fixed-length vector z ∈ Rd.
• Output: The predicted value for the target column T k′

i′,j′ .

4. Training Pipeline
In this section, we describe the training pipeline of Griffin,
which consists of pretraining and downstream task fine-
tuning stages. The pretraining phase includes two compo-
nents: Completion Pretraining and Joint Supervised Fine-
Tuning (SFT). Both are designed to remain independent
of the downstream tasks to avoid task-specific bias. The
final stage involves task-specific fine-tuning, where Griffin
is adapted to individual downstream tasks.

4.1. Pretraining

Griffin is pretrained on a diverse set of datasets to ensure
effective generalization across various RDB tasks. The
pretraining process has two main components:

• Single-Table Datasets: These are used to train the model
on tasks involving individual tables, providing a founda-
tional understanding of tabular data.

• RDB Datasets: Griffin is also pretrained on large-scale,
heterogeneous, and temporal graphs derived from multi-
ple RDB domains. These graphs capture data structures.

By using both single-table and relational data, Griffin learns
to generalize across different types of RDBs, making it
adaptable to a wide variety of tasks. To fully use rich
sourced datasets, we include two stages for pretraining:
completion pretraining and joint SFT.

Completion Pretraining We first use a completion task
similar to language modeling but adapted for the tabular
domain. The model learns to predict masked values within
a row based on the remaining data. For a given row where
one column is randomly masked, a column-invariant row
encoder is used to generate the masked row’s embedding,
which is used to predict the masked value.

Formally, for a row T k
i,: with a target column j′ to be pre-

dicted, the pretraining objective is defined as:

loss = 1− cos
(

Modelθ
(
T k
i,:\j′

)
,Encoder

(
T k
i,j′

))
, (6)

where Modelθ
(
T k
i,:\j′

)
generates the row embedding and

Encoder
(
T k
i,j′

)
provides the true embedding for the masked

column. The objective minimizes the cosine distance be-
tween the predicted and true embeddings.

Joint Supervised Fine-Tuning Following completion pre-
training, Griffin is jointly fine-tuned on selected realistic
tasks to align it more closely with real-world tabular tasks.
This stage utilizes both labeled single-table datasets and
carefully selected RDB datasets, ensuring no data leakage
into downstream evaluations.

The fine-tuning process optimizes the model for a set of re-
lated tasks, leveraging pretrained knowledge while adapting
to the specific needs of tabular tasks. Griffin’s task mod-
eling framework, which supports both classification and
regression in a graph-based RDB representation, employs
a unified decoder (as in Section 3.3) to map output embed-
dings to task predictions. Cross-entropy loss is used for
classification tasks, while L2 loss is for regression tasks.

4.2. Downstream Task Fine-Tuning

After completing pretraining and joint SFT, Griffin is fine-
tuned on each individual downstream task for evaluation.
This process follows the specific pipeline requirements of
each benchmark to ensure a fair comparison with baselines.

4.3. Model Variants Considered

In practice, we consider three model variants based on the
datasets used during training:

Griffin-unpretrained refers to the model without any pre-
training. This variant differs from other GNN baselines
only in its architectural design, with no exposure to exter-
nal data prior to downstream training, aiming to reveal the
advantages of Griffin model design.

Griffin-pretrained refers to the model pretrained exclu-
sively on single-table datasets. We use a single pretrained
checkpoint for fine-tuning across all downstream tasks. This
checkpoint is strictly disjoint from any downstream tasks,
ensuring there is no data leakage. This configuration iso-
lates the effect of pretraining and highlights the potential for
building a general-purpose foundation model for RDBs.

Griffin-RDB-SFT is trained on a combination of single-
table and RDB datasets. Since RDB datasets are used for
both pretraining and downstream fine-tuning, we maintain
multiple checkpoints, each trained on subsets of the RDB
data that are non-overlapping with the downstream tasks.
This setup also enables us to investigate the transferability
of knowledge across different RDBs.
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5. Related Work
5.1. Tabular Predictive Tasks

Tabular predictive tasks involve learning to estimate missing
or target values in structured tables. These tasks typically
include classification and regression, using available fea-
tures from the same table or from related tables. Models
are trained to capture statistical patterns within rows, across
columns, and across multiple tables when relational data is
present. Our model focuses specifically on this type of task.

Single Table Models Research on single table data has
evolved through various approaches. Traditional methods,
such as XGBoost (Chen & Guestrin, 2016), LightGBM (Ke
et al., 2017), and CatBoost (Prokhorenkova et al., 2018),
have been widely adopted due to their scalability and strong
performance on structured data. More recently, transformer-
based methods like TabTransformer (Huang et al., 2020),
TabNet (Arik & Pfister, 2021), FT-Transformer (Gorishniy
et al., 2021), and SAINT (Somepalli et al., 2021) have lever-
aged attention mechanisms to capture complex relationships
within rows and columns. Additionally, graph-based meth-
ods such as GRAPE (You et al., 2020), TabularNet (Du
et al., 2021), TabGNN (Guo et al., 2021), and CARTE (Kim
et al., 2024) represent tabular data as graphs, incorporating
multiplex and hypergraph structures to model interactions
between rows and columns more effectively. Other works
have explored improved encoding strategies for numerical
features (Gorishniy et al., 2022; Yarullin & Isaev, 2023),
while some have highlighted the benefits of incorporating
nearest-neighbor information (Gorishniy et al., 2023; Ye
et al., 2025). Although these models enhance feature in-
teraction modeling, they primarily focus on single-table
datasets and typically fail to model relational dependencies
across multiple tables.

RDB Models RDBs extend the concept of single-table
models by incorporating multiple interrelated tables, requir-
ing models to capture both intra- and inter-table relation-
ships. Early approaches, such as DFS (Kanter & Veera-
machaneni, 2015) and RDBTOGRAPH(Cvitkovic, 2020),
attempt to flatten RDBs into a single table or apply GNNs to
model relationships between tables. Other works, like ATJ-
Net (Bai et al., 2021) and KEN (Cvetkov-Iliev et al., 2023),
use hypergraphs and knowledge graphs to model inter-table
dependencies, while GFS (Zhang et al., 2023a) integrates
differentiable single-table models as embedding functions
to preserve table structures. Some methods that convert
structured data into unstructured embeddings can still retain
structural information (Grover & Leskovec, 2016), such as
EmbDi (Cappuzzo et al., 2020) and RDF2Vec (Ristoski &
Paulheim, 2016). As RDB tasks have attracted increasing at-
tention (Fey et al., 2024), more comprehensive benchmarks
and toolboxes have emerged. For example, 4DBInfer (Wang
et al., 2024), RelBench (Robinson et al., 2024; Fey et al.,

2023), and PytorchFrame (Hu et al., 2024) propose complete
pipelines for converting RDBs into graph structures that can
be used for GNN-based models. More recent efforts (Yuan
et al., 2024; Chen et al., 2025) aim to design more expres-
sive GNN architectures for relational data. These models
perform well on individual RDB tasks, whereas Griffin is
designed towards a foundation model that aims to generalize
across a wide range of relational tasks.

