
LLM-STARS: LLM-Enhanced Standardization of Time-series
Analysis and Relationships in Subledgers

Wei Tang, Daksha Yadav, Xiaoli Zhang, Boyang Tom Jin
Amazon

twtang97@gmail.com, {dakyadav, zhasabri, boyanjin}@amazon.com

ABSTRACT
Financial accounting systems rely heavily on subledgers to track de-
tailed transaction records. However, modern systems often evolve
into complex architectures where different components use incon-
sistent labeling conventions, making it difficult to understand and
utilize important relationships within subledger data. This paper
presents a novel framework LLM-STARS (LLM-Enhanced Standard-
ization of Time-series Analysis and Relationships in Subledgers)
that leverages Large Language Models to enhance time series anal-
ysis of subledger data through relationship modeling. LLM-STARS
represents subledger data as a graph where financial events connect
accounting segments, while firstly using LLMs to generate standard-
ized interpretations of these events based on both their attributes
and their role in moving money through the accounting system and
then explicitly modeling relationships among subledger time series.
The framework effectively identifies two types of relationships be-
tween subledger activities: reconciliation relationships that capture
clearing/settlement patterns, and similar pattern relationships that
reflect shared business drivers. We demonstrate through extensive
experiments on enterprise testing data representative of real-world
usage patterns that incorporating these relationships significantly
improves the subledger data analysis performance as compared to
traditional univariate approaches. For example, LLM-STARS im-
proves anomaly detection F1 score from 0.516 to 0.621 (by 20.3%)
for collective seasonal outliers and decreases symmetric mean ab-
solute percentage error from 53.82 to 27.83 (by 48.3%). Moreover,
LLM-STARS provides interpretable results through with language
descriptions while maintaining the technical rigor required for
financial applications.
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1 INTRODUCTION
General ledger (GL) balances represent aggregated financial posi-
tions for various accounting elements (e.g., assets, liabilities, etc.).
The inherent aggregation within the GL necessitates supplementary
data structures to provide the requisite level of transactional speci-
ficity for operational and analytical purposes. Subledgers address
this requirement by providing a detailed breakdown of individ-
ual transactions that collectively comprise the summary balances
reported in corresponding GL control accounts. The architectural re-
lationship can be conceptualized as a one-to-many mapping, where
a single GL control account (e.g., Accounts Receivable) is supported
by numerous individual records within its associated subledger. As
illustrated in Figure 1, each subledger entry contains three distinct
categories of attributes:

(1) Source Attributes (or Financial Event Attributes): These
capture the origin and nature of transactions, including busi-
ness activities (such as sales or payments) from business
events and system-generated events (such as periodic rev-
enue recognition or accruals) from accounting regulations.

(2) Accounting Segment Attributes: These define the struc-
tural organization within the ledger system, including ac-
count numbers and classifications that distinguish between
different types of subledgers (e.g. Receivables, Inventory).

(3) Common Informative Attributes: These provide essential
transaction details such as dates, amounts, and currency
codes.

Subledger data contains crucial relationships that reflect the flow
of financial activities. These relationships manifest in two key ways:
First, as direct reconciliation, where one type of transaction in the
subledger clears or nets out another entirely or partially. For ex-
ample, as illustrated in Figure 1, a sale event creates an entry in
the Customer Advance segment, which is later cleared by a ship-
ment event. This shipment event simultaneously creates entries
in the Revenue and Tax segments, representing the recognition of
income and associated taxes when the goods are delivered. Second,
as similar patterns, where different subledger use cases share simi-
lar temporal behaviors due to similar underlying business natures.
For instance, Figure 2 shows how sale events in Customer Advance
accounts across different markets or product lines often exhibit
similar trend and seasonal patterns, reflecting shared economic
drivers or consumer behaviors. Understanding and using these rela-
tionships is essential for effective subledger data analysis. Figure 2
illustrates how these relationships can improve time series analysis:
the related time series share similar temporal patterns and could
help improve time series prediction and anomaly detection.

However, modern financial accounting systems often evolve into
complex, decentralized architectures where different components
are managed by separate business teams using inconsistent labeling
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Figure 1: Illustration of subledger activity representation: (a) A sample table showing raw subledger transaction data with
non-standardized financial event attributes (in blue columns) and accounting segment attributes (in yellow columns). b) The
same data represented as a graph where financial events (blue circles) connect to accounting segments (yellow circles). The
graph structure reveals how money flows through the accounting system - for example, sale events connect customer advance
segments to revenue segments, while refund events flow in the opposite direction. Note that the attribute names, values, and
labels are simplified for illustration purposes and do not reflect any real data.

Figure 2: Illustration of Subledger Use Case Relationships:
Similar and Reconciling relationships can improve subledger
time series analysis.

and booking conventions.1 While accounting segment attributes
adhere to a strictly defined Chart of Accounts (COA)2, financial
event attributes often lack consistency due to the complex nature
of the system. In large organizations, this complication can result
in a vast quantity (millions in some cases) of configuration rules
managed by hundreds of different teams, generating more than
hundreds of thousands distinct subledger use cases. This exten-
sive scale of non-standardization poses significant challenges for
understanding and utilizing the important relationships within sub-
ledger data. Additionally, although accounting experts can help
label and document those relationships for some example case, it is
almost impossible to scale. An automated approach to understand
subledger data and mining relationship is needed.

