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Abstract

In-context learning (ICL) has emerged as a powerful paradigm for
adapting Large Language Models (LLMs) to specific tasks without
parameter updates. While various strategies exist for selecting rele-
vant ICL exemplars from a labeled pool, the fundamental challenge
of constructing this high-quality pool remains largely unexplored,
especially for new tasks or domains with limited labeled data. We
present IcCLFORGE , a novel active learning framework that effi-
ciently selects informative examples from unlabeled datasets to be
annotated and included in the ICL pool. Unlike traditional active
learning methods that optimize for individual example informative-
ness, ICLFORGE explicitly considers the interdependence of exam-
ples within the ICL context. Through extensive experiments across
diverse datasets and LLM architectures, we show that IcCLFORGE
outperforms standard active learning baselines by +180-450 basis
points while requiring 50% fewer annotations. Our framework is
complementary to existing ICL selection strategies and extends nat-
urally to generative applications, which we demonstrate through
experiments on Math Word Problem (MWP) tasks. These results
highlight IcLFORGE s effectiveness in constructing high-quality ICL
exemplar pools in resource-constrained scenarios.
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1 Introduction

Large Language Models (LLMs) [3, 11] have shown remarkable per-
formance in many real-world applications ranging from chatbots
to content generation and information retrieval. Their effectiveness
relies on in-context learning (ICL), where few carefully selected
exemplars guide the model toward desired outcomes. Unlike tradi-
tional supervised learning, incorporating ICL in a prompt doesn’t
require any parameter update - an effective solution where fine-
tuning of LLM is either prohibitively expensive or not a viable
option (LLMs with API-only access). Despite their effectiveness,
the performance of ICL greatly depends on the selection of ex-
emplars [38] and their ordering in the prompt [20], with different
sets of ICLs yielding performance ranging from nearly random to
comparable with state-of-the-art LLMs [12].

Traditional research has focused on selecting ICL exemplars
through pre-trained or fine-tuned retriever models [2, 13, 19, 28].
The retriever is invoked per query to obtain a set of exemplars
most relevant to the query. Such approaches require inference-
time retrieval of ICLs which may hinder their adoption because
of additional latency overhead. To address this latency concern,
recent research [17, 25] has focused on selecting a static set of
ICL that will work well for all queries during the inference time.
However, all previous approaches share a critical assumption that
they have access to a large pool of high-quality ICL examples to
retrieve from. In real-world settings, this assumption doesn’t hold
for multiple reasons. First, new tasks often face limited labeled
data. Second, available ICL exemplars may not adequately cover
the full spectrum of input patterns and edge cases encountered in
production. Further, real-world data distributions evolve over time,
requiring frequent updates to the ICL pool. Finally, maintaining
consistent quality standards across a large exemplar pool becomes
increasingly challenging as applications scale.

To address these challenges, we propose a novel application of
Active Learning [8, 31] to the domain of ICLs, efficiently identify-
ing and annotating the most informative examples. Active learning
for ICL ([22], [23]) presents unique challenges: the selected ex-
amples must not only be informative individually but must also
work effectively as a collective set within the ICL framework. The
framework must optimize for multiple objectives - relevance and di-
versity among selected examples, while being adaptable to different
task-specific datasets and LLM architectures.

We present ICLFORGE , a novel active learning framework specif-
ically designed to generate high-quality ICL exemplars from unla-
beled datasets. ICLFORGE combines several key innovations: 1) an
uncertainty-based pseudo-labeling strategy to bootstrap the selec-
tion process, 2) a batch-wise algorithm that optimizes for diversity
in the initial data selection and 3) a genetic algorithm-based selec-
tion mechanism that iteratively evolves sets of candidate exemplars
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Figure 1: Schematic diagram of IcLFORGE. We begin by downsampling the unlabelled data using batched MAXHERDING and
pseudo-labelling the downsampled data. In SELEcT AND EVOLVE, we compute the uncertainties of the datapoints which are used
to initialize the population in ICLFORGE . We iteratively select batches of datapoints, send them for annotation and continue
augmenting the ICL pool set until the annotation budget 5 is exhausted.