5.2. Table QA Tasks

Table question answering (QA) tasks focus on answering
natural language queries by reasoning over tabular data.
Given a question and a table (or a set of tables), the model
must interpret the query, identify relevant cells, and ei-
ther extract or compute the correct answer, or generate
an executable SQL query. These tasks require both nat-
ural language understanding and structured data reasoning.
TaPas (Herzig et al., 2020) enhances BERT with a table-
aware encoder. Tapex (Liu et al., 2021) explores learning
a neural SQL executor. OmniTab (Jiang et al., 2022) intro-
duces pretraining using both synthetic and natural datasets.
TableGPT2 (Su et al., 2024) treats tabular data as a distinct
modality for building general-purpose models. Numerous
benchmarks have been proposed for comprehensive evalua-
tion (Yu et al., 2018; Lei et al., 2024; Chen et al., 2019; Wu
et al., 2024; Li et al., 2023; Qiu et al., 2024).

5.3. Foundation Models for Predictive Tasks
Graph Foundation Models (GFMs) aim to pretrain large
models that generalize across multiple graph datasets and
tasks. Many GFMs, such as OFA (Liu et al., 2023) and
Tape (He et al., 2023), integrate Large Language Models
(LLMs) to enhance feature spaces or assist in training GNNs.
Other methods, like UniGraph (He & Hooi, 2024), adapt
graph data for better LLM integration. While some GFMs,
such as GraphText (Zhao et al., 2023), convert graph struc-
tures into language-like representations for processing by
LLMs, others focus on novel GNN architectures, such as
GraphAny (Zhao et al., 2024). Griffin builds on the GFM
paradigm but adapts it to RDBs by pretraining on both
single-table and multi-table data, incorporating advanced
tabular-specific data encoders and graph-based components
such as cross-attention to model table meta-information,
making Griffin more suitable for RDBs compared to GFMs.

Tabular Foundation Models (TFMs) aim to generalize
across tabular data, often leveraging transformer-based ar-
chitectures. Models such as TaBERT (Yin et al., 2020) and
TabLLM (Hegselmann et al., 2023) integrate text and tab-
ular data to enhance table structure understanding, while
TransTab (Wang & Sun, 2022) and XTab (Zhu et al., 2023)
explore transfer learning across tables with varying column
structures. UniTabE (Yang et al., 2024) and TPBerta (Yan
et al., 2024) employ specialized tabular encoders to better
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Figure 2: Performance Comparison of Fully Fine-Tuned Models on Individual Tasks. This figure compares the
performance of four GNN baselines, four single-table baselines with DFS, and two Griffin variants, each fine-tuned on
individual tasks. The leftmost subfigure presents the average rank across all tasks. The remaining subfigures group tasks by
evaluation metric, with results averaged accordingly. All values are positive; higher values indicate better performance for
Accuracy and ROC-AUC, while lower values are better for left ones.
align transformers with tabular formats. TabPFN (Hollmann
et al., 2022; 2025) takes a different approach by avoiding the
use of text models and instead pretraining on a large num-
ber of synthetic datasets. It achieves strong performance in
few-shot settings. However, these models primarily focus
on single-table data and lack mechanisms to capture inter-
table relationships in RDBs. While Griffin incorporates
transformer-based and tabular techniques, it extends beyond
existing TFMs by explicitly modeling relational structures
across multiple tables, addressing the complexities in RDBs.

6. Experiments
In this section, we aim to address the following questions:

Q1: Can Griffin, with its advanced design, outperform
existing models under the same training settings?

Q2: Can utilizing a single pretrained checkpoint universally
enhance predictive performance?

Q3: Can joint SFT with RDB improve transferability, and
under what conditions does it provide the most benefit?

6.1. Experimental Setup

The experimental setup is designed to evaluate Griffin across
diverse tasks and datasets, leveraging the pretraining and
fine-tuning pipeline described in Section 4.

Datasets The selected datasets include both single-table
and RDB datasets, with details provided in Appendix A.

• Single-Table Datasets: Over 200 datasets were curated
from TPBerta (Yan et al., 2024) and CARTE (Kim et al.,
2024), comprising approximately 10 million rows. These
datasets were used for completion pretraining, enabling
scalable learning without human-labeled data. Only 50
datasets contained labels for joint SFT. While additional
large-scale datasets from diverse domains were collected,
they were excluded from pretraining for two key reasons:
(1) many were subsets of RDBs, making single-table
pretraining ineffective, and (2) their distributions diverged
significantly from downstream RDBs.

• RDB Datasets: We sourced large-scale temporal RDBs
from two leading benchmarks, 4DBInfer (Wang et al.,
2024) and RelBench (Robinson et al., 2024), covering a
wide range of domains, scales, and tasks. A total of 24
tasks were selected for SFT and downstream evaluation.

Baselines To ensure a fair comparison across benchmarks,
we standardized evaluation-related settings, which led to cer-
tain modifications in the reported results. These adjustments
include aligning preprocessing steps, normalization strate-
gies, and other evaluation procedures. As a result, some
baseline results may differ from those originally reported in
the respective benchmarks. We include four GNN baselines:
SAGE, GAT, PNA, and HGT. Additionally, we evaluate
four single-table models enhanced with the Deep Feature
Synthesis (DFS) method (Kanter & Veeramachaneni, 2015)
to incorporate multi-table information. For evaluations that
involve only single-table data without any relational context,
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Figure 3: Ablation Study on Different Model Design
Choices. This figure compares the performance of Griffin-
unpretrained and two ablated variants, with cross-attention
and max-aggregation removed, respectively. The leftmost
subfigure presents the average rank across all tasks. The
remaining subfigures group tasks by evaluation metric, with
results averaged accordingly. All values are positive; higher
values indicate better performance for ROC-AUC, while
lower values are better for left ones.

we recommend referring to the original experimental results
reported in 4DBInfer and RelBench, which have already
demonstrated significantly weaker performance in the ab-
sence of multi-table information. Further details on these
modifications and baseline configurations are provided in
Appendix B.

Hyperparameters and Training Griffin was trained with
fixed hyperparameters across all experiments to ensure ro-
bustness. During pretraining, all single-table datasets were
used for completion pretraining, while subsets of single-
table and RDB datasets were selected for joint SFT based
on specific experimental objectives. Further details about
model settings are provided in Appendix C.

6.2. Reply to Q1: Meta-Information and Advanced
Architecture Design Enhance Model Performance

Figure 2 presents the performance comparison of differ-
ent models fully fine-tuned on individual tasks. Griffin-
unpretrained outperforms all other models in average rank
and demonstrates significant improvements.

To analyze the impact of key design choices, we conducted
an ablation study on the cross-attention module and aggrega-
tion functions in MPNN, with results presented in Figure 3.
Replacing these components with a plain average of column
features and a mean-only aggregator for both intra-type and
inter-type nodes results in a significant performance drop.