As illustrated in Figure 1, the non-standardization of financial
events manifests in different ways. Take one example: similar activ-
ities may be recorded with inconsistent attribute combinations. For
instance, the same sale completion events could be recorded with
different styles: one business subsidiary might record a sale event
as "sale_finalized" in the Financial Activity field, while another
1Possible Driven Factors: 1) Multiple ERP and Sub-ledger Systems working together
due to merger and acquisition 2) Heterogeneous business models and revenue streams
require different booking logic, accrual rules. 3) Different tax rules and accounting
regulations in different countries 4) Evolving accounting architectures to accommodate
those dynamic complexities.
2https://en.wikipedia.org/wiki/Chart_of_accounts

subsidiary might use "sale_completed". Other non-standardization
includes attribute names may be overloaded and used to record
different information; or repeative attributes to record the same
information.

While financial events may be labeled differently across ac-
counting systems, they share a fundamental commonality: they all
represent the movement of money between accounting segments.
Through double-entry accounting principles, these monetary move-
ments carry specific and consistent meanings that help explain both
individual financial events and their relationships to one another.

Large Language Models (LLMs) such as Claude3 have demon-
strated remarkable capabilities in understanding domain-specific
concepts and synthesizing information from various sources[17].
Those capabilities can help standardize the financial events as well
as uncover common relationship among them.

Leveraging these insights, we propose a unified framework: LLM-
Enhanced Standardization of Time-series Analysis and Relation-
ships in Subledgers (LLM-STARS) to first understand subledger data,
mining relationships among subleger use cases and then achieve
better time series analysis results. Our work makes the following
key contributions:

(1) We propose a novel graph representation of subledger data
and develop an LLM-based framework that leverages this
structure to generate standardized text representations for
subledger use cases.

(2) We introduce a systematic approach to identify and utilize
two types of relationships in subledger data: reconciliation
relationships that capture clearing/settlement patterns, and
similar pattern relationships that reflect shared business
drivers.

(3) We conduct extensive experiments on real-world subledger
data from a large company’s testing environment, demon-
strating that our relationship-aware approach significantly
improves subledger activity forecasting and anomaly detec-
tion performance.

3https://www.anthropic.com/claude
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2 RELATEDWORKS
Modeling Relationships in Time Series. Time series analysis incor-

porating relational information has been an active research area.
Recent approaches can be broadly categorized into those leveraging
deep learning to implicitly model relationships and those explicitly
modeling relationships using graphs.

Within deep learning, encoder-decoder architectures with spe-
cialized neural networkmodules are common. For instance, TimeXer
[16] employs carefully designed attention mechanisms to learn
inter-series relationships from exogenous time series, while Cross-
Former [22] utilizes a two-stage attention layer to capture inter-
series relationships alongside customized encoder and decoder com-
ponents. Although modeling relationships in a hidden embedding
space has proven effective for downstream tasks, these methods
often suffer from limited explainability.

Another significant research direction directly models relation-
ships using graphs. Connections in these graphs can be constructed
heuristically or learned end-to-end with downstream tasks, as de-
tailed in the survey by [5]. Causal graphs, a specific type of graph
also known as Bayesian networks, represent conditional distribu-
tions among variables. Examples include Dynotears[14], which
learns causal dependencies among different time series and time
lags through score-based optimization, and the approach in [20],
which transforms anomaly detection into a causal graph learning
problem to identify anomalies based on disrupted causal relation-
ships. Beyond learned relationships, domain knowledge can also
drive effective models. In cases where relationships are well un-
derstood, directly incorporating this knowledge can lead to strong
performance. MechBayes[3]’s success in the US COVID-19 Fore-
cast Hub[1] competition, where a Bayesian extension of the classic
epidemiological SEIR model outperformed complex deep learning
methods by leveraging known disease transmission patterns, ex-
emplifies this.

Finally, in the domain of accounting ledger analysis, researchers
have also explored relational modeling. [19] utilizes a Transformer-
based architecture for anomaly detection with explicit relation-
ship modeling, and [4] learns general ledger representations using
GNNs with graphs defined by double-booking entries. However,
these approaches do not fully address the challenges posed by non-
standardized financial event attributes.

LLM and Domain Knowledge Extraction. Large Language Models
(LLMs) demonstrate emergent abilities [17] to perform various tasks
beyond their initial training objectives, including domain-specific
applications. This capability creates opportunities to leverage do-
main knowledge from general-purpose LLMs for specialized tasks.
One line of research focuses on utilizing LLMs to construct knowl-
edge graphs for domain-specific information, which can then be ap-
plied to downstream tasks [2, 9]. A comprehensive overview of LLM
applications in various information extraction tasks is presented
in [18]. Another research direction explores fine-tuning or knowl-
edge distillation techniques to enhance domain-specific capabilities
in open-source or smaller LLMs. For instance, [21] demonstrates
fine-tuning an LLM for legal applications, while [12] develops a spe-
cialized LLM for time series anomaly detection through knowledge
distillation from a general-purpose model.

LLM and Time Series. Recent progress in LLMs has demonstrated
their strong capabilities in Natural Language Processing and Com-
puter Vision, sparking interest in their potential for time series anal-
ysis. However, a key challenge lies in the fact that current LLMs
are not trained on extensive time series datasets. Consequently,
their direct application to time series tasks often under-performs
compared to specialized, state-of-the-art models designed for this
domain.