to maximize their collective utility as ICL exemplars. The genetic
algorithm specifically optimizes for both relevance and diversity
through a carefully designed fitness function. Through a thorough
and extensive set of experiments, we demonstrate that ICLFORGE
can create high-quality ICL exemplars, significantly outperform-
ing traditional active learning approaches by +180-450 bps, across
various tasks and LLMs. Notably, ICLFORGE requires 50% fewer
annotations as compared to the strongest baseline. Our work is
complementary to existing ICL selection strategies - while selection
techniques focus on choosing the most relevant examples from a
pool of labeled data, IcLFORGE addresses the fundamental chal-
lenge in creating this high-quality pool when labeled data is scarce.
Further, our approach requires minor modifications to extend to
generative tasks demonstrated in our experiments on MWP tasks.

2 Related Work

Recent advances in large language models (LLMs) based on Trans-
former architectures—such as GPT4[11] and Claude[3] —have trans-
formed NLP by enabling models with hundreds of billions of pa-
rameters to learn deep contextual representations from massive
corpora. In-Context Learning (ICL) has emerged as a powerful par-
adigm in the era of large language models (LLMs), allowing models
to learn tasks simply by observing a few input-output pairs ([6],[9]).
Broadly, ICL operates in two modes: online- per-query retrieval
and offline- task-wide selection before inference. Several works
have explored textual and similarity-based retrieval methods us-
ing models like BERT/sentenceBERT ([19],[13]) or BM25 ([2],[28]).
Others have trained retrievers, such as [16],[34], which learns to
rank demonstrations using LLM-generated scores, or [29],which
applies reinforcement learning with rewards based on confidence
and accuracy. Some works have explored approaches for ranking
and selecting ICL examples, including information gain-based scor-
ing [17], influence functions for measuring example impact on test

set performance [25], and diversity-based methods using k-means
clustering with validation set refinement [26].

Active Learning (AL) is a well-established area ([8],[31]), widely
applied across various NLP tasks such as natural language infer-
ence [32], text classification ([21],[30]), etc. Recently, AL has also
been explored in the context of In-Context Learning (ICL). For
example, [22] perform active ICL by selecting and labeling exam-
ples per query from an unlabeled pool, which are then used as
demonstrations—directly integrating AL into the ICL framework.
Traditional uncertainty-based AL techniques often rely on access
to model confidence scores, which are unavailable in black-box set-
tings, making approaches like the one in [23] less applicable, as they
use uncertainty derived from output probabilities. Alternatively,
diversity-based methods have been proposed, such as graph-based
sampling where datapoints are embedded and connected via kNN
to form a graph; nodes with the most unselected neighbors are iter-
atively chosen [33]. Building on supervised approaches,[15] trained
a regressor to predict the expected error reduction from adding
new examples to a labeled set, by learning from features that com-
bine classifier state parameters and datapoint characteristics across
multiple training iterations. Sub-SA [27] formulates data selection
as a submodular maximization problem to ensure representative-
ness and diversity in the selected subset. More aligned with our
setup, IDEAL [36] construct a semantic similarity graph and use
graph diffusion to propagate influence from initially selected points,
iteratively activating neighbors based on edge-weighted stochas-
tic processes. The subset with the highest influence score is then
selected for annotation.

3 Problem Formulation

Let 7 denote a C-way classification task defined over an input space
X and label space Y = {1, 2,...,C}. We assume black-box access to
a pre-trained large language model (LLM) ¢, which maps an input
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sequence of tokens to a distribution over output tokens. In ICL
setting, predictions for an unlabeled instance x € X are conditioned
on a set of k labeled exemplars presented in the prompt.