6.3. Reply to Q2: Single-Table Pretraining Universally
Enhances Model Performance

To answer Q2, we introduce Griffin-Pretrained, a variant
of Griffin that undergoes a pretraining stage before task-
specific fine-tuning. The pretraining process consists of

completion pretraining and joint SFT, both conducted exclu-
sively on single-tabular datasets. Notably, no RDB datasets
are included in pretraining, ensuring no data leakage while
demonstrating the adaptability of the pretraining framework
across different domains.

Figure 2 presents the performance comparison between
Griffin-Pretrained and Griffin-unpretrained without pretrain-
ing across multiple tasks. The results show that Griffin-
Pretrained outperforms its non-pretrained counterpart, val-
idating the universal benefits of pretraining. These find-
ings confirm that pretraining a single checkpoint on diverse
single-tabular datasets can significantly improve predictive
performance, even for tasks in RDBs, despite the absence
of RDB-specific data during pretraining.

6.4. Reply to Q3: Joint SFT with RDB Enhances
Transferability, Driven by Similarity or Diversity

To analyze the factors influencing transferability, we pro-
pose two key hypotheses, building on recent research on
transferability (Ehrig et al., 2024).

• Similarity. Pretraining on datasets similar to the down-
stream task improves transferability by providing aligned
feature representations and task structures.

• Diversity. Pretraining on a broader and more diverse
set of datasets enhances transferability by improving the
model’s ability to generalize across different domains.

To test these hypotheses, we categorized datasets into two
broad domains: commerce and others, each containing a
diverse set of tasks. We further split each domain into
two subsets, leading to four final groups: Commerce-1,
Commerce-2, Others-1, and Others-2.

• Commerce: Commerce-1 and Commerce-2 originate
from e-commerce datasets, covering tasks such as user
churn prediction and purchase rate estimation. These
datasets are highly similar.

• Others: Others-1 and Others-2, despite belonging to the
same broad domain, exhibit significant internal diversity
due to their inclusion of sports, social networks, flight
records, and clinical data, leading to varying distributions.

To evaluate transferability, we performed joint SFT on one
group and tested it on each task of another group using
limited-sample fine-tuning, making transfer effects clearly
visible. To ensure robustness, each task was evaluated across
five different random seeds for split selection. We compared
two types of models to assess transferability:

• No-Pretrain Model – Only trained on downstream tasks.
• Griffin-RDB-SFT – Griffin pretrained on both single-

tabular and selected RDB datasets.

The results, presented in Figure 4, provide insights into how
similarity and diversity influence transfer learning.
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Figure 4: Evaluating Transferability Across Different SFT Domains. This figure compares the impact of different SFT
strategies on transferability. Each subfigure presents four models: a no-pretraining baseline and three models pretrained on
single-table data followed by SFT on different domains. By comparing performance relative to the no-pretraining baseline,
we observe positive transfer effects when the SFT and downstream tasks are similar, as seen in commerce-to-commerce
settings. Additionally, SFT on the more diverse “Others” group improves performance on the “Commerce” domain.

Impact of Similarity on Transferability To evaluate the
role of similarity, we first analyze transfer performance
between the commerce groups. The results show that
both Commerce-1 to Commerce-2 and Commerce-2 to
Commerce-1 benefit significantly from pretraining. Notably,
pretraining on Commerce-2 and transferring to Commerce-1
outperforms all other pretraining domains, indicating that
pretraining on highly similar datasets results in stronger
transfer benefits. Conversely, when transferring from com-
merce to non-commerce domains, the lack of similarity
leads to poor transfer performance. In these cases, pre-
training often underperforms compared to the no-pretrain
baseline, resulting in a substantial performance gap. This
trend confirms our Similarity Hypothesis—the closer the
pretraining dataset is to the downstream task, the stronger
the transferability.

Impact of Diversity on Transferability Next, we ex-
amine the role of diversity in transfer learning. When
transferring from others to commerce, pretraining consis-
tently outperforms the no-pretrain model, and in some cases,
even surpasses the results of similar-domain commerce-to-
commerce transfer. This suggests that diverse pretraining
can sometimes be as effective as, or even better than, pre-
training on similar datasets.

For transfering between Others-1 and Others-2, where
similarity is low, we observe a one-directional transfer
benefit—Others-1 effectively transfers to Others-2, but not
vice versa. We hypothesize that this is due to greater dataset
diversity in Others-1, which provides a broader pretraining
foundation that improves generalization when fine-tuned on
Others-2. These findings confirm our Diversity Hypothe-
sis—the more diverse the pretraining dataset, the stronger
the model’s ability to generalize.

Additionally, we conducted further experiments on different

joint SFT strategies, including SFT with limited samples
and mixed SFT with single-tabular datasets, as detailed in
Appendix D. The results show that full SFT achieves the
best performance, reinforcing the benefits of complete pre-
training. Furthermore, despite variations in SFT strategies,
the observed transferability patterns across domains remain
similar. This further validates the robustness of our domain
transferability hypothesis and highlights the fundamental
role of similarity and diversity in effective transfer learning.

We also conducted few-shot experiments compared with
TabPFNv2 combined with DFS as a reference, as detailed
in Appendix E. TabPFNv2 (Hollmann et al., 2025) is a
powerful single-table model that supports few-shot learn-
ing and even outperforms some state-of-the-art models on
certain datasets. Although DFS is not ideal for few-shot
scenarios and involves substantial preprocessing time, we
include it for comparison. The results show that Griffin and
TabPFNv2 each excel under different conditions.

7. Conclusion
In this work, we proposed a graph-centric foundation model
for RDBs that effectively incorporates meta-information,
leverages pretraining strategies, and supports diverse down-
stream tasks. The proposed model demonstrates strong
performance across various tasks by unifying single-table
and cross-table embeddings using graph-based representa-
tions. Through extensive experiments, we addressed three
key questions: (1) the model’s ability to outperform existing
approaches by encoding meta-information, (2) its general-
izability across multiple domains with a single pretrained
model, and (3) the benefits of similarity and diversity on
improving transferability. Our results highlight the impor-
tance of aligning model design with the RDB structure and
leveraging pretraining to enhance performance across tasks.
It provides a robust foundation for advanced RDB research.
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A. Datasets
This section details the information of single tabular datasets and RDBs that we use in Griffin.