To address this limitation, several approaches have emerged.
One strategy involves adapting LLM architectures to enable direct
reasoning over time series data. For example, TimeLLM [6] intro-
duces input reprogramming, effectively mapping time series data
into the textual embedding space without altering the core LLM
architecture. This method achieves competitive performance with
minimal parameter adjustments. Nevertheless, these modified ar-
chitectures can still demand considerable computational resources,
especially when compared to utilizing readily available, pretrained
LLMs. An alternative line of research explores leveraging the inher-
ent knowledge extraction abilities of LLMs to enhance downstream
time series tasks. RealTCD [11] exemplifies this by employing LLMs
to initialize causal relationship matrices for temporal causal dis-
covery in IT operations data. For a comprehensive survey of these
diverse strategies aimed at bridging the gap between time series
analysis and LLMs, readers are referred to [7, 8].

3 PRELIMINARIES
3.1 Dataset Description
In this paper, we analyze daily subledger activity summaries derived
from enterprise testing data reflecting real-world usage. While
the monetary amounts differ from production data, this dataset
preserves key characteristics of the actual system: the data volume,
the complexity of financial attributes, and the intrinsic relationships
between financial events and accounting segments.

Each record in the activity summary dataset represents a sub-
ledger use case - a unique combination of a financial event and
an accounting segment, along with its daily aggregated monetary
value. As visualized in Figure 1, these use cases can be represented
as edges in a graph, where each edge captures the flow of money
between corresponding financial event and accounting segment.
The activity summary table tracks these monetary flows on a daily
basis, creating a time series for each use case.

In this paper, we focus on the subledger dataset spanning 13
months related to a specific accounting area. The dataset comprises:

• Approximately 20,000 subledger use cases
• Around 1,000 financial events
• Approximately 3,000 accounting segments

We refer to this dataset as "SubledgerVirtualEnv" in the rest of
the paper.

3.2 Problem Formulation
Definition 3.1 (Subledger Use Case). A subledger use case 𝑆 is de-

fined by a unique combination of financial event 𝐹𝑠 and accounting
segment 𝐴𝑠 . Formally, 𝑆 = (𝐹𝑠 , 𝐴𝑠 ) where:

• 𝐹𝑠 represents the financial event, categorized by a set of
related attributes (e.g., activity, business unit, component)
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Figure 3: Overview of LLM-STARS framework. (a) First, represent subledger activity summary as a money flow graph and
generate standardized text representations for financial events and accounting segments. (b) Next, we model two types of
relationships between subledger use cases: similar pattern relationships that capture shared business drivers, and reconcilia-
tion relationships that capture clearing/settlement patterns. (c) Finally, we utilize these identified relationships to enhance
downstream tasks including time series forecasting and anomaly detection.

• 𝐴𝑠 represents the accounting segment, categorized by a set
of COA attributes (e.g., account code, company)

Definition 3.2 (Subledger Use Case Activity Time Series). For each
subledger use case 𝑠 , its time series 𝑋𝑠 = {𝑥𝑠,𝑡 }𝑇𝑡=1 represents the
daily aggregated transaction amounts, where𝑥𝑠,𝑡 is the total amount
on day 𝑡 .

Given a set of subledger use cases 𝑆 = {𝑠1, ..., 𝑠𝑛} and their
corresponding time series 𝑋 = {𝑋𝑠1 , ..., 𝑋𝑠𝑛 }. Our goal is to achieve
better time series prediction and anomaly detection through mining
the relationships within 𝑆 .

4 PROPOSED LLM-STARS METHOD
In this section, we describe the proposed LLM-STARS (LLM-Enhanced
Standardization of Time-series Analysis and Relationships in Sub-
ledgers) framework. The framework consists of three steps: 1) Gen-
erate accounting domain knowledge-rich text representations for
subledger use cases by modeling subledger activity summary as a
graph and utilizing LLMs to generate standardized representations
from the graph structure; 2) Use these representations to explicitly
model two types of relationships among subledger use cases - simi-
lar pattern relationships that capture shared business drivers, and
reconciliation relationships; 3) Leverage these relationships to per-
form enhanced subledger time series analysis including forecasting
and anomaly detection. A visualization of LLM-STARS framework
can be seen in Figure 3.

4.1 LLM Based Subledger Use Case
Representation Learning

4.1.1 Graph Construction. As illustrated by Figure 1, we represent
subledger use cases a graph 𝐺 = (𝑉𝐹

⋃
𝑉𝐴, 𝐸,𝑊 ) where:

(1) 𝑉𝐹 represents financial event nodes.
(2) 𝑉𝐴 represents accounting segment nodes.
(3) 𝐸 ⊆ 𝑉𝐹 ×𝑉𝐴 represents the set of edges. In this definition,

each edge naturally corresponding to one subledger use case
𝑒 = 𝑠 = (𝑓𝑠 , 𝑎𝑠 ).

(4) 𝑊 : 𝐸 → R assigns weights to edges, where for each sub-
ledger use case 𝑠 :𝑊 (𝑠) = ∑𝑡0+𝑁

𝑡=𝑡0
𝑥𝑠,𝑡 , where 𝑥𝑠,𝑡 is the trans-

action amount in subledger use case 𝑠 on day 𝑡 . The sign
of𝑊 (𝑠) indicates the direction of money movement: posi-
tive values represent money flowing from financial events
to accounting segments, while negative values indicate the
reverse flow.

