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We demonstrate a superconducting artificial atom with strong unidirectional coupling to a mi-
crowave photonic waveguide. Our artificial atom is realized by coupling a transmon qubit to the
waveguide at two spatially separated points with time-modulated interactions. Direction-sensitive
interference arising from the parametric couplings in our scheme results in a non-reciprocal response,
where we measure a forward/backward ratio of spontaneous emission exceeding 100. We verify the
quantum nonlinear behavior of this artificial chiral atom by measuring the resonance fluorescence
spectrum under a strong resonant drive and observing well-resolved Mollow triplets. Further, we
demonstrate chirality for the second transition energy of the artificial atom and control it with a
pulse sequence to realize a qubit-state-dependent non-reciprocal phase on itinerant photons. Our
demonstration puts forth a superconducting hardware platform for the scalable realization of sev-
eral key functionalities pursued within the paradigm of chiral quantum optics, including quantum
networks with all-to-all connectivity, driven-dissipative stabilization of many-body entanglement,
and the generation of complex non-classical states of light.

Introduction

Chiral light-matter interfaces have been long studied
in quantum optics [1, 2] and promise a myriad of po-
tential opportunities for developing quantum networks
with long-range connectivity [3–5], and generating novel
many-body entangled states of light [6, 7] and mat-
ter [8, 9]. Light-matter interaction is said to be chi-
ral when the scattering of a photon from an atom de-
pends strongly on the photon’s propagation direction
in a one-dimensional (1D) waveguide [10]. This break-
ing of the symmetry of atom-waveguide coupling to the
right and left propagating modes gives rise to a range
of unique phenomena. For example, a resonant pho-
ton impinging on a chiral atom strongly coupled to a
1D waveguide acquires a non-reciprocal π phase shift
conditioned on the state of the atom. This remark-
able effect can be exploited to realize entangling gates
between distant stationary qubits mediated by itinerant
photons [11, 12]. In the paradigm of waveguide quantum
electrodynamics (QED), coupling several chiral two-level
systems to a common waveguide results in novel col-
lective spin dynamics and the formation of exotic non-
equilibrium phases of entangled spin clusters [9]. Con-
versely, complex non-classical states of light such as mul-
tidimensional cluster states and Fock states can be gener-
ated efficiently using protocols that rely on deterministic
chiral atom-photon interactions [7, 13].

Chiral atom-photon interfaces have been realized in
the optical domain by coupling atoms and solid-state
quantum emitters to nanophotonic structures, where the
strong confinement of light results in the locking of the
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local polarization of a photon to its direction of propa-
gation [10, 14–18]. Despite remarkable progress in these
systems, achieving strong unidirectional coupling with a
chain of emitters remains challenging due to the rela-
tive weakness of interactions in the case of single atoms
and the environment-induced frequency disorder of solid-
state emitters. More recently, artificial atoms based
on superconducting qubits have emerged as a powerful
platform for waveguide QED in the microwave domain.
These systems offer control over individual emitters and
their coupling to the environment, as well as the abil-
ity to tailor the dispersion of the electromagnetic modes
in waveguides. Additionally, the relatively large wave-
length of radiation at the GHz band allows for the pre-
cise placement of atoms along a waveguide to control
photon-mediated interactions and collective dissipation
[19, 20]. These advantages have enabled several demon-
strations of waveguide QED phenomena with supercon-
ducting artificial atoms, including resonance fluorescence
[21–23], Dicke super- and sub-radiance[19, 20, 24], for-
mation of qubit-photon bound states [25, 26] and the re-
alization of long-range waveguide-mediated coupling for
many-body quantum simulations [27]. Despite this rapid
progress, studying chiral quantum optics with supercon-
ducting qubits remains challenging due to the lack of an
efficient unidirectional interface for microwave photons.

Nonreciprocal transport of microwave photons is pos-
sible using devices based on ferro/ferrimagnetic materi-
als, which break Lorentz reciprocity. Recently, three-
dimensional qubit-cavity systems have successfully real-
ized chiral interactions using this approach [28]. How-
ever, ferromagnetic devices such as circulators are not
suitable for on-chip integration due to their size, large
magnetic fields, and typically lossy response. Alterna-
tively, low-loss nonreciprocal components have been re-
alized using synthetic gauge fields [29–32]. While these
experiments demonstrate the non-reciprocal propagation
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of microwave photons, a simple and scalable approach
for realizing on-chip chiral interactions with supercon-
ducting qubits remains desirable. More recently, unidi-
rectional emission and absorption of microwave photons
have been proposed [11, 33, 34] and demonstrated [35–37]
using a pair of entangled qubits. However, relying on the
interference of the emission from two distinct physical
qubits limits the chiral behavior to weak drives where
at most a single photon is exchanged with a radiative
bath. This diluted quantum nonlinear response forbids a
direct realization of strongly driven-dissipative quantum
systems.

Here, we experimentally demonstrate a chiral artificial
atom consisting of a transmon qubit coupled to a trans-
mission line at two spatially separated points, operating
in the so-called giant-atom regime [38–41]. The emitted
field components from the two coupling points are im-
parted a relative phase using time-modulated parametric
couplings. In this setting, chirality arises from the in-
terference between the two emission pathways resulting
from the phase difference from the parametric couplings
and the direction-dependent phase delay from propaga-
tion in the waveguide. We show highly directional atom-
waveguide coupling, with the rate of spontaneous emis-
sion to the forward propagating modes exceeding that
of backward propagating modes by more than two or-
ders of magnitude. Relying on a single physical qubit as
the emission source, our scheme is robust against deco-
herence and preserves quantum nonlinear response under
strong drives. We demonstrate this quantum nonlinear-
ity using resonance fluorescence measurements and ob-
serve Mollow triplets under a strong resonant drive. The
chiral response is further shown to be continuously tun-
able and extends to the transmon qubit’s second transi-
tion (|e〉 −→ |f〉). Finally, we use time-dimain control to
realize a qubit-state-dependent response to traveling pho-
tons in the waveguide. The minimal hardware overhead
in our experiment, combined with near-perfect direction-
ality, in situ control of the coupling, and access to higher-
order chiral transitions, provide a scalable platform for
future studies of driven-dissipative entanglement genera-
tion, quantum networks with all-to-all coupling, and cas-
caded quantum systems with superconducting qubits.

Design of the artificial atom

As shown in Fig. 1a, our experiment is based on a
planar transmon qubit (hereafter called the ‘emitter’)
coupled at two locations to an on-chip co-planar waveg-
uide. We use a dissipation port at each coupling point,
which is designed to realize a complex coupling rate to
the waveguide modes with a well-defined phase (ϕl,r for
the left/right ports). The Hamiltonian for this system is

given by Ĥ = Ĥatom + Ĥfield + Ĥint, where Ĥatom/~ =

ωge|e〉〈e| and Ĥfield/~ =
∫
dkωk(â†k,f âk,f + â†k,bâk,b) is the

free Hamiltonian for the atom and the field modes, re-
spectively. The integral in Ĥfield is performed over pos-

itive values of the photonic wavevectors k, and the sub-
scripts denote forward (f) and backward (b) propagating
modes in the waveguide. The atom-waveguide interac-
tion Hamiltonian can be written as

Ĥint/~ =
∑
i∈l,r

∫
dk[g̃k,iσ̂−(â†k,fe

ikxi + â†k,be
−ikxi) + H.c.],

(1)

where g̃k,l(r) denotes the complex atom-waveguide cou-
pling strength at the left (right) coupling points, σ̂− is
the emitter’s lowering operator and xl(r) are the position
of the left (right) coupling point along the waveguide (see
Fig. 1a). Assuming a waveguide with linear dispersion,
the photonic mode resonant with the |g〉 −→ |e〉 transition
of the atom (frequency ωge) has a wavevector k = ωge/v,
where v is the speed of propagation of the modes in
the waveguide. Denoting the atom-waveguide coupling
strength for this mode as g̃l(r) at the left (right) coupling
points, the decay rate of the atom to the waveguide is
given by κem,l(r) = 4π|g̃l(r)|2D(ωge) where D(ω) is the
density of states in the waveguide [38]. The emission field
of the atom acquires a phase ϕl(r) = arg[g̃l(r)] at the cou-
pling points. In addition, the distance d = xr−xl sets the
propagation phase ϕWG = ωged/v between the two cou-
pling points. When setting d = λ/4 (where λ = 2πv/ωge

is the wavelength of the photons), a photon emitted from
one coupling point accumulates a π/2 phase-shift when
propagating to the adjacent coupling point. In this situ-
ation, setting the relative phase ϕc = ϕr − ϕl = π/2 re-
sults in a chiral response, with the emission from the two
ports interfering constructively (destructively) in the for-
ward (backward) direction. Formally, the spatially non-
local emitter-waveguide coupling can be described using
the SLH formalism (see Appendix B), leading to a pair
of input-output relations for the forward and backward
propagating modes.

âf
out = âf

in + (1 + ei(ϕc−ϕWG))

√
κem

2
σ̂−, (2)

âb
out = âb

in + (1 + ei(ϕc+ϕWG))

√
κem

2
σ̂−. (3)

Here, â
f(b)
in is the input field for the forward (backward)

propagating mode, â
f(b)
out is the corresponding output field

and we have assumed that the magnitude of the decay
rate at the two coupling points is equal and given by κem.
Solving the input-output relations yields the transmission
t = 〈âf

out〉/〈âf
in〉 and the emitter’s rate of spontaneous

emission into the forward (backward) direction

Γ
f(b)
1D /κem = 1 + cos(ϕc ∓ ϕWG). (4)

Note that, in principle, any waveguide length permits full
suppression of coupling to one waveguide direction (with
the exception of d = nλ/2, for n ∈ Z). This maximum
chirality condition only coincides with the maximum



3

E

WG 200 µm

-40

-20

0

|t|
 (d

B)

6.2 6.3 6.4 6.5 6.6 6.7 6.8
Frequency (GHz)

-30

-20

-10

0

E

6.1
ZC,l ZC,r

Rl Rr

Rr

Rl
Cr

Cl

|t|
 (d

B)

b 500 µm a

e

g
E

RrRl
Cl Cr

1

c

FIG. 1. Chiral atom coupled to a waveguide. (a) Schematic of chiral atom-waveguide system. The emitter atom couples
to the waveguide at two points separated by a distance d = λ/4. Time-modulated coupling imparts a phase of ϕl(r) at the
left (right) point; the relative phase ϕc = ϕr − ϕl tunes interference between the two radiation pathways. ϕc = π/2 results in
maximum coupling to forward propagating modes (blue) and no coupling to backward propagating modes (red). Left inset:
Varying ϕc results in coupling to waveguide modes of opposite directions. (b) Optical image of the fabricated device. The
emitter transmon (yellow, E) couples to a microwave co-planar waveguide (orange, WG) at two points separated by d = 4.590
mm. At each point, radiation to the waveguide is mediated by a frequency-selective dissipation port containing a tunable
coupler (purple C(l)r) and a filter cavity (blue, R(l)r) directly coupled to the waveguide (orange, WG). A pair of flux bias lines

(green, ZC,l(r)) are used to drive the couplers parametrically. (c) Transmission spectrum |t| = |〈âfout〉/〈âfin〉| of the device under
the experimental settings used for achieving maximum chirality. Parametric driving of the couplers leads to a visible sideband
for the emitter transmon (E1) at the center of the measurement band. Cl(r) (Rl(r)) mark the resonances corresponding to the
couplers (filter cavities).

emitter external decay rate when d = (2n+ 1)λ/4, moti-
vating our choice of the waveguide length (ϕWG = π/2),
which results in Γb

1D = 0 (Γf
1D = 2κem) at ϕc = π/2.