A.1. Single Tabular Datasets

We use approximately 200 single tabular datasets from the pretraining datasets of TPBerta (Yan et al., 2024) and datasets
of CARTE (Kim et al., 2024) from Hugging Face. The row count distribution of these datasets is shown in Figure 5 and
Figure 6, while the column count distribution is shown in Figure 7 and Figure 8. These single tabular datasets cover a wide
range of domains, including healthcare, finance and business, social sciences, science and technology, entertainment, media,
marketing and so on.
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Figure 5: Histogram of row counts of TPBerta
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Figure 6: Histogram of row counts of CARTE

A.2. RDBs

The RDBs that we use are from two benchmarks, 4DBInfer (Wang et al., 2024) and RelBench (Robinson et al., 2024),
covering a wide range of domains, scales, and tasks. The detailed information is shown in Table 1.
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Figure 7: Histogram of column counts of TPBerta

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45
0

10

20

0

26

17

6

1 1 0 0 0

Column Count Ranges

Fr
eq

ue
nc

y

Histogram of Column Counts of CARTE

Figure 8: Histogram of column counts of CARTE

Dataset Tables Columns Rows
Seznam 4 14 2681983
Airbnb 4 34 10800000
Amazon 3 15 24291489
Diginetica 5 28 3672396
Outbrain 8 31 4778954
Retailrocket 3 11 23033676
Stackexchange 7 49 5399818
Virus 3 38 145000
Telstra 5 12 136000
Talkingdata 3 20 36600000
Rel-avito 8 43 20679117
Rel-f1 9 77 97606
Rel-hm 3 37 33265846
Rel-trial 15 140 5852157

Table 1: Statistics of relational database datasets.
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B. Baseline Settings
This section details the experimental settings of the baselines used in 4DBInfer, RelBench, and Griffin. While these
benchmarks share similarities in graph construction and sampling strategies, they differ in data processing methods and
hyperparameter selection, which can impact comparability, particularly for regression tasks.

B.1. Comparison of 4DBInfer, RelBench, and Griffin Experiment Settings

Table 2 summarizes the key differences among the three baselines.

Table 2: Comparison of Baseline Settings in 4DBInfer, RelBench, and Griffin

Setting 4DBInfer RelBench Griffin

Graph Construction R2N / R2NE R2N R2N
Numerical Processing Quantile normalization No normalization Quantile normalization
Time Processing Categorized and scaled per column Cyclic encoding Text description and scaling
Text Processing GloVe embeddings GloVe embeddings Sentence model embedding
Category Processing One-hot encoding One-hot encoding Text description encoding
Sampling Strategy Fanout is total neighbors across all node types Fanout per node type Fanout per node type
Hyperparameter Selection Individually searched per task Shared across tasks Shared across tasks

Graph Construction and Sampling All three methods adopt the row-to-node (R2N) approach, with 4DBInfer also
extending it to row-to-node-or-edge (R2NE). RelBench and Griffin define fanout per node type, whereas 4DBInfer treats
fanout as the total number of neighbors across different node types.

Data Preprocessing The benchmarks differ in how they process numerical, temporal, textual, and categorical data:

• Numerical Data: 4DBInfer and Griffin use quantile normalization, while RelBench does not apply specific normaliza-
tion.

• Temporal Data: 4DBInfer scales time values at the column level, while Griffin incorporates text descriptions alongside
scaling. RelBench applies a cyclical encoding method.

• Text Features: 4DBInfer and RelBench use GloVe embeddings (Pennington et al., 2014), while Griffin employs
sentence model embeddings for richer representations. Specifically, the model used is Nomic (Nussbaum et al., 2024).

• Categorical Data: 4DBInfer and RelBench use one-hot encoding, whereas Griffin encodes text descriptions instead of
static categories.

Hyperparameter Selection 4DBInfer performs independent hyperparameter searches per task, while RelBench and
Griffin use a shared hyperparameter configuration for consistency across tasks.

B.2. Metric Adjustments for Regression Tasks

While most differences in preprocessing and sampling strategies reflect model-specific preferences, they generally do not
affect comparability across benchmarks. However, for regression tasks, differences in numerical processing can lead to
significant variations in results.

4DBInfer applies quantile normalization to all numerical data and predicts normalized values instead of raw targets. To
ensure consistency, we adopt a similar approach by implementing a unified number decoder that operates on normalized
outputs. In contrast, RelBench’s original regression tasks predict raw numerical values, which can range from 0.01 to 100.
While our model can make predictions in this format through an additional denormalization step, we follow 4DBInfer’s
normalization strategy for better robustness and stability in target value distributions. The updated Relbench results are
shown at Table 3

15



Griffin: Towards a Graph-Centric Relational Database Foundation Model

B.3. Baseline Implementation Details

The baseline models are primarily adapted from the 4DBInfer framework, as most lacked a native implementation in
RelBench. For the 4DBInfer datasets, we report the results directly from the original publication. For the RelBench datasets,
while the Sage results are taken from the original report, all other baselines were re-evaluated. This process involved
processing the RelBench datasets through the 4DBInfer pipeline. To ensure methodological consistency, we adhered to
RelBench’s hyperparameter tuning strategy and incorporated a ResNet architecture into the encoder as specified in their
design.

Table 3: Comparison of RelBench Original Results and Aligned Griffin Results

Model rel-avito/ad-ctr rel-f1/position rel-hm/item-sales rel-trial/site-success rel-trial/study-adverse

RelBench Original Results 0.041 4.022 0.056 0.400 44.473
Aligned to Griffin Results 0.7686 0.5945 4.440 0.853 2.199

This decision ensures a more reliable evaluation of model performance while maintaining consistency across tasks and
datasets.

C. Experiment and Model Details
This section provides a comprehensive overview of the experimental setup, including model updates and hyperparameter
configurations. To ensure consistency and robustness, all experiments were conducted using a fixed set of model design
choices and hyperparameters.

C.1. Model Updates: Improved Cross-Attention for RDBs

In our initial model design, we applied cross-attention between task embeddings, column names, and column values to
aggregate information. However, for relational databases (RDBs), we observed that in the first layer, this approach might
not provide sufficient information for retrieving task-relevant columns. For example, in an RDB containing user, product,
and purchase tables, predicting user-related information may be difficult without first aggregating data from the user’s
purchase history. This limitation was particularly evident in retrieval-related tasks, where the first-layer cross-attention often
degraded to mean aggregation, as shown in Figure 9.

To address this issue, we modified the first-layer cross-attention to a self-attention mechanism over column names and column
values. This adjustment allows the model to capture column dependencies before applying task-conditioned aggregation in
later layers, improving its ability to identify relevant features. Based on experimental results, this modified approach led to
better retrieval performance and overall stability, and it was set as the default configuration for all experiments.

C.2. Hyperparameters

To ensure reproducibility, we used a fixed set of hyperparameters across all experiments. These configurations span
optimization settings, model architecture, graph sampling strategies, and pretraining procedures.

For optimization and training, we employed the AdamW optimizer with a learning rate of 3e-4 and an L2-norm
regularization of 2e-4. A batch size of 256 was used for all training runs. Early stopping was applied with a patience of 10
epochs to prevent overfitting, ensuring stable convergence. No additional learning rate scheduler or gradient clipping was
used.

The model architecture was designed with a hidden dimension of 512, maintaining consistency between different
components. The sentence embedding model was based on Nomic embeddings, truncated to 512 dimensions. The
cross-attention module included 8 attention heads and a dropout rate of 0.1, allowing for effective feature extraction while
preventing overfitting. SiLU was chosen as the activation function across all layers.