4.1.2 Context Collection. For each node 𝑣 ∈ 𝑉𝐹 ∪𝑉𝐴 , we collect
context 𝐶 (𝑣) from its local neighborhood 𝑁 (𝑣):

𝐶 (𝑣) = 𝑎𝑡𝑡𝑟 (𝑣) ∪
⋃

𝑢∈𝑁 (𝑣)
{𝑎𝑡𝑡𝑟 (𝑢), 𝑒𝑑𝑔𝑒 (𝑣,𝑢)} (1)

where 𝑎𝑡𝑡𝑟 (𝑣) represents the node’s attributes and partial in-
ternal description, and 𝑒𝑑𝑔𝑒 (𝑣,𝑢) contains the edge information
(amount and direction) between nodes 𝑣 and 𝑢.

For computational efficiency, when |𝑁 (𝑣) | > 𝑘 (where 𝑘 is a
threshold), we sample 𝑘 neighbors with probability proportional to
log( |𝑊 (𝑒) | + 1), where𝑊 (𝑒) is the edge weight and the offset of 1
ensures positive sampling weights.

4.1.3 Node Description and Label Generation. We employ a three-
stage process to generate standardized descriptions and labels:

(1) Node Description Generation: Generate comprehensive
descriptions by aggregating neighborhood information:

𝑆 (𝑣) = 𝐿𝐿𝑀 (𝐶 (𝑣), {𝐶 (𝑢) : 𝑢 ∈ 𝑁 (𝑣)}) (2)

where 𝑆 (𝑣) is a natural language description incorporating
both the node’s context 𝐶 (𝑣) and its neighbors’ contexts
{𝐶 (𝑢)}. This semantic aggregation is analogous to neighbor-
hood aggregation in GCNs, but produces textual descriptions
rather than numerical embeddings.

(2) Label Space Generation: Create a standardized set of labels
with descriptions:

𝐿 = {(𝑙𝑖 , 𝐷 (𝑙𝑖 ))}𝑘𝑖=1 = 𝐿𝐿𝑀 ({𝑆 (𝑣) : 𝑣 ∈ 𝑉𝐹 ∪𝑉𝐴}) (3)
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where 𝐿 represents the unified label space, with each label
𝑙𝑖 paired with its standard description 𝐷 (𝑙𝑖 ). This step iden-
tifies common patterns across node descriptions, similar to
clustering centers or topic themes. For computational ef-
ficiency with large numbers of financial event nodes, we
employ a divide-and-conquer approach to merge similar de-
scriptions and generate the label space. Details can be see in
the Appendix A.1.

(3) Label Assignment:Map nodes to appropriate labels:

𝑙𝑎𝑏𝑒𝑙 (𝑣) = 𝐿𝐿𝑀 (𝑆 (𝑣), {(𝑙𝑖 , 𝐷 (𝑙𝑖 ))}𝑘𝑖=1) ∈ 𝐿 (4)

where each node is assigned a label from the unified space
based on semantic similarity between its description 𝑆 (𝑣)
and the standard label descriptions 𝐷 (𝑙𝑖 ).

Detailed prompt examples can be seen in Appendix A.2. Appen-
dix A.3 shows an example of the final standardized text representa-
tion of a financial event.

4.2 Explicit Subledger Use Case Relationship
Modeling

With standardized representations of financial events and account-
ing segments, we can explicitly model relationships among sub-
ledger use cases to enhance time series analysis. For each use case
𝑠 = (𝑓𝑠 , 𝑎𝑠 ), we combine the semantic descriptions of its financial
event node and accounting segment node to identify meaningful
relationships with other use cases.

4.2.1 Related Time Series Identification. We identify two types of
relationships between subledger use cases:

(1) Reconciliation Relationships: These capture pairs of fi-
nancial events that typically clear or settle each other.

(2) Similar Pattern Relationships: These identify events that
exhibit similar behavioral patterns due to shared business
drivers.

For similar pattern relationships, we search semantically similar
use cases using embedding-based search:

𝑅𝑠𝑖𝑚𝑖𝑙𝑎𝑟 (𝑠) = TopK({𝑠𝑖 |𝑠𝑖𝑚(𝑠, 𝑠𝑖 ), 𝑠𝑖 ∈ 𝑆𝑎𝑙𝑙 \ {𝑠}, 𝑘) (5)

Reconciliation relationships cannot be directly searched using
the original event representation. We have to generate the repre-
sentations of the potential reconciliation events to search them. In
other words, we need to get a text description for possible reconcil-
iation events. This is done by a LLM call. Prompt example can be
seen in Appendix A.2. Therefore, we apply a two-step approach:

𝑅𝑟𝑒𝑐𝑜𝑛 (𝑠) = TopK({𝑠𝑖 |𝑠𝑖𝑚(𝑠𝑖 , 𝐷𝑟𝑒𝑐𝑜𝑛 (𝑠)), 𝑠𝑖 ∈ 𝑆𝑎𝑙𝑙 \ {𝑠}}, 𝑘) (6)

where 𝐷𝑟𝑒𝑐𝑜𝑛 (𝑠) is an LLM-generated description of events that
could potentially reconcile with 𝑠 (Appendix A.4 shows one exam-
ple). Topk similar search is achieved by embedding search of the
text representations of the query and candidate. Encoder can be
any encoder that support long text embeddings.

4.3 Relationship Enhanced Subledger Time
Series Analysis

4.3.1 Time Series Forecasting. We leverage these identified rela-
tionships to enhance time series forecasting:

𝑦𝑠 (𝑡) = 𝑓 (𝑅𝑟𝑒𝑐𝑜𝑛 (𝑠), 𝑅𝑠𝑖𝑚𝑖𝑙𝑎𝑟 (𝑠), 𝑡) (7)
where 𝑦𝑠 (𝑡) is the forecasted activity for use case 𝑠 at time 𝑡 ,

and 𝑓 is a forecasting function that incorporates information from
related time series.