Motivated from an active learning setup common in industry
Nseed

settings, we begin with a seed set Dgeeq = { (x4, yi) };27*? contain-
ing Ng..q labeled examples. In addition, we are given an unlabeled
pool D, = {x; }j.\]:“l of Ny, instances, from which a subset can be
annotated to expand the exemplar pool. We assume an annota-
tion budget B, allowing us to label up to 8 instances from D,,.
Let Dg C D, denote the selected subset for annotation, where
[Dg| < B.

At test time, for each input x € Dyest, the model ¢ receives a
prompt constructed from k exemplars selected from the combined
labeled set DgeeqUD g using a fixed exemplar selection strategy V..
The model then produces a predicted label § = ¢(x | Vi (Dgeeq Y
Dg)).

Our objective is to select an optimal subset D7, that maximizes
the expected performance on the downstream task:

Dy = arg pmax E(x,y)~Dyest (M (4,9 (x | Vi(Dseed Y Dg)))]
B=u
|Dp|<8

where M is a task-specific evaluation metric, such as accuracy

or F1 score. This formulation assumes that the ICL strategy V. is
fixed and consistent across selection and evaluation.

4 Methodology

We propose an iterative active learning framework IcLForGk (Fig.
1) which performs a batch-wise selection of influential datapoints
for the purpose of optimizing In-Context Learning performance
of the LLM. Given our assumption of ample-sized unlabelled data,
we first filter the datapoints using batch-wise MaxHerding (Batch-
MaxHerding) [5]. The crucial property of MaxHerding is that it
selects datapoints by optimizing diversity. Using BatchMaxHerding,
we downsample the unlabelled data to a few thousand datapoints.
Next, we perform the pseudo-labelling of the downsampled data
using the same LLM ¢ with ICL selection strategy ‘Vj. and the ICL
pool set as the small seed set Dy,.q We initially start with.

Algorithm 1 SELEcT AND EVOLVE

Require: Annotation budget 8B, batch size b, pseudo-labeled set
D;, seed set Dg,eq, LLM ¢, ICL selection strategy Vi
Ensure: Set Dg containing B annotated examples
1: Initialize: Dy «— 0, Dg «— 0,i=1
2 Uy < CALCULATEUNCERTAINTIES(¢, D))
3. while [Dg| < B do
4 Dannotate < ICLFORGE(Dy,, Di-1, Dseed> Ux: $, Vi, b, B)
5 D{t — Z){l — Dannotate
6: Di — Dannorate Y Di-1
7 Dg — D;
8 i+l
9: end while
0: return Dg

=

Once we obtain the pseudo-labelled downsampled dataset, D},
we begin the active learning process of SELECT AND EvoLve (Fig.
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1). In order to support population initialization in IcLFORGE with
candidates containing difficult examples, we first compute the un-
certainties over the set D;, using the LLM ¢. Following the existing
works [23], we used temperature sampling to estimate uncertainties
in black-box predictions of the LLM. Recent works have shown
that uncertainty in the prediction acts as an indicator of that data-
point to be a potential hard negative. The process of SELECT AND
EvoLvE iteratively selects batches of datapoints using ICLFORGE
until the annotation budget is exhausted. The selected datapoints
are removed from the set D/, and sent for human annotation. The
annotated datapoints are then stored and used for the selection of
next batch with ICLFORGE.

Algorithm 2 IcLFORGE

Require: Remaining pseudo-labeled set D;,, selections till last

iteration D;_1, seed set Dy,,q, uncertainties Uy, LLM ¢, ICL
selection strategy Vj, batch size b, population size Q, num
steps T
Ensure: Set Dannorare containing b human annotated examples

1. Initialize: P « {I1, I, ..., o} with weighted sampling using
uncertainty scores Uy from D%, such that | 7| = min(b, B -
1Di-1))YJ € (1.Q). Zoptimat — 0. maxfit « —co

2: while T do

3. foreach 7; € £ do

4 fitness[Z;] <~ EVALUATEFITNESS(Z}, Dgeeq, Di-1, , Vi)
5. end for

6 Loptimal < argMaxyep fitness[7j]

7. maxfit « fitness[Loprimail

8  Pnew {]optimal}

9:  while |Pperw| < QO do

10: Select 7 and Z based on tournament selection
11: Obtain children, cq, cg <~ CROSSOVER(Zy, Z5)
12: for each child ¢ € {cq, cg} do

