
BoilerBot: A Reliable Task-Oriented Chatbot
Enhanced with Large Language Models

Yifei Hu1 Jinen Setpal2,∗ Damin Zhang1,∗ Jacob Zietek2

Jack Lambert3 Rey (Alex) Gonzalez1 Julia Rayz1

1Computer and Information Technology, 2Computer Science, 3Sociology
{hu381, jsetpal, zhan4060, jzietek, lamberjb, gonza736, jtaylor1}@purdue.edu

∗: Equal Contribution

Abstract

This paper outlines the design and deployment of BoilerBot: a task-oriented
multimodal conversational agent developed for the Alexa Prize TaskBot 2 competi-
tion. BoilerBot features flexible response generation, leveraging Large Language
Models (LLMs) to enable adaptable user experiences. We discuss our novel con-
tributions towards advancing state-of-the-art task-oriented conversational agents,
highlighting user-facing challenges and proposing fault-tolerant, iterative solutions
for carefully guided workflows that enable Alexa users to maximize BoilerBot’s
functionality. An open source re-implementation of BoilerBot is available at
https://{dags|git}hub.com/jinensetpal/boilerbot/ as a git repository.

1 Introduction

The first iteration of the Alexa Prize TaskBot Challenge [1] laid a strong benchmark for cutting-edge
approaches to conversational task resolution while shedding light on factors that impacted user
experience. In conducting literature review, we identified significant rigidity in the user experiences
designed by previous contestants. Consequently, our approach to the Alexa Prize TaskBot Challenge
2 [2] emphasised user-level adaptability and engagement in dialogue.

Our objective in developing BoilerBot was not only to guide users through a task, but also to enhance
their skill in the underlying techniques required to complete the task.

1.1 Overview of the Challenges

Building task-oriented conversational chatbots that interact with users in natural language poses the
following challenges:

Intent Classification is the process of mapping a user’s utterance to one of the taskbot’s functions.
While this can be considered a classic text classification task, the informal language used by the users
and the potential errors from the speech recognition model create various edge cases that necessitate
developing novel, noise resilient solutions.

Query Parsing, under the scope of the Taskbot Challenge, entails an accurate interpretation of user
utterances in natural language into structured data. The accuracy of parsed data directly impacts the
relevance of the retrieved data from external Search APIs.

Fluid User Experiences for multimodal interfaces with a unified end goal present a significant design
challenge for conversational chatbots. Communicating complicated visual instruction sets using only

2nd Proceedings of Alexa Prize TaskBot (Alexa Prize 2023).

https://github.com/jinensetpal/boilerbot/

the Voice User Interface (VUI) and structuring visual information using the Graphical User Interface
(GUI) in a manner that is instantly interpretable accounts for a large part of this challenge.

Latency Minimization is a direct contributor towards user satisfaction. As shown by [4]: unre-
sponsive, latent applications result in lost users. This is especially applicable to Alexa since it is a
conversational agent, and presents a significant challenge owing to the extensive computation required
to run the large language models integrated within the inference pipeline.

Sections 3 to 6 provide an in-depth analysis of each challenge and our proposed solutions.

1.2 Large Language Model Usage

The rise of Large Language Model (LLM) research has been remarkable since the advent of Large
Language Model Meta AI (LLaMA) [25]. Although Large language models have come to underpin
a vast majority of chatbots, they present a distinct challenge when applied to TaskBots. Unlike
general-purpose chatbots, TaskBots are intended for specialized domains, introducing out-of-domain
inference. Effectively harnessing the strengths of large langauge models – such as reasoning and
generalization abilities – requires careful domain adaptation. Ensuring that BoilerBot’s utilized
models retain in-distribution performance while not hallucinating remained our primary objective
through this competition.