In our implementation, we utilize Facebook Prophet [15] as our
base forecasting model, which decomposes time series into trend,
seasonality, and holiday components. Prophet is renowned for its
interpretability and scalability, making it an ideal foundation model
for evaluating the subledger relationships identified in the previous
section. We incorporate the reconciliation and similarity relation-
ships as exogenous variables in the Prophet model, allowing it to
capture both accounting-specific patterns and broader behavioral
similarities.

4.3.2 Anomaly Detection. We detect anomalies by comparing pre-
diction errors normalized by the width of the prediction interval:

𝐴(𝑠, 𝑡) = |𝑦𝑠 (𝑡) − 𝑦𝑠 (𝑡) |
𝑢𝑠 (𝑡) − 𝑙𝑠 (𝑡)

(8)

where 𝑦𝑠 (𝑡) is the actual value at time 𝑡 ; 𝑦𝑠 (𝑡) is the point pre-
diction; [𝑙𝑠 (𝑡), 𝑢𝑠 (𝑡)] is the prediction interval.

An anomaly is flagged when 𝐴(𝑠, 𝑡) > 𝜏 . This approach normal-
izes the prediction error by the model’s uncertainty (represented
by the prediction interval width), meaning that a given prediction
error is considered more significant when the model is more cer-
tain (narrow prediction interval) than when it is less certain (wide
prediction interval).

5 EXPERIMENTAL ANALYSIS
Due to the lack of labeled data, we cannot directly evaluate the
quality of LLM-generated text representations and identified re-
lationships between subledgers. Instead, we perform an indirect
evaluation by measuring the effectiveness of these representations
and relationships when applied to two downstream tasksmentioned
in section 4.3. This section presents our experimental methodology,
evaluation metrics, and empirical results.

5.1 Implementation Details
5.1.1 Backbone Models. LLM-STARS is designed to be compati-
ble with various large language models. In this implementation,
we utilize Anthropic’s Claude 3.7 Sonnet model4 for LLM related
operations. For encoding node descriptions and potential recon-
ciliation event descriptions, we employ the titan-embed-text-v25.
However, it’s worth noting that our framework allows for the use
of alternative encoders as needed.

5.1.2 Time series Forecasting. Weevaluate forecasting performance
of LLM-STARS using 13 months’ data from the "SubledgerVir-
tualEnv" dataset described in section 3.1. Each experiment uses
the first 12 months as the training period and the last month as the
evaluation period. The forecasting problem is framed as a multi-
horizon task, where the horizon length equals the number of days in
the evaluation month. After filtering out the use cases that does not

4https://www.anthropic.com/news/claude-3-7-sonnet
5https://huggingface.co/amazon/Titan-text-embeddings-v2

https://www.anthropic.com/news/claude-3-7-sonnet
https://huggingface.co/amazon/Titan-text-embeddings-v2
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have enough historical data for analysis, our experiments includes
approximately 4,000 use cases.

We utilize Prophet python package6 to implement the forecasting
and anomaly detection. We configure all models with both weekly
and monthly seasonality components enabled while maintaining
default values for all other parameters. We model relationships
between subledger use cases by incorporating related time series
as additional regressors in the Prophet model. During forecasting,
the future values of these related time series are made available to
the model, allowing it to generate predictions conditioned on the
expected behavior of related activities.

5.1.3 Anomaly Detection. Since we employ prediction-based anom-
aly detection, it is a natural extension of the time series forecasting
setup. However, due to the inherent scarcity of labeled anomaly
data, we employed a data synthesis approach to generate anoma-
lous data points for our experiments. Following [10], we created
synthesized point-wise and pattern-wise anomalies. Point-wise
anomalies consist of single outliers with respect to their local and
global time series data, while pattern-wise anomalies include out-
liers that exhibit unexpected changes in seasonality, shape, and
trends. We generate anomaly data for all five scenarios, perform
anomaly detection, and report metrics for each scenario separately.
We calculate the anomaly score as described in Section 4.3.2 and
report anomalies at the point level with thresholds ranging from
0.001 to 50.

5.2 Baselines And Ablations
To evaluate the effectiveness of LLM-STARS framework and ana-
lyze the contribution of each component, we compare against the
following baseline methods and conduct ablation studies:

5.2.1 Baseline Methods:

(1) Univariate Forecasting: A traditional approach that treats
each subledger use case independently, using only its own
historical data for forecasting. This serves as our primary
baseline to demonstrate the value of incorporating relation-
ship information.

(2) Time Series Similarity-Based: This method identifies re-
lated time series through direct similarity computation (co-
sine similarity) on historical time series, without utilizing any
semantic information. This baseline helps evaluate the ben-
efit of our LLM-based relationship identification approach
compared to purely statistical methods.

5.2.2 Ablation Studies:

(1) No Neighborhood Information: Removes the neighbor-
hood context during node description generation, using only
the node’s own attributes. This ablation tests the importance
of incorporating local graph structure in generating compre-
hensive node descriptions.

(2) No Standardization: Skips the financial event standardiza-
tion step, using raw descriptions without merging similar
events. This helps quantify the impact of our event standard-
ization process on downstream tasks.

6https://facebook.github.io/prophet/

(3) No Reconciliation Relationships: Only considers similar
pattern relationships while excluding reconciliation relation-
ships. This ablation evaluates the specific contribution of
accounting-domain-specific reconciliation patterns to the
model’s performance.