13: ¢/ « MUTATION(c)

14: Prew < Prnew U {c’}

15: end for

16:  end while

172 P — Prew

18 T «T-1

19: end while

20: Dannotate < SENDFORANNOTATION(Zy ptimal)
21: return Dannotate

Our proposed active learning algorithm IcLFORGE fundamentally
relies on genetic algorithm (GA) to perform optimal selection of
a batch of datapoints from the remaining set of datapoints D;,!.
Refer to Algorithm 2 for the detailed steps involved. Like a stan-
dard GA, we begin by initializing a population of candidates. Each
candidate is a collection of b datapoints sampled without replace-
ment from the set D], weighted by their pre-computed uncertainty
scores. For each candidate Iq, we compute its fitness score as a
combination of ExemplarFitnessScore and RedundancyScore. Exem-
plarFitnessScore measures the fitness of the candidate to act as a

!In every iteration of ICLFORGE, we select a batch of examples from the unlabelled data
and send for human annotation. Since those datapoints have already been selected,
we remove those from the unlabelled set.



CIKM °25, November 10-14, 2025, Seoul, Republic of Korea.

Malik et al.

Model AL strategy AGNEws TREC DBPEDIA INTENT
_ 0.737 (0.004)  0.6876 (0.003)  0.8906 (0.003) 0.0 (0.006)
COMPLETE  0.8624 (0.007)  0.8444 (0.011)  0.9748 (0.006)  +0.2343 (0.008)
PHId RANDOM 0.789 (0.005)  0.761(0.017)  0.9518 (0.002)  +0.2287 (0.015)
MaxXHERDING  0.7968 (0.009)  0.776 (0.007)  0.956 (0.012)  +0.2087 (0.015)
IDEAL 0.7921 (0.003)  0.776 (0.007)  0.9587 (0.003)  +0.2192 (0.038)
IcLFORGE  0.8156 (0.006) 0.8008 (0.008) 0.9702 (0.004) +0.2309 (0.005)
_ 0.8451 (0.005)  0.737 (0.009)  0.9369 (0.006)  +0.054 (0.017)
COMPLETE  0.8862 (0.007)  0.891(0.012)  0.9752(0.005)  +0.3325 (0.022)
MISTRAL-7B RANDOM 0.8611 (0.004)  0.8164 (0.016)  0.9522 (0.001)  +0.2382 (0.016)
MaxHERDING ~ 0.87 (0.005)  0.8297 (0.010)  0.9508 (0.003)  +0.2544 (0.021)
IDEAL 0.8679 (0.003)  0.844 (0.006)  0.9682 (0.005)  +0.3042 (0.029)
IcLFORGE  0.8814 (0.015) 0.8672 (0.014) 0.9717 (0.009)  +0.2994 (0.010)
_ 0.8125(0.003)  0.7518 (0.008)  0.9489 (0.002)  +0.2155 (0.024)
COMPLETE  0.8982 (0.005)  0.9219(0.007)  0.9879 (0.003)  +0.2898 (0.031)
DEEPSEEK RANDOM 0.8704 (0.001)  0.8621 (0.009)  0.9729 (0.002)  +0.2752 (0.020)
QWEN 4B h i Herping  0.8789 (0.006)  0.8722 (0.007)  0.9711(0.003)  +0.274 (0.036)
IDEAL 0.8708 (0.006)  0.8815 (0.010)  0.9814 (0.001) +0.2889 (0.019)
IcLFORGE  0.8869 (0.007) 0.8972 (0.008)  0.9802 (0.002)  +0.2875 (0.008)
_ 0.8169 (0.002)  0.8146 (0.007)  0.9592 (0.002)  +0.2191 (0.012)
COMPLETE  0.8888 (0.004)  0.932(0.009)  0.9868 (0.001)  +0.2959 (0.009)
Craupe RANDOM 0.8661 (0.005)  0.8543 (0.019)  0.9794 (0.001)  +0.294 (0.011)
Harku MaxHERDING ~ 0.8641 (0.006)  0.8584 (0.009)  0.978 (0.004)  +0.3108 (0.008)
IDEAL 0.8692 (0.000)  0.8636 (0.011)  0.9818 (0.001)  +0.2998 (0.029)
IcLFORGE  0.8802 (0.003) 0.8773 (0.004) 0.9833 (0.012) +0.3122 (0.002)