For graph construction and sampling, we adopted a 4-layer message-passing neural network (MPNN) with 2-layer uniform
sampling on temporal neighbors. The fanout was set to 20 per layer to ensure a balanced trade-off between computational
efficiency and capturing structural information. Additionally, reversed edges were incorporated into the sampled subgraph
to improve relational modeling.
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Figure 9: Cross-attention weight visualization across four layers. The heatmap shows that in the first layer, query and
value activations are near zero, resulting in nearly uniform attention weights. This indicates that first-layer cross-attention
effectively reduces to mean aggregation.

Regarding pretraining and fine-tuning, the completion pretraining phase used single-tabular datasets with early stopping
signals derived from specific task performance. The same early stopping strategy was applied to supervised fine-tuning
(SFT) using a combination of single-table and RDB tasks. The loss functions were cross-entropy loss for classification tasks
and L2 loss for regression tasks.

The experiments were conducted on an AWS g6.48x instance, ensuring sufficient computational resources for large-scale
graph-based training. Mixed precision (FP16) was not used, and gradient checkpointing was not applied.

These hyperparameter settings were selected to ensure a stable and scalable training process while maintaining compatibility
across different relational database tasks.

D. Extended Experiments on Joint SFT Strategies
In this section, we provide additional experiments to analyze the impact of different SFT strategies on transferability.
Specifically, we investigate two key aspects: (1) The performance of different SFT strategies in transfer learning. (2)
Whether domain-driven transferability conclusions remain valid across different SFT strategies.

D.1. Experiment 1: Performance of Different SFT Strategies

To evaluate the impact of different SFT strategies, we compare five baselines:

• A no-pretrain baseline, trained directly on downstream tasks.

• A single-table-only pretrained baseline, without any RDB pretraining.

• Three joint SFT baselines, all using the same SFT domain but differing in their SFT strategies:

– Full SFT: Standard supervised fine-tuning using all available samples.
– Limited-Sample SFT: Fine-tuning with a restricted subset of 4096 samples.
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– Mixed SFT: Joint fine-tuning with both single-tabular datasets and RDB datasets.

These baselines were evaluated on three verified transferable settings:

• Commerce-2 to Commerce-1

• Commerce-1 to Commerce-2

• Others-1 to Others-2

The results are presented in Figure 10.

Figure 10: Performance comparison of different SFT strategies. The figure presents the results for five baselines, including
no-pretraining, single-table-only pretraining, and three joint SFT strategies with varying settings. Full SFT consistently
achieves the best performance across different domains, emphasizing the benefits of sufficient training.

Observing the results, we find that full SFT consistently achieves the best performance across all settings, demonstrating its
superiority in transfer learning. Other baselines occasionally perform worse than the no-pretrain model, indicating their
limitations in effective knowledge transfer. This further underscores the importance of sufficient training for successful
adaptation.

D.2. Experiment 2: Evaluating Domain Impact Across SFT Strategies

To determine whether domain-driven transferability conclusions remain consistent, we evaluate each SFT strategy across
different SFT domains. The goal is to analyze whether transfer performance is significantly influenced by the pretraining
domain. The results are presented in Figure 11 and Figure 12.

The results indicate that domain transfer effects are notably weakened under the SFT-limited strategy, suggesting that a
restricted sample size hinders adaptation. In contrast, for the SFT-mixed strategy, domain transfer differences remain clearly
visible, potentially indicating that SFT-mixed enables a more comprehensive adaptation compared to SFT-limited.

To further quantify the effect of domain transferability, we compute a critical difference ranking (Terpilowski, 2019) to
measure average rank improvement across different settings. This serves as a straightforward yet effective method to analyze
domain impact on transferability. The results are shown in Figure 13.

In general, we observe that similarity and diversity play a crucial role in transferability to “commerce” domains, reinforcing
our original hypothesis. For the “others” domain, the trend remains similar but with a weakened effect. We hypothesize that
incomplete SFT adaptation prevents full alignment with the pretraining domain, leading to a weaker yet general transfer
effect.

These results confirm that while different SFT strategies can influence absolute transfer performance, the underlying
domain-driven transferability trends remain robust.
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Figure 11: Impact of domain transferability under limited-sample SFT. The figure compares transfer performance across
different SFT domains when fine-tuning is restricted to 4096 samples.

Figure 12: Impact of domain transferability under mixed SFT with single-tabular datasets. The figure evaluates whether
incorporating single-tabular tasks during SFT affects transferability trends.

E. Comparison with TabPFNv2 + DFS
This section presents a comparison between TabPFN v2 with DFS and Griffin, as shown in Figure 14. Although DFS can
require several hours of preprocessing, as reported in 4DBInfer, we include it for comparison because TabPFN v2 is a strong
single-table foundation model, particularly effective in few-shot settings. The results suggest that Griffin performs better on
the Commerce-2 and Others-2 tasks, while TabPFN v2 shows superior results on Commerce-1 and Others-1 tasks.

F. Raw Results
This section presents the raw experimental results for figures.

Table 4 correspond to the Figure 2. Table 5 corresponds to Figure 3. Table 6 7 8 9 correspond to Figure 4. Table 10 11 12 13
correspond to Figure 11. Table 14 15 16 17 correspond to Figure 12. Table 18 19 20 21 correspond to Figure 14.
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SFT-full SFT-mixed SFT-limited

Figure 13: Critical difference ranking of domain transferability across different SFT strategies. The three subfigures
represent heatmaps for Full SFT, Mixed SFT, and Limited-Sample SFT. Each cell denotes the relative gain in transfer
performance from the row’s domain to the column’s domain, compared to the no-pretrain baseline. The diagonal cells do
not represent SFT on the target domain but rather pretraining using only single-tabular datasets.

Figure 14: Evaluating Few-shot Performance: Comparison Between Griffin and TabPFNv2. This figure compares the
transferability of different supervised fine-tuning strategies and TabPFNv2 in few-shot settings. Each subfigure shows the
performance of five models: a no-pretraining baseline, three Griffin variants pretrained on single-table data with SFT applied
to different domains, and TabPFNv2. For datasets with more than 10 classes, TabPFNv2 is not applicable; therefore, such
tasks are excluded from the comparison.
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Table 4: Raw Results of Griffin and All the Baselines

Dataset/Task Overall Score Seznam/charge Seznam/prepay Airbnb/destination Amazon/churn Diginetica/ctr Outbrain/ctr Rel-avito/user-clicks Rel-avito/user-visits
Metric Rank ↓ Accuracy ↑ Accuracy ↑ ROCAUC ↑ ROCAUC ↑ ROCAUC ↑ ROCAUC ↑ ROCAUC ↑ ROCAUC ↑
Sage 4.792 0.7917 0.8768 0.8424 0.7358 0.7273 0.6239 0.6590 0.6620
Gat 5.208 0.8053 0.8954 0.8428 0.7410 0.6741 0.6146 0.6638 0.6417
Pna 5.333 0.8000 0.8924 0.8464 0.7645 0.7011 0.6249 0.6378 0.6267
Hgt 5.333 0.7965 0.8805 0.8252 0.7551 0.6733 0.6260 0.5556 0.6214
DFS+MLP 6.833 0.7554 0.8248 0.7643 0.6815 0.6944 0.5456 0.5839 0.6521
DFS+Deepfm 7.625 0.7016 0.8092 0.8007 0.6667 0.7341 0.5289 0.5912 0.5844
DFS+Fttransformer 5.917 0.7473 0.8162 0.7863 0.6765 0.7412 0.5360 0.6247 0.6576
DFS+XGB 7.083 0.7600 0.8453 0.7561 0.6922 0.7219 0.5421 0.6028 0.6568
Griffin-unpretrained 3.708 0.7998 0.8941 0.8615 0.7307 0.7157 0.6246 0.6639 0.6261
Griffin-pretrained 3.042 0.8133 0.9058 0.8681 0.7417 0.7181 0.6253 0.6330 0.6468