5.3 Evaluation Metrics
5.3.1 Time Series Forecasting. For subledger activity forecasting,
we utilize the following commonly used metrics: symmetric mean
absolute percentage error (sMAPE), mean absolute scaled error
(MASE), and scaled interval score (SIS), which are also employed in
popular time series forecasting evaluations such as the M4 compe-
tition [13]. Detailed metric definitions are provided in Appendix B.
sMAPE and MASE measure point-wise forecasting accuracy, while
SIS assesses interval forecasting accuracy. SIS and MASE are scaled
by the prediction error of a naive model that assumes the time se-
ries exhibits stable seasonality, using the data point from the latest
seasonal period as the prediction. Consequently, these metrics are
controlled by a parameter 𝑆 , representing the seasonality lag of
the naive model. Given that we lack precise information regard-
ing the seasonality of our data, we choose to evaluate our models
using multiple values for 𝑆 : 1 (no seasonality, using the last seen
data point as the naive prediction), 7 (weekly seasonality), and 30
(monthly seasonality). To mitigate the impact of extremely good or
bad outliers, we aggregate the metrics using the geometric mean.

5.3.2 Anomaly Detection. For evaluating anomaly detection per-
formance, we employ two complementary metrics: F1 score and
Area Under the Curve (AUC) score. To calculate the F1 score, we
first determine the optimal threshold on a validation dataset. The
AUC score, which is threshold-independent, measures the model’s
ability to distinguish between normal and anomalous points across
all possible threshold values. The combination of both F1 and AUC
scores provides a comprehensive evaluation of our anomaly detec-
tion system’s performance.

5.4 Results
This section presents the empirical evaluation of the proposed
LLM-STARS framework on the SubledgerVirtualEnv dataset. We
assess its performance on two key downstream tasks: time series
forecasting and anomaly detection. The quantitative results for
these tasks are summarized in Tables 1 and 2, respectively.

5.4.1 Time Series Forecasting. Table 2 presents the time series fore-
casting performance of LLM-STARS and the comparative methods
on the SubledgerVirtualEnv dataset. We report the symmetric Mean
Absolute Percentage Error (sMAPE), Mean Absolute Scaled Error
(MASE) with seasonality lags of 1, 7, and 30, and the Multiscale
Interval Score (MSIS) with the same seasonality lags. These metrics
provide insights into both point forecast accuracy and prediction
interval quality.

The results demonstrate that LLM-STARS consistently outper-
forms all baseline and ablation methods across all forecasting met-
rics. It achieves the lowest sMAPE (27.8275) and MASE values for
all seasonality lags (0.2584, 0.2769, and 0.1849), indicating more
accurate point forecasts. Furthermore, LLM-STARS also yields the
lowest MSIS values (2.3841, 2.5544, and 1.7057), suggesting better

https://facebook.github.io/prophet/
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Table 1: Anomaly Detection Accuracy on SubledgerVirtualEnv Dataset with Synthetic Anomalies. Experiments are done in five
anomaly situations. AUC and F1 score reported in each anomaly situation.

anomaly_type collective_global_outliers collective_seasonal_outliers collective_trend_outliers point_contextual_outliers point_global_outliers
metric AUC F1 AUC F1 AUC F1 AUC F1 AUC F1
method

ablation_no_neighbor 0.721 0.534 0.786 0.617 0.610 0.616 0.723 0.503 0.852 0.646
ablation_no_recon 0.721 0.530 0.786 0.615 0.610 0.616 0.722 0.502 0.852 0.646
ablation_no_standardization 0.706 0.522 0.775 0.612 0.606 0.615 0.716 0.495 0.846 0.634
baseline_univariate 0.510 0.452 0.628 0.516 0.556 0.610 0.586 0.410 0.786 0.542
baseline_ts_similarity 0.706 0.506 0.773 0.579 0.603 0.612 0.698 0.471 0.847 0.637
Proposed LLM-STARS 0.723 0.535 0.789 0.621 0.612 0.615 0.728 0.508 0.855 0.649

calibrated and more informative prediction intervals. These results
indicate that directly leveraging LLM-enhanced representations
and relationships provides a more effective foundation for accurate
time series forecasting in the subledger context.

5.4.2 Anomaly Detection. Table 1 details the anomaly detection
accuracy of LLM-STARS and several baseline and ablation methods
across five distinct synthetic anomaly scenarios: collective global
outliers, collective seasonal outliers, collective trend outliers, point
contextual outliers, and point global outliers. For each scenario, we
report the Area Under the Curve (AUC) and F1 score, providing a
comprehensive view of the detection performance.

The results clearly indicate that LLM-STARS achieves the high-
est performance across the majority of anomaly types. Specifically,
LLM-STARS yields the best AUC scores in all five anomaly scenarios
(0.723, 0.789, 0.612, 0.728, and 0.855) and the highest F1 scores in four
out of the five scenarios (0.535, 0.621, 0.508, and 0.649). This consis-
tent superiority highlights the effectiveness of the LLM-enhanced
representations and identified subledger relationships in accurately
distinguishing anomalous patterns from normal behavior.

In contrast, the baseline methods, including the univariate base-
line and the time series similarity-based baseline, generally exhibit
lower performance. For instance, the univariate baseline struggles
significantly across all anomaly types, demonstrating the impor-
tance of considering multivariate relationships captured by LLM-
STARS.