Table 1: Comparison of IcLFORGE with other active learning strategies for a fixed annotation budget of 250. The means and
standard deviations (in parentheses) of Macro F1 are computed across 3 runs. For INTENT, we provide relative improvements

over PHI4 performance in absence of any annotation budget.

set of ICL examples for the ICL selection strategy V). Note that, in
order to use the candidate as ICL set, we consider pre-computed
pseudo-labels as true labels. Using the candidate as ICL pool set, we
compute the results on the combination of the initial seed set Dg,.q
and datapoints selected and labelled till now 9;_; as our gold stan-
dard test set. This score of the candidate acts as the main objective
measure of the impact of selecting the candidate to be used as ICL
pool. We hypothesize that instances where only a few certain ex-
amples are getting selected as ICL with strategy Vj are suboptimal
candidates. Therefore, when computing the ExemplarFitnessScore,
we also measure the frequency of how many times the datapoint
from the candidate set was selected in the k-shot examples for the
strategy Vi. RedudancyEntropy is the entropy of the computed
frequencies of the datapoints in the candidate. The overall fitness
of the candidate is computed as the combination of its ExemplarFit-
nessScore and its RedundancyEntropy. Due to the combinatorial
optimization nature of the problem, we leverage GA to greedily
search for candidates with maximum overall fitness. The remaining
components of crossover and mutation in GA are kept standard.

5 Experiments and Results

In this section, we evaluate our method (ICLFORGE) on multiple
tasks. We introduce our experiment setup in Section 5.1 and discuss

Dataset  Task Type Num Classes Test Set Size
AGNEws Classification 4 2000
DBPEDpIA Classification 14 2000
TREC Classification 6 500
INTENT  Classification 9 203
GSMS8K MWP B 1303
ASD1v MWP 408

Table 2: Dataset Statistics

results in Section 5.2. We further analyze the different components
in IcLFORGE and extend it to MWP tasks in Section 6.

5.1 Experimental Setups

Datasets and Tasks: Following existing works on In-Context
Learning optimization, we employ 4 different multi-class classi-
fication tasks from different domains. For each dataset we use the
train, validation and test splits from the Transformers library. Dur-
ing the final evaluation after the ICL pool has been augmented
with active learning, we provide the results on the test split of
each dataset. Specifically, we use the AGNEws [37], TREc [18] and
DBPEDIA [4] datasets from the public domain. For classification
tasks having small labelspace, we choose AGNEws which is a 4-way
multi class classification task for classifying news headlines into
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categories like “World’, ‘Business’ etc. Similarly, we choose TREC
which is a 6-way question classification task. For datasets with
bigger label space, we select DBPEDIA as a 14-way ontology classifi-
cation task. We also benchmark our approach on an internal intent
classification dataset (INTENT) of chat utterances having 9-classes.
Refer to dataset statistics in Table 2. We use Macro F1 as the stan-
dard multi-class classification metric for these tasks. To study the
generalizability of our approach we also benchmark performance
on MWP benchmarks of GSM8x [7] and ASD1v [24] using EM% as
the evaluation metric. We provide some example prompts in Ap-
pendix A.3; however, due to space limitations, we could not include
prompts for all datasets.