To realize complex coupling strengths, we rely on a
periodic modulation of the photon hopping rates from
the emitter to the waveguide [42]. We achieve this by
frequency modulating a coupler device [43] that is capac-
itively coupled to the emitter. In this configuration, the
coupler is modulated with a sinusoidal flux drive at the
frequency ∆, with an amplitude ε(l)r and phase ϕl(r), re-
sulting in an effective emitter-waveguide coupling term
that picks up the driving phase arg[g̃l(r)] = ϕl(r) [44].
Consequently, the relative phase between the two cou-
pling pathways ϕc = π/2 can be precisely set by con-
trolling the relative phase between the flux modulation
drives of the two couplers. We point out that, beyond
shifting the emitter frequency by ∆, the periodic flux

modulation also creates additional undesired frequency
components in the emitter’s spectrum (separated by inte-
ger multiples of ∆, hereafter referred to as the ‘sidebands’
see [45]), which can act as parasitic decay channels into
the waveguide. To suppress these decay channels, each
dissipation port in our experiment contains a compact
microwave resonator, which filters the emission into the
waveguide spectrally. Figure 1b shows an image of the
full device, with the emitter transmon, two frequency-
tunable couplers, and the filter resonators. Figure 1c
shows the transmission spectrum through the waveguide
for a weak coherent drive, where we can identify the
resonant features corresponding to the filter resonators
(Rl,r), the couplers (Cl,r), and the first-order sideband
of the emitter qubit (E1 at ωE1 = ωE + ∆). We de-
liberately design the filter resonators to have different
resonance frequencies, with their detuning far exceeding
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their external decay rates to the waveguide. This condi-
tion is required to avoid mode hybridization between the
resonators via the photon-mediated exchange interaction
through the waveguide [39]. We also note that a similar
concept with an alternative approach to sideband filter-
ing has been theoretically proposed based on photonic
crystal waveguides [46]. At optimal settings for chiral-
ity, we set the flux drive amplitudes of the couplers to
achieve equal emitter-waveguide couplings via both dis-
sipation ports (see Fig. 1c). A full analytical analysis
of the parametric waveguide coupling and the spurious
sideband suppression is provided in Appendix H.

Device parameters

In our experiment, the emitter is a transmon qubit
with a maximum frequency of ωE/2π = 5.636 GHz. The
tunable couplers are flux modulated with a frequency of
∆/2π = 805 MHz, creating the emitter first (blue) side-
band at a frequency of ωE1/2π = ωge/2π = 6.441 GHz
(see Fig. 1c). Flux control of the tunable couplers is
enabled by SQUID loops with two symmetric Joseph-
son junctions (see Appendix A4). The tunable couplers
are designed to operate in the transmon regime and are
flux-biased to ωC,l(r)/2π = 6.482 (6.402) GHz. At the
experiment operation settings, the filter cavity frequen-
cies are ωR,l(r)/2π = 6.184 (6.712) GHz (shifted from
their ‘bare’ values due to interaction with couplers). We
control the external coupling rate Γf

1D/2π of the chiral
artificial atom by changing the couplers’ configuration
(see Appendix A3). The distance between the two cou-
pling points along the waveguide is 4.590 mm, which cor-
responds to a λ/4 separation at ωE1/2π = 6.441 GHz
(λ = c/(f

√
εeff), εeff = 6.45). Our fabrication methods

and device parameters are summarized in Appendix A.

Observation of chirality

We characterize the response of the atom by perform-
ing transmission spectroscopy by applying a weak mi-
crowave drive of variable frequency to one end of the
waveguide. This measurement is performed at a suffi-
ciently low power such that the atom’s excited state’s
population remains negligible. In a system with a par-
tial directional response (the most general case), coherent
scattering from the atom results in a Lorentzian lineshape
with a transmission coefficient given by,

t(δω) = 1− Γf
1D

iδω + Γtot/2
,

Γtot = Γf
1D + Γb

1D + Γ′, (5)

where δω = ω − ωge is the atom-drive detuning. Here,

Γf,b
1D are the rates of the atom’s spontaneous emission

in the forward and backward directions, and Γ′ is its
intrinsic decoherence rate. For a chiral atom in the strong

coupling regime, when the atom couples dominantly to
the forward propagating modes (Γf

1D � Γb
1D + Γ′), we

expect to see a 2π change in the phase imparted to the
transmitted probe as the frequency is swept across the
resonance. In contrast, this phase change cannot exceed
π when the atom-waveguide coupling to the forward and
backward propagating modes are symmetric (see [47–49]
and Appendix A2).

Figure 2a,b show the measurement results for two dif-
ferent phase settings. As evident, when ϕc = π/2, we
observe the canonical signature of chirality as a 2π phase
across the resonance, which is consistent with our ex-
pectation for Γb

1D/Γ
f
1D → 0. Conversely, when we set

ϕc = 3π/2 (via digital control of the phases of the
couplers’ flux drives), the atom’s interaction with the
forward-propagating drive disappears, consistent with
Γf

1D/Γ
b
1D → 0. This phase-sensitive directional behavior

can be controlled with a fine resolution by varying ϕc in
small steps across a full 2π range. Fig. 2c shows the Γf

1D
obtained from a fit to the measured complex transmission
coefficient, where we observe a sinusoidal dependence on
the relative coupling phase. At each phase setting, we
repeat the experiment with the drive tone propagating
backward (this is done using a pair of electromechanical
switches, see Appendix A2) to obtain Γb

1D. As evident,
the backward emission also varies periodically with an
out-of-phase profile with respect to the forward emission.

These observations verify our understanding of the un-
derlying physical principles governing the operation of
our device. We then proceed to benchmark directional-
ity, defined as ηd = Γf

1D/Γ
b
1D (at the optimal ϕc), as a

figure of merit for a chiral atom. Fig. 2d shows the ex-
tracted directionality bounds in a series of experiments
in which we change the magnitude of atom-waveguide
coupling by changing the emitter-coupler detuning. As
evident, we can achieve ηd & 100 consistently, which in-
dicate a near-perfect chiral response. We note that the
extracted bounds are conservative estimates limited by
the sensitivity of our characterization technique (due to
the difficulty of extracting a vanishingly small Γb

1D from
the spectral response, see Appendix A2, Appendix C)
and the actual directionality ratios are likely to be higher.
As an additional test, we characterize the phase stabil-
ity of the parametric drives, which can affect the chiral
response due to the interferometric nature of our exper-
iment. We do this by directly measuring the phase fluc-
tuations of a coupler’s modulation drive over a long time
span and using it to calculate a bound on directionality
analytically. We find that the phase fluctuations of the
flux drives do not play a significant role in our experi-
ments (see Fig. 2e).

Having established the chiral response, we now tend to
a more general figure of merit in waveguide QED, namely
the ratio between the atom’s emission into the waveg-
uide’s mode of interest and its total decoherence rate, β
= Γf

1D/(Γ
f
1D + Γb

1D + Γ′) [10]. The measured values of β
in our experiment are shown in Fig. 2f. As the coupling
to the backward propagating modes is suppressed nearly



5

6.434 6.438 6.442 6.446
Frequency [GHz]

-6

-5

-4

-3

-2

-1

0
 6.435 6.440 6.445

0

0.5

1

-0.5

0

0.5

1

1.5

2

2.5

3

[M
H

z] Backward
Forward

a c

-π/2 π/2 π 3π/20
φc [degrees]

φc =  3π/2

φc =  π/2

Tr
an

sm
is

si
on

, |
t|

 (r
ad

) 

2 4
 [MHz]

10
1

10
2

10
3

−0.5 0.0 0.5 1.0
Re (t)

-0.5

0

0.5

Im
(t

)

b

η d

d fe

ForwardBackward d = λ/4

φr - φl = φc E
φl φr

Bidirectional 

Chiral 

Frequency [GHz]

Time  (hours) 

π/30

-π/30
Ph

as
e 

va
ria

tio
n 

[r
ad

]

Directionality 
limit ηd < 1300

δω = 0

(forward chiral) 

 (backward chiral)

2 4
 [MHz]

0.7

0.8

0.9

Γf,
b

1D
/2

π

Γf
1D /2π

β

Γf
1D /2π

FIG. 2. Elastic chiral response under weak drives. (a) The angle of the complex transmission coefficient measured with
a weak microwave tone propagating in the forward direction through the waveguide. At ϕc = π/2 (blue curve), the atom is
dominantly coupled to forward propagating modes (Γf

1D � Γb
1D + Γ′) and we observe a 2π change in the phase imparted to

the microwave tone as its detuning is swept about the resonance - a signature of chirality. When ϕc = 3π/2 (red curve), the
atom is chiral in the backward direction and the emitter interacts minimally with the forward propagating probe. The inset
shows the amplitude of the transmission coefficient. Solid lines show fits to theory. (b) Measured transmission coefficient in the
complex plane. At resonance (δω = 0), the transmission coefficient lies to the left of the origin in the case where the atom is
dominantly coupled to forward propagating modes (blue curve). This results in the 2π phase change shown in (a). In contrast,
in a non-directional system (Γf

1D = Γb
1D), the transmission coefficient would always stay to the right of the origin (yellow curve),

and as a result, the transmission phase change cannot exceed π. (c) Periodic behavior of the emitter-waveguide coupling rate
Γ1D when the relative phase ϕc is varied. The blue (red) curve corresponds to the measurement with the probe propagating
forward (backward). Solid lines are fits to theory. (d) Measured directionality ratio ηd = Γf

1D/Γ
b
1D for various atom-waveguide

coupling rates. (e) Measured fluctuations in the modulation phase of one of the couplers across 10 hours. The measurements
correspond to a relative phase variance of 〈δφ2

c〉 = 3 × 10−3 between the two couplers, and a phase-fluctuation limited bound
of ηd < 1.3 × 103 on the directionality. (f) Measured values of the ratio between the atom’s emission into the waveguide’s
mode of interest and its total decoherence rate, β = Γf

1D/(Γ
f
1D + Γb

1D + Γ′). The dotted purple line and shaded region show the
fit results and the corresponding uncertainty for a model accounting for decoherence due to emitter-coupler hybridization and
finite waveguide temperature. All error bars denote 95% confidence intervals.

completely, the measured β factors are dominantly deter-
mined by the intrinsic decoherence rate Γ′. We observe
an improvement in the measured β values with increas-
ing Γf

1D, consistent with a model assuming a constant
Γ′. From a fit to the data, we find Γ′/2π = 350 ± 45
kHz. The increasing trend of β-factors saturates at larger
values of Γf

1D, indicating an increase in the decoher-
ence rate concurrent with the increasing emission rate
into the waveguide. This behavior may be attributed
to increased decoherence due to the finite temperature
of the waveguide and an increase in the emitter-coupler

mode hybridization (Appendix D). The measured value
of β = 0.89 ± 0.03 in our experiment are comparable to
the highest reported values in optical chiral systems [14].
Moreover, we estimate that an order-of-magnitude im-
provement (Γf

1D/Γ
′ > 100) is within reach in our system

with improved device design (see Appendix D), corre-
sponding to β-factors close to unity.



6

-145.5

-115.5

Po
w

er
 (d

Bm
)

a

b

c

d

FIG. 3. Elastic and inelastic response of a strongly-driven chiral atom: a) and b) Coherent response of the emitter
with increasing drive power. The transmission amplitude t is initially circular in the complex plane and becomes elliptical with
increasing drive power, a signature of saturation of two-level atoms. Solid lines are fits to the expected theoretical response
shown in Eq. (6). c) Measured resonance fluorescence spectrum of the chiral artificial atom, where we see well-resolved Mollow
triplets. Solid lines are fits to Eq. (7), showing good agreement between experiment and theory. We extract an energy relaxation
rate Γ1/2π = 1.34 ± 0.15 MHz, decoherence rate Γ2/2π = 0.72 ± 0.08 MHz and a small pure dephasing rate of Γφ/2π = 50
kHz for the chiral atom from these fits. d) Measured power spectral density (PSD) for a range of drive powers. The Rabi
frequency ΩR is varied from a few hundred kHz to 14 MHz, indicating that the emitter can be driven strongly (ΩR/Γ1 ≈ 10).