Auto-regressive LLMs are susceptible to hallucination, generating nonsensical or unfaithful text
based on the input[16]. Malformed instructions can be risky: inapplicable substitutions or improper
portions during cooking tutorials can sharply and irrevocably ruin the given recipe. Therefore, despite
their proficiency as general-purpose responders, we exclusively employ LLMs for non-factual tasks,
redirecting factual queries to specialized APIs or knowledge bases similar to [19].

Accordingly, we integrate LLMs into the following downstream tasks: Intent Classification (Section
3), WikiHow and Recipe Query Parsing (Section 4), Factual Question Response (part of Section 5),
and General Chit-Chat (part of Section 5).

For each of our LLM-based functions, we also propose alternative solutions as fallback mechanisms
due to both: our limited serving capability (Section 6.1), and edge cases triggering unexpected
behaviors from LLMs.

2 Architecture

BoilerBot’s architecture is designed with the following guiding principles:

Regression-Tested Deployment: Despite rigorous automated testing, under-performing bot ver-
sions are not uncommon. We take a containerized approach towards deployment to ensure regression-
free performance, with immediate rollbacks in case of failure or untested edge cases in order to
minimize rating impacts and to prevent divergence between local and deployment runtimes during
development.

Modularity: Adding, removing, and customizing modules is a constant process throughout the
length of the competition. Any modifications to a specific module should not have cascading effects
on downstream modules.

Cost Effectiveness: Compute-accelerated remote modules scale linearly by module count. Elimi-
nating unnecessary modules and associated requests enables us to minimize our cost footprint, which
can be put towards accomplishing the research goals outlined in our research proposal.

BoilerBot extends the cobot architecture to operate the Alexa endpoint. In addition, we deployed
parallel endpoints running different build versions enabling multiple development and testing channels.
Our inference pipeline enables modular intent subsetting, which is further discussed in Section 2.1,
with further changes to the framework detailed in Section 6.2.

Figure 1 illustrates the inference pipeline used by BoilerBot. We implement a custom selection
strategy that encapsulates our graph-based logic module. This is proxied through the state manager,
and accumulates utterance metadata used during intent classification. The labelled user utterance
is then parsed using service modules. The corresponding user state is accordingly run, and user

2

responses – conditionally including ASK APL cards – are presented to the end user. All interaction
data is recorded to our Data Studio web application which allows the team to view, analyze, and
annotate chat logs, clean various datasets, test external APIs, and prepare fine-tuning data for the
Large Language Model components.

User Input
State

Manager

Dangerous
Classi�er

Sensitive
Classi�er

Domain
Classi�er

Ranking
Strategy

Query Resolver

APLs

Response

Global
Rules

Stage
Rules

Domain
Rules

Chain-of-Thought Classi�cation

Intent Classi�cationPrimary

Experimental

WikiHow
Parser

Recipe
Parser

Query Parser

Legend
Cobot APIs

Data Studio

LLM APIs

Lambda Function

Logic Module

Remote Module

Users

Alexa
Endpoint

State
Table

Bot Response

Logging
Endpoint

VectorDBInference Pipeline

Task
Overview

Step
Information

Task Traversal

Task QA

Ingredient
Listing

Recipe Search

Query Con�rmation

New Task

WikiHow Search

Figure 1: The BoilerBot Inference Execution Pipeline.

2.1 Logic Module

BoilerBot’s logic module encapsulates a bi-leveled objective: a) to subset the potential utterance
intents (intent classification), and b) execute step-specific functions based on the selected intents
(query resolution).

The intent classification module is a three-phase waterfall process that maps a user’s request into
either a global, stage-dependent, or domain-dependent intent. If this classification process fails to
identify an appropriate intent within the three phases, it defaults to an unknown-intent responder,
which leverages chatbot-user transparency to inform the user about potential options based on their
current stage, with keywords that may be used to unambigously communicate with BoilerBot.