Models: To understand the efficacy of IcLFORGE , we choose
a collection of models from different model families and sizes.
Under the umbrella of open-source models we choose Pu14 [1],
DEEPSEEK-QWEN-14B [10] and M1STRAL-7B [14]. From the list of
proprietary models, we choose CLAUDE-HAIKU [3]. We provide the
exact bedrock versions and huggingface model id in A.1.

Baselines: A simple approach for making selection of datapoints
from a pool of unlabelled set is to just perform a random selection
of B datapoints. We call this strategy as RaNpom . For comparison
against IcLFORGE , we consider two active learning approaches from
the literature. MAXHERDING [5] is an active learning method of
selecting datapoints by focusing on maximizing the diversity of
the selected datapoints. IDEAL [36] is an active learning strategy
which is specifically tailored for selecting unlabelled datapoints

and augmenting the ICL pool set for the purpose of optimizing the
LLM’s few-shot performance.

Note that in our results we use the ICL selection strategy, V)
fixed as the pre-trained retriever (unless specified otherwise). We
use the MiniLM [35] model to compute the embeddings and perform
the exemplar retrieval. In addition, the number of shots k are fixed
as 15.

5.2 Main Results

We provide the comparison of IcLFORGE with other active learning
strategies in Table 1 (refer to Appendix A.2 for hyperparameter
details) for an annotation budget of 250 datapoints. For reference,
we also compute results on two more setups where we assume
annotation budget is zero (denoted as active learning strategy "_")
or unlimited (CoMPLETE ). These provide an approximate lower and
upper bound of the performance for any active learning approach.
We can observe that IcLFORGE is consistently the best performing
active learning strategy or is comparable to IDEAL across all models
and datasets. For TREC , ICLFORGE is consistently outperforming
IDEAL by 250 bps. Specifically for MISTRAL, we can see that the
IcLFoRGE curated ICL set is close to the COMPLETE performance
across datasets, illustrating the effectiveness of our approach.

6 Analysis

In this section, we critically analyze the behavior of IcLFORGE and
conduct studies from various angles to understand the efficacy and
robustness of our strategy. In Section 6.1, we study the effect of
varying batch size, b for fixed annotation budget 8 in IcLFORGE .
We also study the effect of scaling annotation budget on our method
in Section 6.2. The selected batch of datapoints from ICLFORGE is
conditioned on a specific LLM and a specific ICL selection strategy.
In Section 6.3, we study the consistency of IcLFORGE across different
ICL selection strategies. In Section 6.4, we try to understand the
quality and diversity of the selected datapoints across ICLFORGE
iterations. Lastly, we show the generalizability of IcLFORGE to other
tasks in Sections 6.5.

6.1 Understanding effect of batch size in
IcLFORGE

In IcLFORGE , batch size acts as a crucial parameter since the fit-
nesses are computed over the combination of seed set Dg,eq and
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ICL Selection Strategy, V. AGNEwWSs TrREC DBPEDIA INTENT

0.7953 (0.00)
0.7912 (0.01)  0.7698 (0.00)
0.8123 (0.01)  0.7903 (0.01)
0.8287 (0.02)  0.8031 (0.01)

0.7709 (0.01)  0.9402 (0.00)
0.9354 (0.01)
0.9423 (0.02)

0.9539 (0.01)

+0.2192 (0.01)
+0.2057 (0.01)
+0.2226 (0.01)
+0.2343 (0.01)

Clustering
Label Balance
Pre-trained Retriever, MiniLM
Pre-trained Retriever, UDR

Table 3: Effect on IcCLFORGE by varying ICL selection strategy across classification tasks for PH14 . As one might expect, the

performance of ICLFORGE improves with selecting a better ICL selection strategy for the task.
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Figure 4: UMAP representations of datapoints selected with ICLFORGE vs IDEAL . Every iteration, ICLFORGE selects datapoints
(Red) and adds them to the existing set of datapoints (Grey). We can observe that for IDEAL , the selected set of datapoints

(Blue), appear to be more clustered with each other.

the examples annotated so far. If batch size is the same as total
annotation budget, there is only a single iteration of IcLFORGE to
select all 8 examples. This is sub-optimal because the size of the
seed set is very limited. Having a smaller batch size iteratively
keeps augmenting the fitness evaluation set, giving better estimates
of candidate fitnesses as iterations progress. To study the effect of
batch size, we fix an annotation budget 8 as 256 and vary the batch
sizes to obtain different ICL pool sets using IcLFORGE . In Figure
3, we scale the batch size from 16 to 256 and observe that both
very small and huge batch sizes adversely affect the performance
of our method. Given the empirical results in the figure, we select
the batch size to be 64.