Resonance fluorescence

Our experiments so far have established a chiral re-
sponse at low drive powers. In this regime, however, the
elastic response of two-level systems is identical to that of
bosonic systems such as cavities, which can also exhibit a
unidirectional response [16]. We next probe the quantum
nonlinear behavior of the artificial atom, which manifests
as the saturation of the elastic response. For a two-level
system under strong drives, the transmission coefficient
through the waveguide is given by (see Appendix E),

t(δω) = 1− Γf
1DΓ1 (Γ2 − iδω)

Ω2
RΓ2 + Γ1(δω2 + Γ2

2)
. (6)

Here, ΩR =
√

4PinΓf
1D/~ωge is the Rabi frequency from

drive, Γ1 is the total energy relaxation rate, Γ2 = Γ1/2+
Γφ is the total decoherence rate, and Γφ is the pure de-
phasing rate of the atom. Fig. 3a show the results of
a measurement in our systen, where increasing the inci-
dent power (Pin) leads to a monotonic reduction of the
transmission phase. In the complex plane, this power-
broadening effect manifests as a change in the shape of
the trajectory from circular to elliptical (Fig. 3b). The
good agreement between the experiment and the fits in-
dicates our model’s validity, which assumes a single two-
level atom with unidirectional coupling to a 1D bath.
From these fits, we obtain Γ1/2π = 1.35± 0.03 MHz and
Γ2/2π = 0.67± 0.1 MHz.
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Beyond the elastic response, we also verify the two-
level system behavior by measuring the resonance fluores-
cence spectrum. Under strong drives, when ΩR � Γtot,
inelastic scattering from an atom leads to the emergence
of three distinct peaks in the emission spectrum (at ωge

and ωge ± ΩR) [21, 50–52], known as the Mollow triplet.
For a chiral atom, the power spectral density (PSD) of
the incoherent emission is given by (see Appendix E),

S(ω) =
1

2π

~ω0Γf
1D

4

(
Γs

(δω + ΩR)
2

+ Γ2
s

+
2Γ2

δω + Γ2
2

+
Γs

(δω − ΩR)
2

+ Γ2
s

) (7)

The measured resonance fluorescence spectra in our
system are shown in Fig. 3c and d, where we observe
well-resolved Mollow triplets over a wide range of drive
powers. Solid lines are fits to the model from Eq. (7),
showing good agreement to our model. From the fits,
we extract Γ1/2π = 1.34 ± 0.15 MHz, Γ2/2π = 0.72 ±
0.08 MHz, in agreement with the rates extracted from
the elastic response. The persistence of chirality under
strong drives is clearly manifested by the constant to-
tal linewidth and the power under each peak, as well as
the rate of scaling of the Rabi frequencies with the input
power (see Appendix E). These measurements confirm
that the chiral atom can be driven with large drive pow-
ers (ΩR/Γ1 ≈ 10). The upper limit on the drive power
in our system is limited by the excitation of the couplers,
which are weakly driven due to their small detuning to
the emitter qubit. This constraint can be relaxed in fu-
ture experiments by increasing the coupler-emitter de-
tuning at the expense of an increased coupler-waveguide
coupling.

Chirality of the |e〉 −→ |f〉 transition

Our experiments so far have established a chiral two-
level system. However, the emitter transmon qubit in
our experiment is a nonlinear oscillator with a rich level
structure, including a third energy level |f〉 (see Fig. 4a).
The distinct |e〉 −→ |f〉 transition frequency of a trans-
mon has been used as an auxiliary degree of freedom
for time-domain control of the emission and implemen-
tation of qubit-photon entangling gates [53–57]. Here,
we demonstrate that similar functionalities can be im-
plemented with our chiral qubit.

We begin by investigating the energy level structure
of the chiral atom via two-tone spectroscopy, where we
probe the system with a weak drive through the waveg-
uide while populating the excited state |e〉 with a strong
drive at ωge. The results are shown in Fig. 4b, where we
can identify a resonant feature at ωef . From this data, we
obtain an anharmonicity of α = ωge−ωef = 283 MHz, in
close agreement with the designed anharmonicity value
for the emitter qubit (272 MHz). We next find the chiral

settings for the e−f transition by repeating the two-tone
spectroscopy while varying the relative coupling phase
ϕc. As described previously, achieving strong coupling
to the waveguide requires cancellation of the backward
emission rate by satisfying the kd + ϕc = π criterion.
Additionally, we need to suppress parasitic sources of de-
cay, which for the case of e − f transition, includes the
radiative decay of the g − e transition into the waveg-
uide. While the filter cavities in our device are designed
for optimal spectral filtering near ωge, we can find a chi-
ral operation point for the e − f transition by properly
choosing the modulation frequency ∆. Fig. 4c shows the
results of transmission spectroscopy performed in the for-
ward and backward directions, where we observe a peri-
odic modulation in the contrast of the spectral feature at
ωef via ϕc. At the optimal choice of ϕc extracted from
this measurement (Fig. 4d ), we confirm the chiral re-
sponse for the e− f transition using fits to a three-level
system model and obtain a directionality ratio ηd of 12
(see Appendix F).

We next employ time-domain control of the transmon
to realize a conditional phase response. We begin with
pulsed excitation of the emitter’s g−e transition through
the waveguide. Due to the absence of a readout res-
onator in our experiment, we directly measure the emit-
ted field from the qubit with heterodyne detection and
phase-coherent averaging. This measurement provides
the component of the qubit’s Bloch vector in quadrature
with the drive, 〈σx〉, which evolves with time as (see Ap-
pendix G)

〈σx〉(t = τP) = sin(ΩRτP) exp (−ΓRτP) . (8)

Here, ΓR = (Γ1+Γ2)/2 and τP is the duration of the driv-
ing pulse [52]. Fig. 4e shows the results, where we observe
Rabi oscillations of the qubit as it is driven through and
simultaneously decays into the open waveguide. Using
these measurements, we calibrate a π-pulse to prepare
the emitter in the excited state (Fig. 4f inset). We then
measure the complex transmission coefficient near the
e− f transition by sending a pulse centered at ωef to the
waveguide and performing heterodyne detection at the
output. Fig. 4f shows the measurement results, where
we observe a phase change across the resonance when the
qubit is initialized in the |e〉 state. Further, repeating the
experiment without the π pulse results in a flat spectral
response near ωef . This state-dependent phase response
can be combined with dispersion engineering (to protect
the g-e transition from radiative decay to the waveguide)
for future implementations of qubit-photon gates [55–57]
with chiral qubits (see Appendix F).

Conclusion

In conclusion, we use distributed parametric inter-
actions to break the time-reversal symmetry and real-
ize unidirectional emission from a superconducting qubit
into a planar microwave waveguide. In our system, we
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FIG. 4. Chirality of the |e〉 −→ |f〉 transition. (a) Level structure of the emitter transmon. (b) Two-tone spectroscopy of
emitter transmon. The |g〉 −→ |e〉 transition is continuously driven on resonance, populating |e〉. A microwave probe tone then
excites the |e〉 −→ |f〉 transition. The emitter flux line is biased to tune the artificial atom frequency. (c) Transmission spectrum
near |e〉 −→ |f〉 transition as the relative phase between coupler drives (ϕc) is varied. Left and right subpanels correspond to
opposite excitation directions of the waveguide. We use ∆/2π = 930 MHz for this measurement. (d) Transmission trace of
chiral |e〉 −→ |f〉 transition, with fitted theory and master equation simulation plots, overlaid. (e) Rabi oscillations for average
drive power of -127 dBm. Inset: pulse sequence for Rabi oscillation measurements. The qubit is excited by a Gaussian pulse of
variable length τP via the waveguide. Qubit emission is averaged in a phase-coherent fashion to obtain 〈σx〉. (f) Transmission
and phase of the |e〉 −→ |f〉 transition under conditions for forward chirality, with (blue) and without (red) the application of
the π pulse. Inset: Measurement protocol for pulsed spectroscopy of the |e〉 −→ |f〉 transition. The qubit is excited to |e〉 by a
resonant π pulse. A readout pulse then probes the |e〉 −→ |f〉 transmission.

can achieve near-perfect directionality and strong cou-
pling to the waveguide by controlling the forward and
backward emission rates in situ and suppressing the par-
asitic sources of decay. We further verify the persistence
of the two-level system behavior of the chiral qubit un-
der strong drives (ΩR/Γ1 ≈ 10) with resonance fluo-
rescence measurements. Finally, we show a directional
response from the second transition of the chiral qubit
and use it with pulsed control to realize a qubit-state-
dependent phase response for traveling photonic wave
packets. Our experiment thus provides an integrated
platform for artificial chiral atoms with strong coupling
to a one-dimensional photonic bath in the microwave
domain. Looking ahead, we anticipate significant im-
provements in this platform by stronger suppression of
parasitic decay using metamaterial waveguides [58], re-
ducing dephasing with asymmetric junctions [59], and
better waveguide thermalization with cryogenic attenu-
ators [60]. Implementing these measures is expected to
lead to Purcell factors (Γf

1D/Γ
′) beyond 100 and further

device miniaturization. With these improvements, we en-
vision chip-scale experimental studies of chiral quantum

optics with arrays of artificial atoms, which may enable
quantum state transfer immune to thermal noise [4, 5],
quantum networks with all-to-all connectivity [11, 61],
and driven-dissipative stabilization of many-body entan-
glement [8, 62].
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Appendix A: Methods

1. Fabrication

Our device is fabricated on a 1 cm × 1 cm high-
resistivity (10 kΩ-cm) silicon substrate. Electron-beam
lithography is used to pattern the structures in separate
metal layers on the chip. Each lithography step is fol-
lowed by electron-beam evaporation of metal and liftoff in
N-methyl-2-pyrrolidone at 150◦ C for 1.5 hours. Device
layers are as follows. (i) 150 nm thick niobium markers,
deposited at 3Å/s. (ii) 120 nm thick aluminum ground
plane, waveguide, flux lines, resonators, and qubit ca-
pacitors, deposited at 5Å/s. (iii) Josephson junctions
evaporated (at 5Å/s) using double angle evaporation and
consisting of 60 nm and 120 nm layers of aluminum, with
15 minutes of static oxidation between layers. (iv) 150
nm thick aluminum band-aids and air-bridges, deposited
at 5Å/s. Band-aids ensure electrical contact between
Josephson junctions and qubit capacitors. Air-bridges
are used to ensure the suppression of the slot-line modes
in the waveguide [63]. Air-bridges are patterned using
grey-scale electron-beam lithography and developed in a
mixture of isopropyl alcohol and de-ionized water, fol-
lowed by 2 hours of reflow at 105◦ C [64]. Electron beam
evaporation of the band-aid/bridge layer is preceded by
7 minutes of Ar ion milling.
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FIG. 5. Measurement Setup schematic of dilution fridge
wiring for measurement.

2. Measurement setup

Measurements are performed in a 3He/4He dilution
refrigerator. A schematic of our measurement setup is
shown in Fig. 5. The fabricated chip is wire-bonded to a
PCB and placed in an aluminum box. The box is then
mounted to the mixing plate which is cooled to a base
temperature of 10 mK.

The waveguide input line (WGIN) is used to excite the
chiral qubit from either waveguide direction. Toggling
both switches in Fig. 5 changes the excitation direction
for transmission measurements. The waveguide input
line (WGIN) is attenuated at each temperature stage to
minimize thermal noise; the total attenuation is 70 dB. A
tunable attenuator (not shown) is also added to the input
line at room temperature to control input power. Two

isolators are used to reduce thermal noise in the waveg-
uide output line (WGOUT). The output is amplified by
a high electron mobility transistor (HEMT) amplifier at
the 4 K stage and a room temperature amplifier (not
shown) outside of the fridge.