Within the three phases, the first handles requests that occur at any stage of conversation, including
stage-to-stage navigation (forward and backward), domain classification, history retrieval, and
conversation reset. For domain classification, we use a bi-layer mechanism to extend the topics that
BoilerBot can cover, including “Chit-chat", “Factual QA", and “Unsure", further discussed in Section
3). The second phase handles stage-dependent requests, such as task selection and QA based on
domain and task knowledge. The third and final phase handles domain-dependent requests, such as
task-to-module routing.

To prevent dangerous or inappropriate interactions we screen each request through Cobot’s [12]
dangerous and sensitive classifiers, forwarded it to the intent classification pipeline. Dangerous
topics include those requiring domain expertise, such as: Medical, Financial, Legal, as well as
personal welfare: such as Harmful, and Suicide. Sensitive topics include Identity and Politics.
Safe, appropriate requests are classified into six domains: Cooking, DIY, Chit-chat, Factual QA,
Unsupported, and Unsure. Any domain score less than a set probability threshold falls into Unsure
domain.

3 Intent Classification

BoilerBot aids users in searching and following tutorials from either the Whole Foods or WikiHow
datasets. User intents through the execution of a task vaguely follow a specific flowchart. The user
begins their conversation with BoilerBot by making a task query. This is then followed by navigations
commands, such as “next”, “option three” or clarifying questions. However, since some users are
unfamiliar with the taskbot’s scope, they treat the taskbot as a general-purpose chatbot similar to the
Social Bot [14]. To assist these users and guide them back on the right track or to gracefully recover
from incomplete input, we categorized the “Other" intents into out-of-scope requests, such as
weather information or tracking orders, factual questions, incomplete inputs and general chit-chat.

The presence of some “Other" intents introduced edge cases to the conversation. For instance,
commands like “play music" could be considered out-of-scope, whereas requests like “how to play
music" should be interpreted as a WikiHow tutorial search. This ambiguity was evident in queries
like “Alexa, I want to play music," which could be attributed to either intent label. Additionally,

3

we encountered cases such as "recipe for my husky"; despite the word “recipe", the query should
be interpreted as a WikiHow search request, which keyword-based deterministic approaches were
unable to consistently account for.

The three-phase waterfall intent classification pipeline, discussed in Section 2.1, was found to lack
resilience in handling these edge cases. Hence, we re-implemented the intent classification component
using large language models, which will be elaborated on in the following subsection. Although
the LLM-based classifier demonstrated superior performance, it is exclusively used in experiment
pipeline due to concerns about latency and potential issues with the output format. The original
waterfall intent classification pipeline remains the default mechanism for intent classification and
also serves as the fallback mechanism for the LLM solution.

3.1 Large Language Model and Chain-of-Thought Intent Classifier

Large Language Models capture linguistic similarity through trillions of trained tokens, enabling
them to effectively emulate real-world knowledge. Following [30], we hypothesize that small, well-
annotated datasets will enable effective model alignment, preserving generalization performance
across niche domains.

We leveraged few-shot learning to establish a rudimentary proof-of-concept to validate our hypothesis.
Our original few-shot template describes the TaskBot’s mission and provides examples by class label.
This few-shot prompt over WizardLM 30B [27] did not yield ideal classification results. Despite
being aided by few-shot examples, the perplexity observed in mapping the input sequences to their
corresponding class labels remained considerably high.

Chain-of-Thought [26] is a prompting technique that encourages the LLMs to perform step-by-
step reasoning. Using Chain-of-Thought can significantly boost LLMs’ performance on various
challenging and complex tasks. We incorporated it into our few-shot prompt template in the following
manner:

How do I cook �sh?

Can the answer be found in a tutorial?

Yes.

Is the tutorial about cooking?

Yes.

Therefore:

User Intent: Recipe Tutorial

For the given user input, assign one of the following intent
labels to it. Do it step-by-step, as the following examples:

System Input

Synthetic User Input

LLM Response

The Chain-of-Thought process proved highly effective for the specified use case. Our initial as-
sessment indicated its capability to handle edge cases beyond the scope of few-shot examples. It
encountered challenges in dealing with chit-chat, factual question answering, and incomplete sen-
tences due to the overlapping nature of user inputs across these categories. Nevertheless, the few-shot
prompt classifier demonstrated strong reasoning capability during our overall preliminary assessment.