Model Rel-f1/DNF Rel-f1/top3 Rel-hm/user-churn Rel-trial/study-outcome Retailrocket/cvr Stackexchange/churn Stackexchange/upvote Virus/wnv Amazon/rating
Metric ROCAUC ↑ ROCAUC ↑ ROCAUC ↑ ROCAUC ↑ ROCAUC ↑ ROCAUC ↑ ROCAUC ↑ ROCAUC ↑ RMSE ↓
Sage 0.7262 0.7554 0.6988 0.6860 0.8470 0.8558 0.8861 0.6610 0.9639
Gat 0.7299 0.7945 0.6788 0.6526 0.8284 0.8645 0.8853 0.6498 0.9563
Pna 0.7258 0.7213 0.5898 0.6558 0.8366 0.8664 0.8896 0.6684 0.9615
Hgt 0.7307 0.7226 0.5538 0.6619 0.8495 0.8670 0.8817 0.7119 0.9636
DFS+MLP 0.7134 0.7796 0.6802 0.6518 0.8181 0.8326 0.8783 0.6772 0.9847
DFS+Deepfm 0.6705 0.8133 0.6801 0.6210 0.8182 0.8212 0.8821 0.6315 0.9946
DFS+Fttransformer 0.7302 0.8250 0.6800 0.6578 0.8034 0.8376 0.8749 0.6660 0.9888
DFS+XGB 0.7158 0.8022 0.6786 0.6521 0.7906 0.8251 0.8675 0.7142 0.9972
Griffin-unpretrained 0.7052 0.7855 0.6847 0.6722 0.9512 0.8457 0.8956 0.6680 0.6117
Griffin-pretrained 0.7091 0.7795 0.6804 0.6908 0.9643 0.8435 0.8962 0.6978 0.5994

Model Rel-avito/ad-ctr Rel-f1/position Rel-hm/item-sales Rel-trial/site-success Rel-trial/study-adverse Tel/severity Talk/demo-pred
Metric MAE ↓ MAE ↓ MAE ↓ MAE ↓ MAE ↓ Logloss ↓ Logloss ↓
Sage 1.3565 0.6276 1.1466 0.9191 1.5251 0.6151 2.3820
Gat 1.3695 0.6417 1.1086 0.8931 1.4098 0.6191 2.3880
Pna 0.8944 0.6084 1.4788 0.9572 1.4736 0.7015 2.3840
Hgt 0.6686 0.6212 1.5845 0.9180 1.5000 0.6126 2.3830
DFS+MLP 0.6610 0.6146 1.2518 0.9462 2.1104 0.6185 2.3840
DFS+Deepfm 1.1784 2.5796 1.3540 0.9753 2.0998 0.6118 2.3810
DFS+Fttransformer 0.6339 0.5934 0.9256 0.9793 1.6947 0.6460 2.3830
DFS+XGB 0.6743 0.6130 1.2957 0.9514 2.1859 0.6663 2.3890
Griffin-unpretrained 0.6593 0.5586 0.8879 0.7926 1.1700 0.5684 2.3930
Griffin-pretrained 0.6586 0.5694 0.8962 0.7945 1.2148 0.5518 2.3890

Table 5: Raw Results of Figure 3 on Ablation Study

Model Avg. Rank Diginetica/ctr Outbrain/ctr Rel-f1/DNF Rel-f1/Top3 Rel-trial/study-outcome Virus/wnv Rel-avito/ad-ctr Rel-f1/Position

Griffin 1.4 0.7157 0.6246 0.7052 0.7855 0.6722 0.6680 -0.6593 -0.5586
Griffin-avg-attention 2.7 0.6917 0.6225 0.6936 0.7255 0.6797 0.5844 -0.7600 -0.6677
Griffin-mean-GNN 1.9 0.7077 0.6269 0.6950 0.7521 0.6857 0.6648 -0.6701 -0.5645

Model Rel-trial/study-adverse Tel/severity

Griffin -1.1700 -0.5684
Griffin-avg-attention -1.3380 -0.5449
Griffin-mean-GNN -1.2322 -0.5694

Table 6: Raw Results of Figure 4 on Commerce-1 Transfer

Dataset/Task Diginetica/ctr Rel-hm/item-sales Rel-hm/user-churn Retailrocket/cvr Seznam/charge Seznam/prepay

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.5001 0.5044 -1.2976 -1.5236 0.5383 0.5592 0.7693 0.8002 0.4250 0.7260 0.5652 0.8180
Commerce-2 SFT 0.5213 0.5904 -1.6385 -1.4594 0.5677 0.6039 0.8452 0.9576 0.5662 0.7070 0.6456 0.7816
Others-1 SFT 0.5294 0.5662 -1.8025 -1.5055 0.5552 0.5885 0.8231 0.9446 0.6284 0.7197 0.7025 0.8030
Others-2 SFT 0.5503 0.5480 -1.6472 -1.6349 0.5340 0.5693 0.8006 0.9618 0.5902 0.7098 0.7060 0.7969

Table 7: Raw Results of Figure 4 on Commerce-2 Transfer

Dataset/Task Amazon/churn Amazon/rating Outbrain/ctr Rel-avito/ad-ctr Rel-avito/user-clicks Rel-avito/user-visits

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.5977 0.6580 -0.7663 -0.7007 0.4951 0.4990 -0.7430 -0.6558 0.5678 0.6187 0.6085 0.6108
Commerce-1 SFT 0.6396 0.6859 -0.7740 -0.6809 0.5102 0.5892 -0.7267 -0.6938 0.5512 0.5919 0.5779 0.6111
Others-1 SFT 0.5723 0.6675 -0.7428 -0.6754 0.5208 0.5096 -0.7134 -0.6550 0.6078 0.6056 0.6129 0.6198
Others-2 SFT 0.6231 0.6645 -0.7513 -0.6797 0.5245 0.6163 -0.7098 -0.6518 0.5481 0.5951 0.5944 0.6275

21



Griffin: Towards a Graph-Centric Relational Database Foundation Model

Table 8: Raw Results of Figure 4 on Others-1 Transfer

Dataset/Task Rel-f1/DNF Rel-f1/position Rel-f1/top3 Stackexchange/churn Stackexchange/upvote Virus/wnv