A low noise, multi-channel DC source provides current
biases (ZC,l, ZC,r, ZE) to flux tune the emitter and cou-
pler qubit frequencies. A low-pass RF filter (32 kHz cut-
off frequency) suppresses high-frequency thermal noise in
the DC lines, which are not attenuated. Coupler DC bias
lines are combined with RF inputs (RFC,l, RFC,r) using
microwave bias tees, enabling frequency tuning and para-
metric modulation of coupler frequencies. Coupler RF
drives (Rohde and Schwarz SMB 100A) are clocked by
an external Rubidium clock, allowing for relative phase
tuning. RF inputs are attenuated at the 50K, 4K, and
cold plates to reduce thermal noise.

Transmission measurements The coherent response
of the device is measured using a vector network ana-
lyzer (VNA, Agilent N5242A). The VNA can be used
to simultaneously measure the amplitude and phase of
the transmitted signal via heterodyne detection. For the
characterization of emitter qubit chirality, the drive from
the VNA is attenuated to sub-single-photon power lev-
els in order to ensure that the qubit is not saturated.
To obtain the atom-waveguide coupling rate Γf

1D and the
total linewidth Γtot, we use the circle-fit method when
the condition Γf

1D > Γb
1D + Γ′ is satisfied. The circle-fit

method does not rely on initial conditions and provides
more robust estimation of the coupling rates [65]. When
Γf

1D ≤ Γb
1D + Γ′, we use nonlinear-least squares fitting

to Eq. (B16) to obtain Γf
1D and Γtot. When the atom-

waveguide coupling is chiral and the atom couples domi-
nantly to forward propagating modes (Γf

1D > Γb
1D + Γ′),

the transmission coefficient at resonance (δω = 0) lies to
the left of the origin in the complex plane (see Fig. 6).
This results in a full 2π change in the phase imparted
to the transmitted field. In contrast, when the atom-
waveguide coupling to forward and backward propagat-
ing modes is symmetric (Γf

1D = Γb
1D,Γ

f
1D ≤ Γb

1D + Γ′),
the transmission coefficient lies to the right of the origin
at resonance and the phase change imparted to the trans-
mitted field cannot exceed π (Fig. 6). Our current mea-
surement setup Fig. 5 is designed to perform transmission
measurements in both forward and backward directions
through the waveguide.

Resonance fluorescence measurements Resonance flu-
orescence measurements are performed with an RF spec-
trum analyzer (SA, Rohde and Schwarz FSV3013); the
microwave excitation tone is provided by the VNA in
zero-span mode. The spectrum analyzer acquisition is
performed with a resolution bandwidth of 20 kHz. The
background power level in this measurement is deter-
mined by the HEMT noise temperature THEMT of 3.5
K. Using Bose-Einstein statistics, this corresponds to a
power spectral density (PSD) of 11 photons/s/Hz at the
emitter frequency (ωge = 6.441 GHz). The HEMT back-
ground is subtracted from the signal traces, and the re-
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FIG. 6. (a) Complex transmission coefficient t calculated from
Eq. (B16) when the atom-waveguide coupling is chiral (dark
blue) and bidirectional (light blue). Here, we assume that the
intrinsic decoherence rate Γ′ is small compared to coupling
to waveguide modes. In the chiral case, symmetry of the
atom-waveguide coupling to forward and backward propagat-
ing modes is broken and the atom can dominantly couple to
forward propagating modes such that (Γf

1D/(Γ
b
1D + Γ′) > 1).

At resonance (δω = 0), the transmission coefficient lies to the
left of the origin (Re(t) < 0), and is equal to -1 when Γ′ = 0.
In this case, there is a full 2π change in the phase imparted to
the transmitted field as the detuning δω is swept around the
resonance (see (b)). When the atom-waveguide coupling is
symmetric for the forward and backward propagating modes
(Γf

1D = Γb
1D,Γ

f
1D/(Γ

b
1D +Γ′) ≤ 1), the transmission coefficient

lies to the right of the origin (Re(t) ≥ 0) and is equal to zero
when Γ′ = 0. In this case, the total change in the phase
imparted to the transmitted field cannot exceed π (see (b)).

sulting power is normalized with the resolution band-
width and the gain of the output line to obtain the PSD
shown in Fig. 3a and b. The output line gain is cali-
brated using thermometry measurements [66]. We note
that data shown in Fig. 3a and b corresponds to PSD in
linear frequency and is equal to 2π × S(ω), where S(ω)
is given by Eq. (7).

Time-domain measurements Time-domain measure-
ments and pulsed excitations of the device are per-
formed using the Quantum Machines OPX+ (QM) mod-

ule, which is capable of arbitrary waveform generation
and heterodyne detection. To generate the drive, MHz
frequency IF signals from the QM module are upcon-
verted via mixing with a local oscillator (LO) supplied
by an RF signal generator (Rohde and Schwarz SMB100)
using IQ mixers (Marki Microwave MMIQ-0520LS). For
readout, the signal from the output line is downconverted
using an IQ mixer, and the resulting IF-frequency sig-
nal is demodulated. The duration of the π-pulse for the
|g〉 −→ |e〉 transition is determined from measurements of
qubit Rabi oscillations. For the Rabi oscillation curves,
the output is averaged in a phase-sensitive manner to ob-
tain the qubit emission in quadrature with the drive (see
also Appendix G). For spectroscopy of the |e〉 −→ |f〉 tran-
sition, the excited state |e〉 is first fully populated by driv-
ing |g〉 −→ |e〉 with the calibrated π-pulse. Spectroscopy is
then performed by probing the |e〉 −→ |f〉 transition with
a resonant readout pulse. Averaging is performed over
4× 106 samples to obtain the results shown in Fig. 4e.

3. Emitter-waveguide interaction using tunable
couplers

The frequency-selective dissipation ports mediate the
emitter decay to each waveguide coupling point. Each
port contains a flux-controlled tunable coupler and a fil-
ter cavity. Fig. 7a gives a schematic for the full device.
Each coupler (purple, Cr,l) is capacitively coupled to the
emitter with a coupling strength gEC and to the filter
cavity (blue, Rr,l) with coupling strength gCR. The filter
cavities are realized as compact resonators with capaci-
tive coupling to the waveguide. The emitter-coupler and
cavity-coupler coupling rates are shown in Fig. 7b and
Table III and are extracted by flux tuning the couplers
into avoided crossings with the emitter and resonators.

4. Device parameters

The emitter and couplers in our device are supercon-
ducting qubits designed in the transmon regime to miti-
gate charge noise. Bare qubit parameters are provided
in Table I. Max frequency (ωmax/2π) and Josephson
energy (EJ) are extracted from fits to DC flux tuning
curves, shown in Fig. 8. Charging energy (EC) is ob-
tained by measuring qubit anharmonicity via two-tone
spectroscopy. A single microwave tone drives the qubit
|g〉 −→ |e〉 transition, which populates the |e〉 state. The
|e〉 −→ |f〉 transition then becomes visible under waveg-
uide spectroscopy.

The compact resonators consist of an inductive mean-
der and capacitive ‘claw’. The latter section is shaped to
engineer the coupler-resonator and resonator-waveguide
couplings. Because detuning between resonators exceeds
their individual external coupling rates, the waveguide-
mediated exchange interaction and correlated decay can
be safely neglected [39]. The resonator parameters are
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FIG. 7. Atom-waveguide coupling scheme (a) Schematic
of the chiral atom-waveguide coupling scheme. The emitter
couples to the waveguide at two points, separated by d = λ/4.
In each decay pathway, a flux controlled coupler (purple, Cr,l)
is capacitively coupled to the emitter with a coupling strength
gEC and to a filter cavity (blue, Rr,l) with a coupling strength
gCR. The filter cavities are capacitively coupled to the waveg-
uide with decay rates κe,r(l). The flux bias applied to the
right (left) tunable coupler is sinusoidally modulated with an
RF frequency ∆, resulting in time-varying coupler frequen-
cies ωC,r(l)(t) = ωC,r(l) + εl(r) sin(∆t + ϕr(l)). This creates an
effective time-dependent emitter-waveguide coupling with a
relative phase ϕc = ϕr−ϕl between the two decay pathways.
Setting ϕc = π/2 results in forward chirality (blue), while
ϕc = 3π/2 results in backward chirality (red). (b) Avoided
crossings of couplers with the emitter and filter resonators, ob-
tained by flux tuning the frequency of the couplers. The top
(bottom) row corresponds to the left (right) coupler, and the
left (right) column corresponds to emitter-coupler (coupler-
resonator) avoided crossings.

Qubit ωmax/2π [GHz] EJ [GHz] EC (−α) [MHz] EJ/EC

E 5.636 15.47 283.0 54.66

Cl 7.779 25.35 324.0 78.24

Cr 7.699 25.63 313.5 81.76

TABLE I. The Parameters for the emitter and coupler trans-
mons.

provided in Table II.

Cavity ω/2π [GHz] κe [MHz] κi [MHz]

Rl 6.337 24.95 0.451

Rr 6.577 41.74 0.187

TABLE II. Filter cavity parameters.

Capacitive couplings in our device can be expressed
in terms of frequencies, mutual capacitances, self-
capacitances, and self-inductances of the two relevant
modes. Approximating qubits as linear oscillators and
assuming only nearest-neighbor coupling, the interaction
strength gij is given below.

gij =
1

2

Cm√
(Ci + Cm)(Cj + Cm)

√
ωiωj (A1)

Here, Cm is the mutual capacitance, Ci,j are bare
self-capacitances, and ωi,j are adjusted frequencies of
each mode. For two linear coupled oscillators, ωi,j =√

Cj,i+Cm

Li,jC2
Σ

, where C2
Σ = CiCj + CiCm + CjCm. For

transmon qubits approximated as linear oscillators, L =
( ~

2e )2 1
EJ

, where EJ is the Josephson energy. Capacitive
couplings in our device are extracted from avoided cross-
ings observed in waveguide spectroscopy (Fig. 7 and are
listed in Table III.

Coupling Value [MHz]

gEC,l (Emitter, Left Coupler) 72.65

gEC,r (Emitter, Right Coupler) 73.15

gCR,l (Left Coupler, Left Resonator) 149.50

gCR,r (Right Coupler, Right Resonator) 155.55

TABLE III. Coupling Strengths.

5. Flux biasing crosstalk

The emitter and coupler frequencies are tuned via flux
lines (Z-lines), which are biased with a low-noise, multi-
channel DC source. The current applied to Z-line control
the magnetic flux through a SQUID loop. Because of
close proximity, the Z-lines experience cross-talk. In or-
der to achieve independent frequency tuning in presence
of this cross-talk, we extract a cross-inductance matrix
for the system of the emitter and couplers.

ΦL

ΦE

ΦR

 =

MLL MLE MLR

MEL MEE MER

MRL MRE MRR


ILIE
IR

 (A2)

Here, L, E, and R represent the left coupler, emitter,
and right coupler, respectively. The matrix elements are
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for the emitter’s first blue sideband. The settings here correspond to the chiral configuration of Figure 1c (bottom panel). An
RF modulation of frequency ∆ = 805MHz is applied to the couplers. A two-level system (TLS) defect coupled to the system
is marked with the arrow.

extracted by fits to the corresponding tuning curve. Two
of the elements MEL and MER are not measured due to
the absence of direct coupling between the emitter and
the waveguide. To correct for the small effect of MEL and
MER, the emitter qubit is biased to the flux sweet spot
prior to all measurements. The extracted inductance ma-
trix is given below.