The consistent superior performance of LLM-STARS across both
anomaly detection and time series forecasting tasks underscores the
effectiveness of leveraging LLMs to generate meaningful represen-
tations of subledger activity and to model the intricate relationships
between them. The ablation studies further validate the contribu-
tion of each component within the proposed framework. These
empirical results strongly support the potential of LLM-STARS as a
robust and versatile framework for analyzing and understanding
complex subledger data.

The only exception is trend anomalies where LLM-STARS has
very close performances with all other setups. This indicates that
the trend anomaly is easier to detect than other anomaly types. The
most striking improvement comes from incorporating relationship
information into the modeling process, regardless of how these
relationships are identified. This is evidenced by the significant
performance gap between relationship-aware methods and the
univariate baseline. Although simply finding relationships from
time series similarities can achieve much better performance than
univariate time series modeling, the performance improvement
is smaller than approaches using semantic accounting use case

Table 2: Time-series forecasting performance on Sub-
ledgerVirtualEnv Dataset

method sMAPE mase1 mase7 mase30 msis1 msis7 msis30
ablation_no_neighbor 28.4163 0.2598 0.2783 0.1859 2.3962 2.5674 1.7144
ablation_no_recon 28.7364 0.2688 0.2880 0.1923 2.4369 2.6110 1.7435
ablation_no_standardization 31.5136 0.3328 0.3566 0.2381 2.9748 3.1873 2.1283
baseline_univariate 53.8155 1.3002 1.3931 0.9302 9.6294 10.3173 6.8894
baseline_ts_similarity 32.4568 0.6044 0.6476 0.4324 4.0327 4.3207 2.8852
Proposed LLM-STARS 27.8275 0.2584 0.2769 0.1849 2.3841 2.5544 1.7057

relationships. Pairwise similarities cannot efficiently improve time
series analysis when multiple regressors are present. Moreover, the
similarity-based approach lacks the interpretability offered by our
LLM-basedmethod, which providesmeaningful accounting-domain
explanations for identified relationships.

5.5 Ablation Analysis
Impact of Standardization. Among all ablations, removing event

description standardization leads to the most significant perfor-
mance degradation. This highlights the importance of maintaining
consistent representations across financial events. The standard-
ization process, which uses a single LLM call to generate unified
representations, effectively bridges the variation in initial individ-
ual LLM outputs. Additionally, this step serves as an implicit form
of neighborhood information aggregation, as the standardization
prompt considers multiple events within an account simultane-
ously.

Impact of Neighborhood Information. The relatively modest im-
provement from explicit neighborhood information aggregation
suggests that, in our experimental dataset, the attribute names and
values already contain substantial information. The standardization
step’s implicit neighborhood consideration may also contribute to
this effect. Nevertheless, the consistent, albeit small, performance
improvements indicate that neighborhood information remains
valuable for generating more comprehensive representations.

Impact of Reconciliation Relationships. While reconciliation rela-
tionships show positive but modest improvements, this may under-
sell their potential value. Our current implementation focuses on
one-to-one reconciliation patterns, but real-world reconciliations
often involve more complex relationships. For example, a single
bank deposit use case might reconcile with multiple credit card
receivable use cases across different business units. Future work
extending the model to capture these hierarchical relationships
could yield more substantial improvements.
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6 CONCLUSION
In this paper, we presented a novel framework that leverages Large
Language Models to enhance time series analysis of subledger data
through relationship modeling. Our approach addresses the funda-
mental challenge of non-standardized financial event representa-
tions in complex accounting systems and explicit relationship mod-
elling using LLM. The framework successfully standardizes diverse
financial event representations while preserving their accounting
significance, effectively identifies meaningful relationships between
subledger use cases including both reconciliation pairs and sim-
ilar pattern relationships, and achieves superior forecasting and
anomaly detection performance compared to univariate approaches.
Importantly, the framework provides interpretable results through
natural language descriptions that align well with human expert
annotations.

Looking ahead, several promising directions for future research
emerge. First, while our current time series analysis approach fo-
cuses on simple short-term (daily) reconciliation patterns, extend-
ing the framework to capture longer-term relationships could pro-
vide valuable insights for complex accounting cycles and delayed
settlements. This could be done by choosing other multivariate
time-series analysis models. Second, the relationships identified
in our current work could be enhanced by incorporating explicit
accounting knowledge graphs. This would enable representation
of hierarchical relationships between accounting concepts, integra-
tion of regulatory requirements and compliance rules, and more
sophisticated reasoning about transaction flows and their implica-
tions.
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A PROMPTING
A.1 Label Space Generation
Due to prompt input size limitations, it is impractical to process all
event descriptions simultaneously. We therefore employ a divide-
and-conquer strategy to generate the label space efficiently:

(1) First, we group financial events by their associated account
numbers, as events related to the same account typically
serve similar business purposes

(2) Within each account number, we randomly batch the event
descriptions and use LLM to generate labels for each batch

(3) A final consolidation step merges these account-specific la-
bels to create the complete label space

The label generation process is conceptually similar to a cluster-
ing problem, where we can control the granularity through careful
prompt engineering. In our implementation, we specifically design
prompts to maintain meaningful distinctions between financial
events. For example, we include instructions like "Labels should
be distinguishable to recognize each key event in a life cycle. Do
not group activities that might clear/reconcile each other." This
ensures that the resulting labels capture functionally distinct ac-
tivities, particularly those that may be involved in reconciliation
relationships.