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.6558 0.7176 -0.6152 -0.5746 0.7676 N/A 0.7256 0.7951 0.8433 0.8772 0.6099 0.6652
Others-2 SFT 0.7043 0.7248 -0.7056 -0.5921 0.7900 N/A 0.7188 0.7928 0.8571 0.8731 0.5706 0.6567
Commerce-1 SFT 0.6823 0.7233 -0.6221 -0.6043 0.6831 N/A 0.6602 0.7501 0.8107 0.8597 0.6101 0.6461
Commerce-2 SFT 0.6073 0.7347 -0.6255 -0.5931 0.7679 N/A 0.7600 0.8164 0.8544 0.8745 0.5946 0.6591

Table 9: Raw Results of Figure 4 on Others-2 Transfer

Dataset/Task Airbnb/destination Rel-trial/site-success Rel-trial/study-adverse Rel-trial/study-outcome Talk/demo-pred Tel/severity

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.8562 0.8564 -0.9327 -0.9062 -2.5758 -1.3676 0.6283 0.6656 -2.4363 -2.4245 -0.7910 -0.5998
Others-1 SFT 0.8470 0.8561 -0.9142 -0.8952 -1.5832 -1.3246 0.6436 0.6781 -2.4407 -2.4177 -0.7716 -0.6052
Commerce-1 SFT 0.8457 0.8543 -0.9231 -0.9345 -1.9609 -1.5188 0.5583 0.6493 -2.4377 -2.4177 -0.7965 -0.6523
Commerce-2 SFT 0.8007 0.8516 -0.9363 -0.9496 -1.6756 -1.3703 0.6001 0.6567 -2.4394 -2.4164 -0.7721 -0.6266

Table 10: Raw Results of Figure 11 on Commerce-1 Transfer

Dataset/Task Diginetica/ctr Rel-hm/item-sales Rel-hm/user-churn Retailrocket/cvr Seznam/charge Seznam/prepay

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.5001 0.5044 -1.2976 -1.5236 0.5383 0.5592 0.7693 0.8002 0.4250 0.7260 0.5652 0.8180
Commerce-2 SFT 0.4655 0.4969 -1.6560 -1.4736 0.5376 0.5728 0.8368 0.9577 0.5119 0.7214 0.6478 0.8091
Others-1 SFT 0.5266 0.5744 -1.7979 -1.4878 0.5465 0.5704 0.8512 0.9601 0.5499 0.7237 0.5557 0.8075
Others-2 SFT 0.5425 0.5465 -1.5732 -1.6291 0.5583 0.5719 0.8848 0.9215 0.5641 0.7195 0.5563 0.6780

Table 11: Raw Results of Figure 11 on Commerce-2 Tasks

Dataset/Task Amazon/churn Amazon/rating Outbrain/ctr Rel-avito/ad-ctr Rel-avito/user-clicks Rel-avito/user-visits

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.5977 0.6580 -0.7663 -0.7007 0.4951 0.4990 -0.7430 -0.6558 0.5678 0.6187 0.6085 0.6108
Commerce-1 SFT 0.5970 0.6382 -0.7480 -0.6941 0.5126 0.5080 -0.7115 -0.6503 0.5028 0.5741 0.5275 0.6050
Others-1 SFT 0.6118 0.6673 -0.7541 -0.6857 0.4930 0.5008 -0.7097 -0.6522 0.6047 0.6009 0.6090 0.6099
Others-2 SFT 0.6147 0.6624 -0.7540 -0.6783 0.5085 0.5873 -0.7260 -0.6579 0.5568 0.6062 0.6112 0.6081

Table 12: Raw Results of Figure 11 on Others-1 Tasks

Dataset/Task Rel-f1/DNF Rel-f1/position Rel-f1/top3 Stackexchange/churn Stackexchange/upvote Virus/wnv

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.6558 0.7176 -0.6152 -0.5746 0.7676 N/A 0.7256 0.7951 0.8433 0.8772 0.6099 0.6652
Others-2 SFT 0.7098 0.7275 -0.6680 -0.5739 0.7710 N/A 0.6592 0.7898 0.8530 0.8761 0.6148 0.6737
Commerce-1 SFT 0.6752 0.7226 -0.6089 -0.5813 0.7375 N/A 0.6477 0.7337 0.8406 0.8770 0.6397 0.6603
Commerce-2 SFT 0.5808 0.7137 -0.6433 -0.5752 0.7536 N/A 0.6526 0.7839 0.8605 0.8779 0.6265 0.6676

Table 13: Raw Results of Figure 11 on Others-2 Tasks

Dataset/Task Airbnb/destination Rel-trial/site-success Rel-trial/study-adverse Rel-trial/study-outcome Talk/demo-pred Tel/severity

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.8562 0.8564 -0.9327 -0.9062 -2.5758 -1.3676 0.6283 0.6656 -2.4363 -2.4245 -0.7910 -0.5998
Others-1 SFT 0.8489 0.8550 -0.9156 -0.9135 -1.6351 -1.3448 0.6163 0.6730 -2.4309 -2.4160 -0.8007 -0.6114
Commerce-1 SFT 0.8480 0.8546 -0.9220 -0.8820 -1.5550 -1.3571 0.6020 0.6639 -2.4318 -2.4142 -0.7800 -0.6001
Commerce-2 SFT 0.8427 0.8534 -0.9332 -0.8927 -1.5329 -1.3321 0.6338 0.6834 -2.4432 -2.4222 -0.7875 -0.6208
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Table 14: Raw Results of Figure 12 on Commerce-1 Tasks

Dataset/Task Diginetica/ctr Rel-hm/item-sales Rel-hm/user-churn Retailrocket/cvr Seznam/charge Seznam/prepay

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.5001 0.5044 -1.2976 -1.5236 0.5383 0.5592 0.7693 0.8002 0.4250 0.7260 0.5652 0.8180
Commerce-2 SFT 0.4786 0.5145 -1.6061 -1.5209 0.5492 0.5835 0.8302 0.9675 0.5689 0.7089 0.6101 0.7952
Others-1 SFT 0.4808 0.5316 -1.5613 -1.4722 0.5525 0.5834 0.8130 0.9612 0.6408 0.7231 0.6749 0.7958
Others-2 SFT 0.4500 0.5539 -1.4179 -1.5491 0.5528 0.5938 0.8009 0.9630 0.6092 0.7026 0.6139 0.7776

Table 15: Raw Results of Figure 12 on Commerce-2 Tasks

Dataset/Task Amazon/churn Amazon/rating Outbrain/ctr Rel-avito/ad-ctr Rel-avito/user-clicks Rel-avito/user-visits