M =

1.382 −0.058 −0.065

0 1.086 0

0.095 0.052 1.398

pH (A3)

Appendix B: Input-output relations using SLH
formalism

We derive the input-output relations using the SLH
formalism [67]. The SLH formalism is a powerful toolbox
for modeling cascaded quantum systems and is naturally
suited for obtaining master equations and input-output
relations for giant atoms [39]. We model our chiral emit-
ter as a giant atom with two coupling points, with a
relative coupling phase ϕc = ϕr − ϕl between the two
feet of the giant atom (as shown in Fig. 1a). As shown
in Eq. (1), the field of emission at each coupling point
acquires a well-defined phase ϕl(r) = arg[g̃l(r)] due to the
complex coupling mediated by the time-modulated cou-
plers between the atom and the waveguide. In the ro-

tating frame of the drive, we decompose the (S,L, H)
triplets for the two coupling points as follows,

Gf,l = (1,

√
κem

2
σ̂−,

δω

2
σ̂z) (B1)

Gf,r = (1,

√
κem

2
eiϕc σ̂−, 0) (B2)

Gb,l = (1,

√
κem

2
σ̂−, 0) (B3)

Gb,r = (1,

√
κem

2
eiϕc σ̂−, 0) (B4)

where δω = ωge − ω is the detuning of emitter qubit at
ωge from the drive at frequency ω, κem is the magnitude
of the decay rate of the giant atom at each of the two
feet, f and b denote forward and backward propagating
modes, respectively and l(r) denote the left and right
coupling points. We assume that the system is driven by
a forward-propagating coherent tone with complex am-
plitude α and write the (S,L, H) triplets for the drive
(Gf,drive) and the waveguide propagation (GWG) as,

Gf,drive = (1, α, 0) (B5)

GWG = (eiϕWG , 0, 0) (B6)

where ϕWG = ωged/v is the accumulated propagation
phase between the two coupling points (see Fig. 1a). The
SLH triplet for the forward and backward moving parts
is then given by,

Gf = Gf,r / GWG / Gf,l / Gf,drive, (B7)

Gb = Gb,l / GWG / Gb,r. (B8)

Using cascading rules from the SLH formalism, we obtain the following SLH triplets for the system Gtot = Gf �Gb

and obtain [39],
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Stot =

(
eiϕWG 0

0 eiϕWG

)
(B9)

Ltot =

αe
iϕWG +

√
κem

2
(eiϕWG + eiϕc)σ̂−√

κem

2
(1 + ei(ϕWG+ϕc))σ̂−

 (B10)

Htot

~
=
δω

2
σ̂z − i

√
κem

2
[ασ̂+(1 + ei(ϕWG−ϕc))− α∗σ̂−(1 + e−i(ϕWG−ϕc))]. (B11)

Here, Stot is the scattering matrix of the system, Ltot =
(Lf , Lb)> denotes the collapse operator for the forward
(Lf) and backward (Lb) propagating modes and Htot is
the system Hamiltonian. The input-output relations can
be written in terms of the collapse operators for the for-
ward and backward propagating modes,

t =
〈Lf〉
αin

= eiϕWG +
1

αin

√
κem

2
(eiϕc + eiϕWG)〈σ̂−〉

r =
〈Lb〉
αin

=
1

αin

√
κem

2
(ei(ϕc+ϕWG) + 1)〈σ̂−〉

(B12)

where t and r are the complex transmission and re-
flection coefficients, respectively. From Eq. (B12) it is
clear that the emission in the backward direction can be
nulled when the condition is ϕWG + ϕc = π is satisfied.
This is the interference condition to obtain perfect chiral
behavior. Eq. (B12) can be further simplified by cal-
culating 〈σ̂−〉 using the Heisenberg equation of motion

〈 ˙̂σ−〉 = −i[σ̂−, Htot] − (Γtot/2)σ̂− = 0. Here, Γtot is the
total decay rate of the emitter, including radiative and
non-radiative decay, and dephasing. In the limit of weak
drive such that the two-level system is not saturated, we
obtain in steady state,

〈σ̂−〉 =

−
√
κem

2
α[1 + ei(ϕWG−ϕc)]

iδω +
Γtot

2

(B13)

Combining Eq. (B12) and Eq. (B13), we obtain the trans-
mission coefficient

t = eiϕWG

1− κem[1 + cos (ϕc − ϕWG)]

iδω +
Γtot

2

 (B14)

From Eq. (B14), we identify the effective atom-waveguide
coupling for the forward propagating modes,

Γf
1D = κem[1 + cos (ϕc − ϕWG)] (B15)

The transmission can be written in terms of Γf
1D to be

(up to a global phase factor),

t = eiϕWG

1− Γf
1D

iδω +
Γtot

2

 (B16)

Note that the transmission expression is equivalent to
that of a single-sided cavity with an external coupling
rate Γf

1D. The emitter-waveguide coupling for the back-
ward propagating modes can be similarly evaluated by
assuming a drive from the right side of the waveguide
and repeating the analysis above. The coupling rate for
the backward propagating modes is then given by

Γb
1D = κem[1 + cos (ϕc + ϕWG)] (B17)

We write the master equation for the case where the
condition for perfect chirality is satisfied. Simplifying
Eq. (B11) for the case ϕWG = π/2, ϕc = π/2, we obtain
the Hamiltonian

Htot

~
=
δω

2
σ̂z +

1

i

√
κem

2
[2ασ̂+ − 2α∗σ̂−] (B18)

Assuming without loss of generality that the drive α is

real, and using the relations σ̂± =
1

2
(σ̂x ± iσ̂y) [52], we

obtain,

Htot

~
=
δω

2
σ̂z + α

√
2κemσ̂y (B19)

Using the fact that Γf
1D = 2κem for ϕc = π/2, ϕWG = π/2

(see Eq. (B15)), we obtain,

Htot

~
=
δω

2
σ̂z +

ΩR

2
σ̂y (B20)

ΩR = 2α
√

Γf
1D

The master equation for the chiral atom can then be
written as

ρ̇ = − i
~

[Htot, ρ] + Lρ (B21)
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where the Liouvillian L is given by [20, 52],

L = (n̄th + 1)Γ1D[σ̂−]ρ+ n̄thΓ1D[σ̂+]ρ+
Γφ
2
D[σ̂z]ρ.

(B22)

where Γ1 is the total energy relaxation rate of the qubit
at zero temperature, Γφ is the pure dephasing rate, and

n̄th = 1/(e~ω/kBT − 1) is the thermal occupation of the
bath. The total energy decay rate is the sum of the radia-

tive decay rate to the waveguide Γf,b
1D and energy decay to

loss channels Γloss. Here, Γloss includes radiative decay of
other emitter sidebands to the waveguide and radiative
decay of the qubit to channels other than the waveguide,
such as due to coupling to two-level systems (TLS) and
dielectric loss. The decoherence rate of the qubit is given
by Γ2 = Γ1/2 + Γφ. The Lindblad operator is defined in
its standard form as

D[X]ρ = XρX† − 1

2
X†Xρ− 1

2
ρX†X. (B23)

Appendix C: Limits on chirality

1. Extraction of directionality ratio (ηd)
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FIG. 9. Extraction of directionality ratio. (a) Theoreti-
cal transmission traces for backward excitation of the waveg-
uide, for φf = π/2 and φf =0. Here, we set Γf

1D = 2.5 MHz,
Γ′ = 0, and vary Γb

1D = 0, 25 kHz, or 125 kHz. (b) Rep-
resentative transmission traces show background fluctuations
when exciting the qubit from the waveguide in the backward
direction.

In our device, the atom-waveguide coupling is var-
ied by changing the emitter-coupler detunings. At each
maximal chirality setting, the directionality ratio (ηd =
Γf

1D/Γ
b
1D) is extracted from transmission traces obtained

by exciting the waveguide from the forward and back-
ward directions. We apply non-linear least squares fits
to the transmission traces according to Eq. (C1), given
below.

t = 1−
Γ

f(b)
1D eiφf

iδω +
Γtot

2

(C1)

Eq. (C1) is obtained from Eq. (B16) by the inclusion
of a ‘Fano’ parameter, eiφf , to account for asymmetric
lineshapes [65]. The external coupling to forward (back-

ward) waveguide modes is given by Γ
f(b)
1D cos(φf). Detun-

ing is given by δω, and total decay rate is given by Γtot.
Confidence intervals for the fitted atom-waveguide cou-
pling rates (Γf

1D,Γ
b
1D) are used to obtain the final 95%

confidence bounds on directionality, making use of the
uncorrelated non-central normal ratio distribution [68].

Small values of backward atom-waveguide coupling
make extraction of Γb

1D challenging. For a perfect chi-
ral atom, Γb

1D = 0. This implies that transmission t→ 1
(see Eq. (C1) and Fig. 9a); the atom becomes invisi-
ble to photons propagating in the backward direction.
Similarly, for small values of Γb

1D, the backward trans-
mission trace approaches unity. As a result, the extrac-
tion of atom-waveguide coupling becomes susceptible to
small variations in the transmission background. We ob-
serve such variations (‘ripples’) in backward transmission
traces, which are shown in Fig. 9b. These ‘ripples’ trans-
late to larger uncertainties in extracting the near-zero
backward emission rates at the points of maximum chi-
rality.

We emphasize that this parasitic effect primarily com-
promises our characterization method for bounding the
chirality ratio and not necessarily the directionality of the
artificial atom. A more sensitive measurement scheme in
which the emitter is driven in the forward direction while
simultaneously measuring the backward scattered power
will likely put tighter bounds on the backward emission
(equivalent to a larger directionality ratio). These mea-
surements were not possible in our dilution fridge at the
time of performing this experiment.

We additionally observe that ‘ripples’ of the transmis-
sion trace backgrounds fluctuate in time, which we at-
tribute to two-level system (TLS) defects. Such defects
may couple to emitter or coupler qubits [69]. An exam-
ple of a TLS defect is indicated in Fig. 8c. Measure-
ments over longer periods of time have a larger chance
of capturing these fluctuations, which manifests as slight
dispersive changes in the transmission profile.

2. Phase stability of the coupler drives

To determine an upper bound on experimentally
achievable chirality, we characterize the phase stability of
the microwave source used for coupler modulation (Ro-
hde and Schwarz SMB 100A). The microwave source out-
put is measured with a VNA in zero-span mode, and
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FIG. 10. Emitter decoherence (a) Measured excess deco-
herence (Γ′ − Γ′0) for increasing Γf

1D. The increase in deco-
herence can be attributed to a combination of emitter-coupler
hybridization (dotted red line) and thermal occupation of the
waveguide (dotted blue line). From this data, we estimate
a waveguide temperature of TWG = 65 ± 12 mK. The offset
Γ′0/2π = 350 ± 45 kHz corresponds to the decoherence rate
in the limit of weak emitter-coupler hybridization and small
Γf
1D. (b) Measured Purcell factor as a function of Γf

1D. The
dashed blue line and shadow denote the calculated Purcell
factor after accounting for emitter-coupler hybridization and
finite waveguide temperature. Shadows correspond to a 95%
confidence interval from uncertainty in the waveguide tem-
perature model.

phase fluctuations are measured over 10 hours. The vari-
ance in phase over this duration is 〈dϕ2〉 = 4.9 deg2. Us-
ing Eq. (B15) and Eq. (B17), and setting ϕWG = π/2, we

have a directionality ratio ηd = 1+sin(ϕc)
1−sin(ϕc) . Taylor expan-

sion about ϕc yields ηd ≈ 4
dϕ2

c
. Treating the two source

phases as independent random variables, we bound chi-
rality as ηd ≈ 2

〈dϕ2〉 . This yields an upper chirality bound

of ηd = 1.3 × 103. Phase variability of the microwave
source is potentially caused by temperature fluctuations
in the measurement environment.

Appendix D: Analysis of the decoherence sources

Our measured β-factor (β = Γf1D/(Γ
f
1D + Γb

1D + Γ′))
is set by the intrinsic decoherence rate Γ′ of the chiral
atom. A related commonly used figure of merit for light-
matter interaction is the Purcell factor, which is defined
as the ratio of the emission rate of the atom to the de-

sired waveguide modes (Γf
1D) to the intrinsic decoherence

rate Γ′ of the atom [70]. The intrinsic decoherence rate
is given by Γ′ = 2Γ2 − Γ1D = Γloss + 2Γφ. Here, Γloss

includes non-radiative loss from various sources such as
dielectric loss and coupling to two-level systems (TLS) as
well as parasitic radiative decay of spurious modulation
sidebands to the waveguide. For vanishingly small Γb

1D,
the Purcell factor is given by β/(1 − β). The measured
Purcell factors for our chiral atom are shown in Fig. 10.
These measurements are performed at the phase settings
corresponding to maximum chirality (ϕc = π/2), such
that the atom-waveguide coupling is dominantly in the
forward direction (Γb

1D/Γ
f
1D → 0). We measure a maxi-

mum Purcell factor of 8 and find that both the β factor
and the Purcell factor saturate at large Γf

1D due to a
corresponding increase in Γ′.