Unfortunately, using a 30 billion parameter model with Chain-of-Thought classification resulted
in slow inference speeds. We will delve into the relevant serving and performance concerns in the
subsequent subsection. The insights gleaned from the utilization of Chain-of-Thought and few-shot
prompting served as a catalyst for further improvement, leading us to fine-tune LLMs for achieving
even better performance. We annotated thousands of user inputs and then augmented them with
Chain-of-Thought and Few-Shot prompts similar to the prompt template above. We then fine-tuned a
LLaMa2-13B [24] LLM with QLora [7]. The smaller fine-tuned 13B model showed a similar or even

4

stronger performance than the 30B model with similar prompting techniques. Table 1 below shows
our evaluation results on the fine-tuned 13B model and our non-LLM intent classification pipeline
described in Section 2.1 used as our fallback mechanism. The “Acceptable" category categorizes
situations where the classifier correctly separated “Other" intents from “Search" intents but did not
assign the most appropriate “Intent" under the “Other" category. For example, the classifier assigned
“Chit Chat" intent to what was supposed to be “out-of-scope" intent.

Table 1: Intent Classifier Benchmark

Perfect Acceptable Poor Total
LLM Classifier 333 (76.2%) 54 (12.4%) 50 (11.4%) 437
Non-LLM Classifier 238 (54.4%) 47 (10.8%) 153 (35%) 437

3.2 Lightweight Transformer Intent Classifier

The lightweight transformer-based intent classifier was developed in the earlier sta ges of the com-
petition with the primary goal to classify user intent with minimal latency. This supplements the
keyword-based classification of the logic module described in subsection 2.1 when encountering an
unknown intent.

After reviewing chat logs and common use cases of BoilerBot, we developed a list of common actions
intended by users as captured within our UI. These intents are a portion of all of the actions users can
take while interacting with BoilerBot and are described in subsection 10.4.

We chose DistilBERT to handle intent classification due to its small size, which is important for
real-time inference, and due to the success of transformer-based models at classifying user intent in
the first TaskBot challenge [8] [10]. Our final classifier achieved 72.4% accuracy on a testing set.

After deploying the lightweight transformer-based intent classifier, we identified a significant overlap
between ‘unknown’ classifications in both the keyword and transformer based methods, suggesting
that the transformer based approach weighted keywords heavily. Consequently, the approach added
latency with insignificant benefit to the user’s experience, and prompted us to explore sophisticated
solutions at the cost of latency, as described in subsection 3.1.

4 Query Parsing

The query parsing task has two sub-categories: recipe query parsing and WikiHow query parsing.
BoilerBot retrieves recipe and WikiHow data from two external APIs.

The WikiHow Search utilized a vector database, employing Sentence-BERT [20] to encode article
titles and summaries as embeddings. This enabled natural language searches by finding the nearest
neighbors to the query text in the embedding space. Hosting the WikiHow Search API facilitated
content moderation (discussed in Section 7.3) on the local database, thereby minimizing the risk of
recommending unsuitable content.

For the recipe search, we used the Cobot Recipe Search API. The API accepts search parameters
like ingredients, recipe title, dietary type, etc., which requires the taskbot to parse the user request to
structured data. This process is also known as “slot filling".

4.1 Large Language Model for Parsing

The vector database can improve search results with a more effective search phrase, even though it
can process raw user input. For example, converting the user input “my grandpa wants to build a
fence for cows and how should he do that?" to the search phrase “build a fence for cows" yields more
relevant results.