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.5977 0.6580 -0.7663 -0.7007 0.4951 0.4990 -0.7430 -0.6558 0.5678 0.6187 0.6085 0.6108
Commerce-1 SFT 0.6220 0.6730 -0.7678 -0.6861 0.4966 0.5659 -0.7428 -0.6630 0.5812 0.5794 0.6000 0.6162
Others-1 SFT 0.6241 0.6634 -0.7583 -0.6824 0.5208 0.6134 -0.7418 -0.6723 0.5858 0.6229 0.6046 0.6130
Others-2 SFT 0.6278 0.6592 -0.7864 -0.7019 0.5553 0.6206 -0.7070 -0.6614 0.5724 0.6262 0.6212 0.6238

Table 16: Raw Results of Figure 12 on Others-1 Tasks

Dataset/Task Rel-f1/DNF Rel-f1/position Rel-f1/top3 Stackexchange/churn Stackexchange/upvote Virus/wnv

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.6558 0.7176 -0.6152 -0.5746 0.7676 N/A 0.7256 0.7951 0.8433 0.8772 0.6099 0.6652
Others-2 SFT 0.6820 0.7123 -0.6000 -0.5955 0.7521 N/A 0.6448 0.7691 0.8414 0.8670 0.6041 0.6335
Commerce-1 SFT 0.6492 0.7131 -0.7286 -0.6978 0.6441 N/A 0.7188 0.7552 0.8384 0.8599 0.5259 0.6075
Commerce-2 SFT 0.7123 0.7229 -0.6226 -0.5982 0.7698 N/A 0.7429 0.8111 0.8491 0.8726 0.6315 0.6564

Table 17: Raw Results of Figure 12 on Others-2 Tasks

Dataset/Task Airbnb/destination Rel-trial/site-success Rel-trial/study-adverse Rel-trial/study-outcome Talk/demo-pred Tel/severity

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.8562 0.8564 -0.9327 -0.9062 -2.5758 -1.3676 0.6283 0.6656 -2.4363 -2.4245 -0.7910 -0.5998
Others-1 SFT 0.8512 0.8548 -0.9245 -0.9246 -1.6203 -1.3474 0.5977 0.6637 -2.4396 -2.4225 -0.7844 -0.6151
Commerce-1 SFT 0.8388 0.8541 -0.9272 -0.9362 -1.8690 -1.4631 0.5729 0.6460 -2.4710 -2.4219 -0.7749 -0.6815
Commerce-2 SFT 0.8477 0.8518 -0.9357 -0.9177 -1.6238 -1.3327 0.6143 0.6599 -2.4373 -2.4139 -0.7896 -0.6112

Table 18: Raw Results of Figure 14 on Comparison with TabPFN on Commerce-1 Transfer

Dataset/Task Diginetica/ctr Rel-hm/item-sales Rel-hm/user-churn Retailrocket/cvr Seznam/charge Seznam/prepay

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.5001 0.5044 -1.2976 -1.5236 0.5383 0.5592 0.7693 0.8002 0.4250 0.7260 0.5652 0.8180
Commerce-2 SFT 0.5213 0.5904 -1.6385 -1.4594 0.5677 0.6039 0.8452 0.9576 0.5662 0.7070 0.6456 0.7816
Others-1 SFT 0.5294 0.5662 -1.8025 -1.5055 0.5552 0.5885 0.8231 0.9446 0.6284 0.7197 0.7025 0.8030
Others-2 SFT 0.5503 0.5480 -1.6472 -1.6349 0.5340 0.5693 0.8006 0.9618 0.5902 0.7098 0.7060 0.7969
TabPFN+DFS 0.6696 0.7588 -1.5817 -1.3855 0.6647 0.6746 0.7769 0.7928 0.7098 0.7289 0.7639 0.7817

Table 19: Raw Results of Figure 14 on Comparison with TabPFN on Commerce-2 Transfer

Dataset/Task Amazon/churn Amazon/rating Outbrain/ctr Rel-avito/ad-ctr Rel-avito/user-clicks Rel-avito/user-visits

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.5977 0.6580 -0.7663 -0.7007 0.4951 0.4990 -0.7430 -0.6558 0.5678 0.6187 0.6085 0.6108
Commerce-1 SFT 0.6396 0.6859 -0.7740 -0.6809 0.5102 0.5892 -0.7267 -0.6938 0.5512 0.5919 0.5779 0.6111
Others-1 SFT 0.5723 0.6675 -0.7428 -0.6754 0.5208 0.5096 -0.7134 -0.6550 0.6078 0.6056 0.6129 0.6198
Others-2 SFT 0.6231 0.6645 -0.7513 -0.6797 0.5245 0.6163 -0.7098 -0.6518 0.5481 0.5951 0.5944 0.6275
TabPFN+DFS 0.6283 0.6351 -1.0317 -1.0032 0.5211 0.5382 -0.7034 -0.6913 0.6125 0.6395 0.6380 0.6576
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Table 20: Raw Results of Figure 14 on Comparison with TabPFN on Others-1 Transfer

Dataset/Task Rel-f1/DNF Rel-f1/position Rel-f1/top3 Stackexchange/churn Stackexchange/upvote Virus/wnv

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.6558 0.7176 -0.6152 -0.5746 0.7676 N/A 0.7256 0.7951 0.8433 0.8772 0.6099 0.6652
Others-2 SFT 0.7043 0.7248 -0.7056 -0.5921 0.7900 N/A 0.7188 0.7928 0.8571 0.8731 0.5706 0.6567
Commerce-1 SFT 0.6823 0.7233 -0.6221 -0.6043 0.6831 N/A 0.6602 0.7501 0.8107 0.8597 0.6101 0.6461
Commerce-2 SFT 0.6073 0.7347 -0.6255 -0.5931 0.7679 N/A 0.7600 0.8164 0.8544 0.8745 0.5946 0.6591
TabPFN+DFS 0.7120 0.7346 -0.6587 -0.5962 0.8003 N/A 0.7886 0.8212 0.8562 0.8649 0.7666 0.7905

Table 21: Raw Results of Figure 14 on Comparison with TabPFN on Others-2 Transfer

Dataset/Task Airbnb/destination Rel-trial/site-success Rel-trial/study-adverse Rel-trial/study-outcome Talk/demo-pred Tel/severity

Size 512 4096 512 4096 512 4096 512 4096 512 4096 512 4096

No-pretrain 0.8562 0.8564 -0.9327 -0.9062 -2.5758 -1.3676 0.6283 0.6656 -2.4363 -2.4245 -0.7910 -0.5998
Others-1 SFT 0.8470 0.8561 -0.9142 -0.8952 -1.5832 -1.3246 0.6436 0.6781 -2.4407 -2.4177 -0.7716 -0.6052
Commerce-1 SFT 0.8457 0.8543 -0.9231 -0.9345 -1.9609 -1.5188 0.5583 0.6493 -2.4377 -2.4177 -0.7965 -0.6523
Commerce-2 SFT 0.8007 0.8516 -0.9363 -0.9496 -1.6756 -1.3703 0.6001 0.6567 -2.4394 -2.4164 -0.7721 -0.6266
TabPFN+DFS N/A N/A -0.9687 -0.9873 -1.9763 -1.6555 0.5861 0.6602 N/A N/A -0.8865 -0.8505
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