The observed increase in Γ′ with increasing Γf
1D can

be partially explained by the decoherence from the cou-
plers. The tunable couplers operate far away from their
flux sweet spot and experience significant dephasing from
flux noise. As a result, increasing Γf

1D by reducing the
frequency detuning between the emitter and the couplers
results in an increase in the emitter decoherence from a
weak hybridization with the coupler modes. Based on the
measured decoherence rate of the couplers, we estimate
that ∼ 220 kHz of emitter decoherence can be attributed
to this source at the maximum value of Γf

1D (Fig. 10).
This source of decoherence can potentially be mitigated
by using tunable couplers fabricated using SQUID loops
consisting of asymmetric Josephson junctions [59].

In addition to emitter-coupler hybridization, the finite
thermal occupation of the waveguide can also lead to ex-
cess decoherence at larger values of Γf

1D [20]. The master
equation Eq. (B21) can be solved for a mean thermal oc-
cupation n̄th in the waveguide to obtain the thermally-
enhanced decay rate Γth

1 = (2n̄th + 1)Γ1 and decoherence
rate Γth

2 = Γth
1 /2 + Γφ, where Γ1 is the relaxation rate

of the emitter at zero temperature [20]. The thermally-
enhanced intrinsic decoherence rate can then be obtained
as Γ′ = 2Γth

2 −Γ1D. Assuming Γth
2 ≈ Γth

1 /2, we can write
the intrinsic decoherence rate Γ′ as,

Γ′ = Γth
1 − Γ1D

= (2n̄th + 1)Γ1 − Γ1D

= 2n̄th(Γ1D + Γ′0) + Γ′0 (D1)

where Γ′0 is the internal dissipation rate of the emitter at
zero temperature (n̄th = 0) and Γ1 = Γ1D + Γ′0. From fit
to the data, we obtain a waveguide temperature TWG =
65 ± 12 mK and Γ′0/2π = 350 ± 45 kHz. Better ther-
malization of the waveguide can be obtained using thin
film microwave attenuators [60]. Eliminating the depen-
dence of Γ′ on Γf

1D (e.g. by using asymmetric junction
SQUIDS and cryogenic attenuators) translates to a 2x
improvement in the measured maximum Purcell factor
in our experiment.

We highlight the difference between the intrinsic deco-
herence rate of the chiral sideband (Γ′0/2π = 350 ± 45
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FIG. 11. Characterization of the emitter baseband:
Measured transmission |t| response of the emitter baseband
with all RF modulation turned off. We tune the left coupler
bias such that we get sufficient external coupling for the base-
band to be visible when probed with a weak microwave tone
via the waveguide. We measure the baseband frequency to
be 5.616 GHz. The emitter baseband is undercoupled, with
an internal decay rate Γ′ = 2π × 160 kHz and an external
coupling rate κe = 2π × 76 kHz.

kHz for small values of Γf
1D), with that of the emitter

baseband when all the modulation drives are off (mea-
sured to be Γ′ = 2π × 160 kHz, see Fig. 11). The differ-
ence between these two values may indicate the presence
of energy leakage to spurious sidebands. Such parasitic
radiative decays can be suppressed using a more aggres-
sive sideband filtering scheme, such as replacing the filter
cavities in our experiment with a dispersion-engineered
metamaterial waveguide. The complete elimination of
these decay channels in our experiment translates to an
additional 2x improvement in the maximum measured
Purcell factor.

Finally, we note that modest improvements to the in-
trinsic lifetime of the qubits (to 5-10 µs corresponding to
an internal linewidth less than 30 kHz) translate to an
additional 5x improvement to our maximum measured
Purcell factors. As a result, a combination of improved
coupler design, waveguide thermalization, stronger spec-
tral filtering, and improved qubit lifetime can lead to an
order of magnitude improvement in Purcell factors, re-
sulting in Γf

1D/Γ
′ > 100. Such Purcell factors have been

achieved in non-chiral waveguide QED systems based on
superconducting qubits [24, 71].

Appendix E: Power broadening and resonance
fluorescence

Here, we analyze the behavior of the chiral atom
under strong drives. At zero-temperature (n̄th = 0),
Eq. (B21) can be solved to give the steady-state solu-
tions of the Bloch equations [52]. Using the relations
〈σx〉 = 2Re(ρeg), 〈σy〉 = −2Im(ρge) and 〈σz〉 = ρee − ρgg.
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FIG. 12. Rabi frequency vs drive power: Ω2
R vs drive

power obtained from least-squares fitting to the Mollow triplet
data (blue) and power broadening data (red). Solid lines are
linear fits to the model Ω2

R = 4Γ1DPin/~ωge. From these fits,
we obtain a slope of m = 123 ± 2 MHz2/fW for the Mollow
data and a slope of m = 125 ± 6 MHz2/fW for the power
broadening data. Uncertainties on the slope represent 95%
CI obtained from the least-squares fitting routine.

Γ1/2π [MHz] Γ2/2π [MHz]

Mollow fits 1.34 ± 0.15 0.72 ± 0.08

Power broadening fits 1.35 ± 0.03 0.67 ± 0.1

TABLE IV. Summary of fit parameters from the resonance
fluorescence and coherent power broadening measurements
shown in Fig. 3 of the main text. For these measurements, we
independently measure the emitter-waveguide coupling rate
to be Γf

1D/2π = 1 MHz.

We obtain,

〈σ̇x〉 = ΩR〈σz〉 − δω〈σy〉 − Γ2〈σx〉 (E1)

〈σ̇y〉 = δω〈σx〉 − Γ2〈σy〉 (E2)

〈σ̇z〉 = −ΩR〈σx〉 − Γ1(1 + 〈σz〉) (E3)

where we have used the commutation relations [σx, σy] =
2iσz, [σy, σz] = 2iσx and [σz, σx] = 2iσy to evaluate
Eq. (B21). In steady state, we obtain the solutions [52],

〈σx〉 =
−Γ1Γ2ΩR

Γ1(Γ2
2 + δω2) + Γ2Ω2

R

(E4)

〈σy〉 =
−Γ1δωΩR

Γ1(Γ2
2 + δω2) + Γ2Ω2

R

(E5)

〈σz〉 = −1 +
Γ2Ω2

R

Γ1(Γ2
2 + δω2) + Γ2Ω2

R

. (E6)

Using the input-output relations shown in Eq. (B12) and
the relation σ̂− = 1

2 (σ̂x − iσ̂y), we obtain the coherent
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response of the driven chiral qubit,

t = 1− Γf
1DΓ1(Γ2 − iδω)

Γ1(Γ2
2 + δω2) + Γ2Ω2

R

(E7)

where we have used Γf
1D = 2κem for kd = π/2 and ϕc =

π/2. The power spectrum of the output radiation field is
given by [72],

S(ω) = Re

∫ ∞
0

dτ

π
eiωt〈a†out(t)aout(t+ τ)〉 (E8)

For the case of perfect chirality (ϕc = π/2, kd = π/2),
the output field is given by (see Eq. (B12),

âout(t) = âin(t) +
√

Γf
1Dσ−(t). (E9)

Eq. (E8) contains both the coherent and incoherent part
of the emission spectrum. The incoherent part can be
evaluated to be [72],

S(ω) =
1

2π

~ω0Γf
1D

4

(
Γs

(δω + ΩR)
2

+ Γ2
s

+
2Γ2

δω + Γ2
2

+
Γs

(δω − ΩR)
2

+ Γ2
s

) (E10)

where 2Γs = Γ1 + Γ2 is the full-width at half-maximum
of the Mollow sidebands.

We choose a setting with Γf
1D/2π = 1 MHz for the res-

onance fluorescence and coherent power broadening mea-
surements. The emitter-coupler detuning is chosen to be
δCE/2π = 105 MHz to avoid exciting the couplers under
strong drives. We perform non-linear least-squares fit-
ting of the measured power-broadened coherent response
of the chiral emitter to the model in Eq. (E7) and the
resonance fluorescence data to the model in Eq. (E10).
Γf

1D/2π = 1 ± 0.1 MHz was independently obtained us-
ing VNA measurements at low powers and fixed while
performing the fits. The Rabi frequencies ΩR obtained
from these fits are shown in Fig. 12. For a chiral atom,

we expect ΩR =
√

4Γf
1DPin/~ωge (see Eq. (B20)). The

drive power at the chip Pin in Fig. 12 is calculated us-
ing input line attenuation calibrated using thermometry
measurements [66]. From linear fits to the Ω2

R vs drive

power data, we obtain a slope m = 123 ± 2 MHz2/fW
for the Mollow data and m = 125 ± 6 MHz2/fW for the
power broadening data, which are in agreement with each
other. From measured values of Γf

1D/2π = 1± 0.1 MHz,

we expect a slope m =
4Γf

1D

(2π)2~ωge
= 150 ± 15 MHz2/fW,

which is close to the values obtained from Fig. 12. We
attribute the discrepancy to uncertainty in the line at-
tenuation calibration used to obtain the drive power (∼
15%) [66].

The energy decay rate Γ1 and the decoherence rate
Γ2 obtained from these fits are summarized in Table IV,

showing good agreement with each other. From the val-
ues of Γ1 and Γ2 obtained from the resonance fluorescence
data, we obtain a small pure dephasing rate Γφ/2π ≈ 50
kHz for this setting. We also obtain the internal dissipa-
tion rate for the emitter qubit Γ′ = Γ1−Γf

1D = 2π× 364
kHz at this setting.

Appendix F: Bounding chirality of the |e〉 −→ |f〉
transition

The chirality of the e−f transition is difficult to extract
because variations with respect to ϕc in Γf

1D and Γb
1D

for e − f are confounded with an analogous variation in
atom-waveguide coupling for the g−e transition. Hence,
we bound the e − f chirality by examining the atom-
waveguide coupling through each dissipation port.

We extract atom-waveguide couplings from fits to
transmission traces obtained from two-tone spectroscopy.
Using a master equation treatment [72] of a three-level
system, we obtain the input-output relations and the cor-
responding complex transmission coefficient t for the e−f
transition under chiral and bidirectional settings, with
the g− e transition under a strong continuous drive. For
the sake of brevity, full analytical expressions are omit-
ted. Fits to analytical expressions are supplemented with
corresponding master equation simulations performed us-
ing QuTiP [73].

In our experiment, the e− f transition exhibits imbal-
anced atom-waveguide coupling between the two dissipa-
tion ports (κl

em 6= κr
em). For this case, expressions for

Γf
1D and Γb

1D can be obtained following Appendix B.

Γf,b
1D,e−f =

κl
em + κr

em

2
±
√
κl

emκ
r
em (F1)

Transmission traces are fit in the case of a continuous
drive tone at frequency ωge. Values obtained from fits
are used in Eq. (F1) to obtain Γf

1D,ef/2π = 2.4 MHz, and

Γb
1D,ef/2π = 0.2 MHz, corresponding to a directionality

ratio of ηd = 12. In addition, these fits yield Γ′ef/2π
= 0.75 kHz, corresponding to Γtot,ef/2π = 3.15 MHz.
An additional fit to the g − e transition measured in-
dependently on the VNA yields Γ′ge/2π = 0.7 MHz and
Γtot,ge/2π = 1.3 MHz.