6.2 Scaling the annotation budget 8 in
IcLFORGE

In another parallel study to probe IcLFORGE , we scale the annota-
tion budget. From Section 6.1, we noted that for annotation budget
of 256, batch size 64 works well with IcLFORGE , therefore, we set
the batch size to be 8/4. We execute a single run of IcLFORGE
with annotation budget 8 in [32, 64, 128, 256, 512]. We plot the per-
formance of IcLFORGE on AGNEWSs across different models for 3
active learning strategies. Interestingly, we note that IDEAL un-
derperforms when annotation budget is less than 64. ICLFORGE
consistently outperforms both IDEAL and Ranpom for Pui4 for any
annotation budget, except for B = 256 in case of MISTRAL-7B and
for 8 = 64 in DEEPSEEK-QWEN-14B . Additionally, we note that
in several places IDEAL requires 2 — 4 times more annotations for
comparable performance with ICLFORGE .

6.3 Evaluation on different ICL selection
strategies, V)

IcLFORGE involves the use of strategy Vj to obtain the fitness scores.
In this study, we try to answer the question of whether the perfor-
mance of IcLFORGE improves with better ICL selection strategy. We
benchmark the performance of IcLForGe with different Vj. during
both selection stage and evaluation stage. Specifically, we choose 4
ICL selection strategies of Clustering (computing k clusters from
the ICL set and choosing cluster means as the ICL examples), Label
Balance (using label-stratified k examples) and pre-trained retriever
(online k-shot example retrieval with either MiniLM or Unified
Demonstration Retriever, UDR [16]). We compute the results of
IcLFoRGE with these selection strategies for PH14 with 8 = 256 in
Table 3. From [16], we know that online ICL selection with UDR
performs best on the downstream task, and we observe a similar
pattern in the results in Table 3. As we improve the ICL selection
strategy, the performance of IcLFORGE automatically improves.

6.4 Diversity of datapoints selected by IcLFORGE

To answer the question of: Why are datapoints selected using
IcLFORGE construct a better ICL pool set?, we aim to measure the
quality of the selected datapoints through the lens of diversity. One
metric of measuring the quality is the evaluation results post se-
lection, however, the evaluation results appear as a black box. To
understand the quality of the selected datapoints in a more deeper
way, we plot the UMAP representations of the datapoints across
iterations to confirm whether we are indeed covering a broader
and more representative part of the data manifold. We conduct an
experiment on the TREc dataset with Pa14 and plot their UMAP
representations. In Figure 4, we can see that ICLFORGE picks up a
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Model AL Strategy GSM8k  ASDiv
_ 0.3894 0.8064

COMPLETE 0.4289 0.8529

Prr4 Ranpom 04167  0.826
IDEAL 0.4029 0.8578
IcLFORGE 0.4261 0.8662

_ 0.8749 0.8922

COMPLETE 0.8856 0.902
DEEPSEEK-QWEN-14B povnom 08836 0.9118
IDEAL 0.8895 0.9190

IcLFORGE 0.8977 0.9173

Table 4: Exact Match% comparison of AL strategies on MWP
benchmarks of GSM8k and ASD1v .

diverse selection of datapoints across the iterations, whereas, IDEAL
selects datapoints that appear to be more clustered. This re-affirms
the observations in previous works that there is indeed a correla-
tion between diversity of selected datapoints as ICL set and their
contribution towards an improved performance on the task.