A.2 Prompt Examples
A.2.1 Node Description. Template used to generate text descrip-
tion for financial event nodes and accounting nodes

Given a accounting segment/financial event defined by:
* Key value mappings: {ATTRIBUTE KEY VALUE MAPPING}
* Chart Of Account: {COA VALUE DESCRIPTIONS} (This only exist when
describing accounting segment nodes)
And its associated financial events/accounting segment summary:
{A TABLE WITH EDGES AND NEIGHBORS INFO}
As an accounting expert, you need to document this ledger seg-
ment/financial event from the following aspects:
1. The meaning of the segment/event
2. The segment/event’s core function in the accounting workflow
3. Financial events that manages this segment. / Accounting segments that
are managed by this event.
Expected response format: <Description> [Structured technical analysis of
the segment] </Description>
**Notes**: {SOME ADDITIONAL NOTES} (For example, keep in mind the
data in the table may not be complete so do not entirely rely on the num-
bers.)

A.2.2 Label Space Generation. Template used to merge financial
event node and generate a labelling space:

{EVENT LIST}
The above are {EVENT NUMBER} summaries for financial events which
trigger ledger booking. As an accountant, you are standardizing those event
(Analyze the events and merge similar ones) and generate labels for them.
Each label should be accompanied by a description to explain the detailed
meaning of the event such as the functional purpose of it and the role it
plays in accounting cycle.
Your output should be in the following format:
<Events> <Event> <Label> [Event label you choose] </Label> <Description>
[Description of the event] </Description> </Event> </Events>
**Notes**: {SOME ADDITIONAL NOTES}

A.2.3 Label Assignment. Prompt to assign one label to each finan-
cial event

{EVENT TO LABEL}
{POSSIBLE LABELS}
The above is an Event Description and all possible event labels that the
event could belong to. The event is related to an account: {ACCOUNT
DESCRIPTION}. Event descriptions are summaries of the events provided
by accounting experts.
As an accounting expert, you are going to label each event. You have done
the first step to list all of the labels and create a detailed explanation for it
(see PossibleLabels above). Now you need to assign one label to each event.
Output the result in the following format <Label></Label>
**Notes**: {SOME ADDITIONAL NOTES}

A.2.4 Possible Recon Events Description. Prompt to extract descrip-
tions of events that may clear/reconcile with the target event:

**Subledger Account Info**: {ACCOUNT INFO}
**Financial Event Info**: {EVENT INFO}
The above label and description pair represents a financial event that books
to a subledger account (see account info above). As an accounting expert,
you are doing reconciliation for this event. The first step is to write a
description to represent the possible events IN THE SAME ACCOUNT that
clears or reconciles this event.
Output in the following format <Description></Description>
**Notes**: {SOME ADDITIONAL NOTES}

A.3 Standardized Event Representation
Example

<Label> Customer Advance - Retail Performance Obligation Fulfillment
</Label>
<Description> This event occurs when *** fulfills its performance obliga-
tion to customers (by delivering goods or services) for which payment was
previously received and recorded as a customer advance. The transaction
decreases the *** liability account through negative transaction amounts
(for liability reduction), effectively converting the advance payment lia-
bility into recognized revenue. This event represents the completion of
the revenue recognition process where the previously recorded liability
is cleared as *** satisfies its performance obligation to the customer. This
typically occurs when orders that were previously paid for are shipped or
delivered. </Description>

A.4 Possible Recon Events Description Example

The reconciling events would be those that initially establish the customer
advance liability in the *** account. These would include customer pay-
ment receipts or settlement confirmations from payment processors for
goods or services that *** has not yet delivered or fulfilled. These initial
events would create positive transaction amounts in this liability account,
representing funds received in advance of *** completing its performance
obligations. When these advance payments are recorded, they increase the
liability balance, which is later reduced when the "Customer Advance -
Retail Performance Obligation Fulfillment" event occurs. The full reconcili-
ation cycle involves matching the initial customer advance receipts with
their corresponding fulfillment events to ensure all customer advances are
properly converted to revenue once performance obligations are satisfied.
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B TIME SERIES FORECASTING METRICS
DETAIL

sMAPE =
200
𝐻

𝐻∑︁
ℎ=1

|𝑦ℎ − �̂�ℎ |
|𝑦ℎ + �̂�ℎ |

MASE =
1
𝐻

𝐻∑︁
ℎ=1

|𝑦ℎ − �̂�ℎ |
1

𝐻−𝑆
∑𝐻

𝑗=𝑆+1 |𝑦 𝑗 − �̂� 𝑗−𝑠 |

SIS =
1
𝐻

∑𝐻
ℎ=1 (𝑢ℎ − 𝑙ℎ ) + 2

𝛼
(𝑙ℎ − 𝑦ℎ )𝐼 𝑦ℎ < 𝑙ℎ + 2

𝛼
(𝑦ℎ − 𝑢ℎ )𝐼 𝑦ℎ > 𝑢ℎ

1
𝐻−𝑆

∑𝐻
𝑗=𝑆+1 |𝑦 𝑗 − 𝑦 𝑗−𝑆 |

(9)

Where ℎ is the forecast horizon, from 1 to 𝐻 ; 𝑦ℎ is the actual
value at horizon ℎ; 𝑦ℎ is the predicted value at horizon ℎ; 𝑢ℎ and
𝑙ℎ are the upper and lower bounds of the prediction interval at
horizon ℎ; 𝑆 is the seasonal period; 𝛼 is the significance level for
the prediction interval (𝛼 = 0.05 in our experiments.).
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