In principle, with pulsed excitation of the g − e tran-
sition, the parameters obtained above are sufficient to
observe a chiral response with strong coupling for the e-
f transition (Γf

1D,ef > 0.5(Γtot,ef + Γtot,ge)). However, as
the g−e transition is not protected from waveguide decay,
we use a readout pulse of 120 ns duration to rapidly probe
the e− f transition in the pulsed spectroscopy measure-
ment. To operate in the quasi-cw regime, it is necessary
to use a dispersion-engineered metamaterial waveguide,
such that the e− f transition falls in the passband while
the g − e transition falls outside and remains protected
from radiative decay to the waveguide [71]. Such a de-
vice architecture can be used to realize conditional phase
gates on itinerant photons [55, 57, 74].
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Appendix G: Rabi oscillations

As our device is not equipped with a readout res-
onator, we observe Rabi oscillations by directly driving
the qubit via the waveguide with a Gaussian pulse of vari-
able duration τP and measuring the in-quadrature com-
ponent of the qubit Bloch vector. We assume a coherent
drive along σy, and starting with a qubit ground state
〈σz〉(t = 0) = −1. For a resonant drive at δω = 0, with
ΩR ≥ |Γ1 − Γ2|/2, the qubit state is given by

〈σx〉(t = τP) = x∞ −
(

ΓRx∞ − ΩR

νR
sin (νRτP)

+ x∞ cos (νRτP)

)
exp(−ΓRτP)

(G1)

〈σz〉(t = τP) = z∞ − (1 + z∞)

(
cos(νRτP)

+
ΓR

νR
sin(νRτP)

)
exp(−ΓRτP)

(G2)

The resonant drive δω = 0 results in 〈σy〉(t = τP) = 0.
Here, ΓR = (Γ1 + Γ2)/2 is the Rabi decay rate and

νR =
√

Ω2
R − (Γ1 − Γ2)2/4 is the effective Rabi oscilla-

tion frequency. The steady-state values of 〈σx〉(t = ∞)
and 〈σz〉(t = ∞) are x∞ = Γ1ΩR/(Γ1Γ2 + Ω2

R) and
z∞ = −Γ1Γ2/(Γ1Γ2 + Ω2

R), respectively. Rabi oscilla-
tion measurements are fitted to Eq. (G1) assuming no
dephasing (Γ2 = Γ1/2).

In the limit of large drives (ΩR � Γ1,Γ2), νR ≈ ΩR

and x∞ ≈ z∞ ≈ 0. Eq. (G1) and Eq. (G2) may be
simplified to

〈σx〉(t = τP) = sin (ΩRτP) exp (−ΓRτP) (G3)

〈σz〉(t = τP) = − cos (ΩRτP) exp (−ΓRτP). (G4)

After the drive is turned off, the qubit evolves freely
and decays due to energy dissipation and decoherence.
The evolution equations can be obtained by substituting
ΩR = 0 in Eq. (E3),

〈σ̇x〉 = −Γ2〈σx〉 (G5)

〈σ̇z〉 = −Γ1(1 + 〈σz〉). (G6)

The solutions to the above equations are given by,

〈σx〉(t′) = 〈σx〉(τP) exp (−Γ2t
′) (G7)

〈σz〉(t′) = [1 + 〈σz〉(τP)] exp (−Γ1t
′)− 1 (G8)

where 〈σx〉(τP) and 〈σz〉(τP) are obtained from Eq. (G3).
As we perform readout directly via the waveguide, the
signal-to-noise ratio (SNR) is limited by HEMT noise.
To obtain better SNR, we, therefore, perform phase-
sensitive averaging (w.r.t the Rabi drive) of the qubit

emission after the drive is turned off. The component
of qubit emission in-quadrature with the drive gives us
〈σx〉. We integrate the ring-down, resulting in a sig-
nal

∫
dt′〈σx〉(τP) exp (−Γ2t

′), which is proportional to
〈σx〉(τP).

To perform these measurements, we first generate
Gaussian pulses at the intermediate frequency of 60 MHz
using the Quantum Machines OPX+ module. The pulses
are next up-converted to radio frequencies by combining
them with a local oscillator (LO) using a mixer. Af-
ter driving the qubit with the resonant Gaussian pulse,
qubit emission is down-converted with another mixer us-
ing the same LO that is used for generating the drive.
The output is then demodulated, and the in-phase (I)
and quadrature (Q) components of the output signal are
averaged separately. Combining the two (as I+iQ) yields
the projection of the qubit state onto the Bloch sphere
XY plane. The component in-quadrature with the drive
maps to 〈σx〉(τP), which is shown in the measurements
in the main text.

Appendix H: Parametric qubit-waveguide coupling

In our device, we generate time-harmonic coupling be-
tween the emitter qubit and a filter cavity by modulating
the frequency of an intermediary mode, the coupler. This
approach can be used generally to obtain non-reciprocal
interactions between modes [75]. Previous works have op-
erated similar tunable couplers in the dispersive regime,
when the coupler is far detuned from both the emit-
ter and filter cavity (δC,E � gEC, δC,R � gCR, where
δC,E = ωC − ωE, δC,R = ωC − ωR) [35, 76]. Experimen-
tally, we improve emitter-waveguide coupling by breaking
the dispersive assumption. We instead allow the couplers
and filter cavities to hybridize. To describe the tunable
coupler in this regime, we present an input-output model
for harmonic coupling between two modes by frequency
modulation of an intermediary mode. The model ac-
counts for the appearance of sidebands of the emitter
as well as its effective coupling strength to sidebands of
other modes. We find that the coupling strength between
sidebands of distinct modes depends on the relative side-
band order, the modulation frequency, and the modu-
lation amplitude. These insights provide the means for
experimental optimization of directionality and external
coupling in the chiral qubit.

1. Derivation of coupled mode equations

We focus our attention on one dissipation port of the
emitter. A coupler mode is directly coupled to the emit-
ter with strength gEC and directly coupled to a filter
cavity mode with strength gCR. The filter cavity decays
to photonic modes of a 1D waveguide. The coupler mode
is frequency modulated. The system is shown schemati-
cally in Fig. 13a.
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FIG. 13. Parametric Waveguide Coupling Input-Output Model (a) Schematic of tunable coupler containing three
modes - an emitter, coupler, and filter cavity. The emitter-coupler and coupler-filter cavity interaction strengths are gEC and
gCR, respectively. The coupler frequency is modulated in time, and the filter cavity decays to a 1D waveguide. (b) Frequency
domain picture of the tunable coupler. Frequency modulation of the coupler generates sidebands for all three modes. Effective
coupling strengths between sidebands of different modes are indicated by arrows, and depend on the relative sideband order
(D), modulation frequency (∆), and modulation amplitude (ε). The filter cavity baseband (R0) provides a decay channel to
the waveguide. In experiments, the emitter’s first sideband (E1) is used as the chiral qubit.

The full Hamiltonian in the Heisenberg picture is given
as follows. We set } = 1 and assume linear cavities for
simplicity.

Ĥ = Ĥsys + Ĥbath + Ĥint (H1)

Ĥsys = [ωC + ε sin(∆t)]â†CâC + ωRâ
†
RâR + ωEâ

†
EâE

+ gEC(â†EâC + âEâ
†
C) + gCR(â†CâR + âCâ

†
R)

(H2)

Ĥbath =
∑
q

ωq b̂
†
q b̂q (H3)

Ĥint = −i
∑
q

(fq b̂qâ
†
R − f

∗
q b̂
†
qâR) (H4)

Here, Ĥsys contains the three individual modes, the
emitter-coupler interaction term, and the coupler-filter
cavity interaction term. The coupler frequency is modu-
lated at frequency ∆ with amplitude ε. Ĥbath describes
the waveguide modes, and Ĥint describes the coupling be-
tween the filter cavity and waveguide modes. Following
[77], Langevin equations are given below.

˙̂aR = iωRâR +
κt

2
âR + igCRâC −

√
κe

2
âin (H5)

˙̂aC = i[ωC+ε sin(∆t)]âC+
γC

2
âC+igCRâR+igECâE (H6)

˙̂aE = iωEâE +
γE

2
âE + igECâC (H7)

Here, κt is the total decay rate of the filter cavity and
κe is the external coupling of the filter cavity to the
waveguide. The emitter and coupler do not couple di-
rectly to the waveguide, and their total decay rates γE

and γC are comprised of only internal loss. We note
that, in the absence of coupler frequency modulation
(ε = 0), these expressions yield electromagnetically in-
duced transparency (EIT) phenomena.

The time dependence of the coupler frequency can be
simplified by performing the following substitution.

ˆ̃aC = âCexp[i
ε

∆
cos(∆t)] (H8)

This is equivalent to performing a unitary transforma-
tion of the form ˆ̃aC = U†âCU , where

U = exp[−i ε
∆

cos(∆t)â†CâC]. (H9)

In the classical formulation of this problem, this trans-
formation corresponds to an appropriate gauge transfor-
mation [78].

Next, we make use of the Jacobi-Anger expansion,
given below, to break the time dependence of the modi-
fied coupler operator into discrete harmonics. Jn repre-
sents the n-th Bessel function of the first kind.

exp[i
ε

∆
cos(∆t)] =

∞∑
n=−∞

inJn(
ε

∆
)ein∆t (H10)
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Performing the substitution then yields the following
modified Langevin equations.

˙̂aR = iωRâR +
κt

2
âR + igCR

∑
n

(−i)nJn(
ε

∆
)ein∆tˆ̃aC

−
√
κe

2
âin

(H11)

˙̂
ãC = iωC

ˆ̃aC +
γC

2
ˆ̃aC + igCR

∑
l

ilJl(
ε

∆
)eil∆tâR

+ igEC

∑
m

imJm(
ε

∆
)eim∆tâE

(H12)

˙̂aE = iωEâE +
γE

2
âE + igEC

∑
n

(−i)nJn(
ε

∆
)ein∆tˆ̃aC

(H13)
Taking the Fourier transform then yields

iωâR(ω) = iωRâR(ω) +
κt

2
âR(ω)

+ igCR

∑
n

(−i)nJn(
ε

∆
)ˆ̃aC(ω − n∆)

−
√
κe

2
âin(ω)

(H14)

iωˆ̃aC(ω) = iωC
ˆ̃aC(ω) +

γC

2
ˆ̃aC(ω)

+ igCR

∑
l

ilJl(
ε

∆
)âR(ω − l∆)

+ igEC

∑
m

imJm(
ε

∆
)âE(ω −m∆)

(H15)

iωâE(ω) = iωEâE(ω) +
γE

2
âE(ω)

+ igEC

∑
n

(−i)nJn(
ε

∆
)ˆ̃aC(ω − n∆)

(H16)

In the frequency domain, the coupled mode equations in-
dicate that the emitter and filter cavity at frequency ω
are coupled to the coupler at frequencies ω + n∆, n ∈ Z,
with effective coupling strength determined by the Bessel
functions. In this picture, each of the emitter, coupler,
and filter cavity break into a spectrum of discrete har-
monics, or ‘sidebands.’ We may displace each of the three
equations in frequency by n∆, n ∈ Z, to generate equa-
tions for each sideband of the coupler, emitter, and filter
cavity. This is completed in Eq. (H17), where the coupled
mode equations are arranged in a matrix-vector equation.

i

√
κe

2
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0

ain(ω)

0
...


=



. . .
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.

. . . H-1 G1 G2 . . .

. . . G∗1 H0 G1 . . .

. . . G∗2 G∗1 H1 . . .

. .
. ...

...
...

. . .





...

a(ω −∆)

a(ω)

a(ω + ∆)
...


(H17)

We will refer to the left-hand side of this equation as the
waveguide input vector. The components of the waveg-
uide input are defined as follows.

0 =

0

0

0

 (H18)

ain(ω) =

 0

0

âin(ω)

 (H19)

The only non-zero term in the waveguide input vector
corresponds to the baseband of the filter cavity, which
acts as the decay pathway to the waveguide. The right-
hand side is composed of the Hamiltonian matrix and
sideband vector. The sideband vector components con-
tain the emitter, coupler, and filter cavity sidebands of a
single order and are given as follows.

a(ω + n∆) =

âE(ω + n∆)

âC(ω + n∆)

âR(ω + n∆)

 (H20)

The Hamiltonian matrix is split into 3×3 sub-matrices,
defined below.