6.5 Extention to other tasks

To assess the generalizability of IcLFORGE beyond classification
tasks, we extended our evaluation to mathematical word problem
(MWP) solving, which represents a more complex generative task.
We conducted experiments on two standard MWP benchmarks:
GSM8k and ASD1v . For these tasks, we employed the same ac-
tive learning strategies as in our classification experiments but
adapted the evaluation metric to Exact Match (EM%), which mea-
sures whether the model’s final numerical answer exactly matches
the ground truth. Notably, for these MWP tasks, we incorporated
chain-of-thought reasoning in both the input and exemplars. To
adapt IcLFORGE for these generative tasks, we implemented two key
modifications: (1) the fitness function now measures EM% instead
of accuracy, and (2) we incorporated reasoning chains alongside
input queries when encoding for retrieval with strategy V.

Table 4 demonstrates that the ICL set constructed by ICLForge
outperforms both RanpoM and IDEAL selection strategies on both
benchmarks when used as an ICL pool set. Interestingly, in some
cases, the ICL sets selected by our method deliver better perfor-
mance than COMPLETE sets, where we assume an unlimited an-
notation budget. This suggests that the COMPLETE set does not
represent a strict upper bound for exemplar performance, and that
active learning approaches can identify smaller, more effective sub-
sets. These experiments further validate the utility of IcLFORGE as a
general-purpose method for optimizing in-context learning across
diverse NLP applications.

7 Conclusion and Future Work

We presented ICLFORGE , a novel active learning framework for creat-
ing high-quality in-context learning exemplar set under constrained
annotation budget. Our approach identifies the most informative
examples for annotation, outperforming traditional active learning
methods across multiple classification tasks and LLM architectures.
IcLFORGE achieves comparable performance with 50% fewer anno-
tations, offering significant advantages in scenarios with limited

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea.

labeled data availability. For future work, we plan to experiment
with more open-ended generation tasks, extending capabilities of
IcLFoRGE beyond classification and MWPs. Expectedly, this would
require adapting our fitness function to evaluate generation qual-
ity and diversity, potentially incorporating metrics like ROUGE,
BLEU, etc similar to our changes in 6.5. This could help identify
exemplars that demonstrate diverse writing styles, reasoning pat-
terns, or domain-specific knowledge, further expanding the utility
of IcLFORGE across a broader range of NLP applications.

8 GenAl Usage Disclosure

In preparing this manuscript, we utilized generative Al tools solely
for editorial assistance to enhance the quality of existing text. Like
the conventional typing assistants, we employed these tools to
improve grammar, spelling, punctuation, and overall clarity. The
content, ideas, and analysis presented in this paper were devel-
oped independently without AI generation. The Al tools served
exclusively as editorial aids to refine the presentation of our work.

A Appendix

A.1 Models
Hugging Face Models:

e PHi4 : microsoft/Phi-4-mini-instruct
e MISTRAL-7B : mistralai/Mistral-7B-Instruct-v0.3
o DEEPSEEK-QWEN-14B : deepseek-ai/DeepSeek-R1-Distill-Qwen-
14B
Amazon Bedrock Models:

o CLAUDE-HAIKU : anthropic.claude-3-haiku-20240307-v1:0

A.2 Hyperparameters

For MAXHERDING, we experimented with y values of 0.1, 1.0, and
10.0, maintaining a batch size of 1. The IDEAL method was imple-
mented with 4 nearest neighbors (K=4). IcLFORGE was configured
with a population size of 128, batch size of 50, and executed 24
iterations per batch.

A.3 Prompts
A.3.1 AGNEws.

Classify the following article into one of:
- Business

- World

- Sports

- Science

Article: {icl_example_input}
Answer: {icl_example_label}

Article: {input}
Answer:
A.3.2 TREC.

Classify the questions based on whether their
answer type is a Number, Location, Person,
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Description, Entity, or Abbreviation.

Question: {icl_example_input}
Answer Type: {icl_example_label}

Question: {input}
Answer Type:
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