Hn =


∆E,n + iγE

2 −gECJ0( ε∆ ) 0

−gECJ0( ε∆ ) ∆C,n + iγC

2 −gCRJ0( ε∆ )

0 −gCRJ0( ε∆ ) ∆R,n + i
κt,R

2


(H21)

Gk = −(i)k


0 gECJk( ε∆ ) 0

gECJk( ε∆ ) 0 gCRJk( ε∆ )

0 gCRJk( ε∆ ) 0

 (H22)

The on-diagonal sub-matrices Hn account for the reso-
nance frequencies of the emitter, coupler, and filter cavity
in a single sideband order. The Hn also give the emitter-
coupler and coupler-filter cavity coupling strengths be-
tween sidebands of the same order (different modes).
This coupling strength is scaled by the zero-th Bessel
function, J0. As a result, ε = 0 results in J0 = 1,
and maximal coupling between sidebands of the same
order. Note that here we introduce the detuning ∆i,n =
ω − ωE + n∆ (i = E,C,R), which is distinct from the
coupler modulation frequency, ∆.

Coupling between sidebands of different orders is given
by the Gk sub-matrices, with k dictating the order of the
Bessel function which scales emitter-coupler or coupler-
filter cavity interaction strength. As evidenced by the
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Hamiltonian matrix Eq. (H17), k increases for Gk further
from the on-diagonal Hn. The relative distance between
sideband orders determines k. For example, the emitter’s
n-th sideband and the coupler’s m-th sideband have k =
|m − n|, meaning the coupling strength between these
sidebands contains a prefactor Jk(ε/∆). This scaling of
interaction strengths is shown schematically in Fig. 13b.
When ε = 0 (RF drive is off), there is no coupling to any
sidebands (because Jn(0) = 0, n 6= 0).

For a given frequency drive amplitude (ε) and fre-
quency modulation (∆), the relative coupling strengths of
sidebands are determined by the Jn(ε/∆). For low drives
ε/∆ < 1, only the Bessel functions of low order have sig-
nificant magnitude. Therefore, by properly truncating
the coupled mode equations (by only including coupled
mode equations for sidebands of a low order), we gener-
ate a finite matrix equation that allows us to solve for
the transmission of the tunable coupler. Transmission is
determined by the standard 2-sided cavity input-output
relation.

âout(ω) = âin(ω)−
√
κe

2
âR(ω) (H23)

We may solve for âR(ω) by inverting the Hamiltonian
matrix of Eq. (H17).

2. Discussion

The derived input-output model provides several phys-
ical insights into the tunable coupler. First, by modulat-
ing the coupler frequency, we generate sidebands of all
three modes. Any effective coupling between sidebands
of the emitter and filter cavity are mediated by sidebands
of the coupler (see Fig. 13b). Any decay to the waveg-
uide is mediated by the filter cavity baseband. In order to
maximize the coupling between an emitter/filter cavity
sideband and a coupler sideband, for a given modulation
frequency ∆, we may vary the coupler drive amplitude ε.
A larger relative distance between sideband order (k) will
require increased drive amplitude ε to optimize coupling.
This is because maxima of higher order Bessel functions
occur at larger values of ε/∆.

3. External coupling

The derived input-output relations provide a method
for estimating the external coupling of the emitter and its
sidebands. In principle, there are infinitely many decay
pathways for a given emitter sideband; each pathway is
mediated by a coupler sideband of distinct order. This
is evident in the mapping of interaction strengths given
in Fig. 13b. In this section, we will make estimates for
the waveguide coupling rate of an emitter sideband En
arising from interaction with a coupler sideband Cm; the
full decay pathway is En → Cm → R0. We consider

E1

C1

R1

C-1

R-1

E0

C0

R0

……

Filter band

E2

FIG. 14. Decay pathways of emitter sidebands The filter
cavity at its natural frequency R0 is the source of waveguide
decay. The first emitter sideband’s (E1) dominant decay path-
way occurs through interaction with the coupler baseband and
cavity baseband (red arrows, E0 → C1 → R0). Decay path-
ways of the parasitic emitter baseband (E0) are suppressed
by the filter cavity (gray arrows). Note that the emitter side-
band spectrum is offset from the cavity and coupler sideband
spectra by ∆, corresponding to the experimental settings.

three cases, the dispersive regime, hybridized coupler-
filter cavity regime, and fully hybridized regime. We will
then apply these estimates to illustrate waveguide decay
pathways in our experiment.

For the radiation pathway En → Cm → R0, relevant
frequencies are ωEn = ωE+n∆, ωCm = ωC+m∆, and ωR.
We will refer to these relevant sidebands as the emitter,
coupler, and filter cavity.

a. Dispersive regime

When the coupler is far detuned from the emitter
and filter cavity (δCm,En � gECJm−n(ε/∆), δCm,R �
gCRJm(ε/∆)), the effective interaction strength between
the emitter and filter cavity is given by

geff =
gECgCR

2
Jm−n(

ε

∆
)Jm(

ε

∆
)(

1

δCm,En
+

1

δCm,R
)

(H24)
under the rotating wave approximation [76]. Provided
that δEn,R � geff , where δEn,R = ωEn − ωR, emitter
external coupling to the waveguide is then given by

κem = (
geff

δEn,R
)2κe (H25)
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b. Hybridized coupler-filter cavity regime

The coupler and filter cavity may be strongly hy-
bridized with the emitter far detuned from either of the
hybrid modes. In this situation, geff between the emit-
ter and the hybridized mode (i.e., the majority coupler
hybridized mode) can be expressed as

geff = gECJm−n(
ε

∆
)(

ζ2

ξ2 + ζ2
) (H26)

where the raising operator for the hybridized mode is

â†h =
1√

ζ2 + ξ2
(ζâ†C + ξâ†R) (H27)

and has frequency ωh. With δEn,h = ωEn−ωh, Emitter
external coupling to the waveguide is then given by

κem = (
geff

δEn,h
)2(

ξ2

ξ2 + ζ2
)κe (H28)

c. Fully hybridized regime

In the case of strong hybridization of the coupler and
filter cavity, we may also allow the emitter sideband to
hybridize with a coupler-filter cavity hybrid mode. The
emitter’s raising operator then becomes

â†d =
1√

1 + α2
(â†E + αâ†h) (H29)

where α � 1. External coupling is then given by the
following.

κem = (
α2

1 + α2
)(

ξ2

ξ2 + ζ2
)κe (H30)

Generally, for a fixed drive amplitude (ε) and drive
frequency (∆), permitting stronger emitter hybridiza-
tion with the coupler and resonator results in larger
emitter-waveguide coupling. Hence, full hybridization
yields larger emitter-waveguide coupling than only hy-
bridizing the coupler and filter cavity. Operating in the
dispersive regime results in the lowest emitter-waveguide
coupling.

d. Chiral emitter sideband decay

In our application, we are primarily concerned with
improving the external coupling of the emitter qubit’s
first sideband E1. Our experimental settings correspond
to modest values of ε/∆ < 1, so that only interactions
between adjacent sidebands are significant (Jn>2(ε/∆) ≈

0). Hence, the potential decay pathways for E1 reduce
to either E1 → C0 → R0 or E1 → C1 → R0.

Our device is designed to maximize decay through the
first channel (E1 → C0 → R0), marked by red arrows in
Fig. 14. Because ∆ > gCE, gCR in our device, this may
be done by positioning the emitter sideband and coupler
baseband frequencies near the cavity baseband frequency
(δC,E1 ≈ gEC, δC,R ≈ gCR). These frequency spacings al-
low for the hybridization of the coupler and cavity base-
bands. As a result, this dominant decay pathway oper-
ates in the (b) hybridized coupler-filter cavity regime.

Under these conditions, decay through the second
channel (E1 → C1 → R0) is suppressed due to detuning
between C1 and R0 (of approximately ∆). The second
channel operates in the (a) dispersive regime.

e. Parasitic emitter sideband decay

We now consider the decay of the emitter baseband
(E0) to illustrate the spectral filtering provided by the
cavities. Again, because experiments operate within
ε/∆ < 1, we consider only interactions between adja-
cent sidebands. The relevant decay pathways are then
E0 → C1 → R0, E0 → C0 → R0, and E0 → C−1 →
R0. As shown in Fig. 14, the first pathway E0 → C1 →
R0, operates strongly in the (a) dispersive regime. The
second channel, E0 → C0 → R0 (marked in gray arrows
in Fig. 14]), operates in the (b) hybridized coupler-filter
cavity regime. In this case, the detuning between the
emitter baseband and the hybridized coupler-filter cav-
ity suppresses the external coupling. The last channel,
E0 → C−1 → R0 (marked in gray arrows in Fig. 14), is
not described by the three operating regimes presented.
In this pathway the emitter decay is suppressed by the
large detuning between the coupler sideband C−1 and
filter cavity.

4. Experimental operation of tunable coupler

To operate the tunable coupler, we first DC bias the
coupler qubit to an appropriate working point, as shown
in Fig. 1c (bottom panel). We then apply a microwave
tone to the coupler qubit flux line (Zl,Zr shown in
Fig. 1b). Because the coupler qubit has a non-linear de-
pendence on the flux threading its SQUID loop (shown in
Fig. 8a,b), the amplitude ε and coupler mean frequency
ωC are determined by both the DC bias point (ΦDC) and
the applied RF power (Pin ∝ ε2). Taylor expanding the
coupler qubit frequency results in the following relations.

ωC(Φ(t)) = ωC(ΦDC + εΦsin(∆t)) ≈ ω̄C + εsin(∆t)
(H31)

where ω̄C = ωC+
ε2Φ
4
dωC

dΦ

∣∣∣
ΦDC

and ε = εΦ
dωC

dΦ

∣∣∣
ΦDC

. Note

the change in the notation of ω̄C to represent the coupler
mean frequency (given by ωC in previous sections).
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FIG. 15. Comparison of experimental transmission
and input-output calculation (a) Measured device trans-
mission as RF drive frequency of the right coupler is swept
from 500 MHz to 1 GHz. The left coupler drive frequency is
set to 805 MHz during the entire measurement. The emitter’s
first blue sideband frequency (generated by the right coupler)
increases with ∆/2π. The same sideband, generated by the
left coupler, remains at 6.441 GHz. Spectrally overlapping
these sidebands yields the interference required for chirality.
(b) Calculated device transmission for the right coupler. The
emitter’s first blue sideband, coupler baseband, and filter cav-
ity baseband are visible.

In Fig. 15, we use the input-output model to repro-
duce the qualitative behavior of the tunable coupler. In
Fig. 15a, we record waveguide transmission while sweep-
ing the RF drive frequency of the right coupler qubit.
All qubits are set to the same DC flux bias as the chiral
configuration presented in Fig. 1c. Additionally, the RF
drive frequency of the left coupler qubit is set to ∆l/2π
= 805 MHz. As a result, the ∆r/2π = 805 MHz trans-
mission trace in Fig. 15(a) corresponds to Fig. 1c.

Fig. 15(b) gives the waveguide transmission calculated
using the input-output model, including only the right
decay pathway. As a result, the left coupler, filter cavity,
and left emitter sideband are not present.

The calculated transmission uses experimentally ex-
tracted parameters for the emitter, coupler, and filter
cavity (given in Table I, Table II, Table III). The drive
amplitude ε is calibrated by recording the shift in the cou-
pler qubit mean frequency while sweeping the RF drive
power. For ∆/2π = 805 MHz, drive amplitude is ε/2π =
364MHz, yielding ε/∆ = 0.452. At this drive amplitude,
J0(ε/∆) = 0.95, J1(ε/∆) = 0.22, and J2(ε/∆) = 0.03.
The Bessel functions of higher order (> 2) may therefore
be safely ignored, and the input-output matrix equation
is truncated after the second-order negative and positive
sidebands (H0, H±1, H±2 are included).
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