To address the challenge of WikiHow query parsing, a proof-of-concept experiment was conducted
using few-shot prompting. However, as discussed in the previous section, a standard few-shot prompt
proved inadequate in generating reliable results due to the distance between the user input and the
anticipated search phrase. Therefore, we used the chain-of-thought technique to generate intermediate
steps to help smooth the reasoning process. Below is the prompt template we used for WikiHow
search parsing (user input is synthetic):

5

How do I make text on bold on
Microsoft Word?

Question Type: technology
Verb: make

Noun Phrase: bold on Microsoft Word
Search Phrase: bold text on Microsoft Word

Rewrite the user input and make it more general.
Identify the user input question type, the verb, the noun

phrase, and �nally provide a search phrase. System Input

Synthetic User Input

LLM Response

User Input: I want to learn how to open RAR �les on mac os x
Question Type: technology

Verb: open
Noun Phrase: rar �les on Mac OS X

Search Phrase: open rar �les on Mac OS X

[additional few-shot examples]

This method worked extremely well on the WizardLM 30b model. The model not only removed non-
essential elements from the user input but also can rephrase certain elements. For the “my grandpa
wants to build a fence for cows and how should he do that" example, the model even substituted
“cows" with “cattle".

Similar prompting techniques were applied to analyze user inputs for recipe search. We prompted the
LLM to extract ingredients and a shortened search phrase from the user input. Below is the prompt
template we used for recipe search parsing:

Hey echo search for chocolate
chip cookies recipes

Ingredients: cookies, chocolate chips
Search Phrase: cookies with chocolate chip

Based on the recipe search question from the user input,
identify the ingredient mentioned in the user input

and create a search phrase. System Input

Synthetic User Input

LLM Response

 User Input: hey echo search for recipe for kung pao broccoli
and tofu with pineapple

Ingredients: broccoli, tofu, pineapple
 Search Phrase: kung pao broccoli and tofu with pineapple

[additional few-shot examples]

Similar to WikiHow search parsing, LLMs (without fine-tuning on domain-specific data) can also
generate reliable outputs for recipe search parsing with few-shot prompting.

In a production environment, opting for an even smaller, fine-tuned LLM would be considered
an ideal choice (due to faster inference time and cheaper deployment costs). We collected 1,600
WikiHow and 1,500 recipe parsing examples (annotated) and fine-tuned one LLaMa-2 13B model
with QLora to do both tasks. For WikiHow parsing, LLM correctly shortened all 131 (100%) test
cases, and 26% of the outputs were considered “perfect" (for search) based on our human evaluator.

For the recipe parsing, we compared the performance between the LLM parser and our fallback
recipe parsing mechanism. Table 2 below shows the evaluation results:

Table 2: Recipe Parsing Benchmark

Perfect Acceptable Poor Total
LLM Recipe Parser 38 (28.6%) 88 (66.2%) 6 (4.5%) 133
Non-LLM Recipe Parser 44 (33.1%) 74 (55.6%) 15 (11.3%) 133

6

4.2 Fallback Mechanism for Recipe Parsing

As a fallback mechanism for LLM-based recipe parser, we used a rule-based approach to parse recipe
query into structure data: dishName, drinkName, ingredients, dietaryFilters, and mealType. This
approach can be completed with nearly zero latency. We also ensured flexibility by allowing the
insertion/removal of attribute parsers to handle different use cases. As dietaryFilters and mealType
have finite values, we used a simple keyword-matching approach to parse these two attributes.
The rest three attributes were connected with AND/NOT logic, for example, a complex request ‘I
want have red wine along with stew cooked with mushroom but no garlic" contains three attribute
information: "soup" as dish name, "mushroom" and "garlic" as ingredients, and "red vine" as drink
name. Additionally, a user wants to include "mushroom" and exclude "garlic". Upon converting the
request into attributes, we obtain the following:

drinkName : red wine AND (dishName : stew AND ingredient : mushroom NOT
ingredient : garlic)

4.2.1 Semantic classification of cooking-related items

To ensure effective parsing of user queries, the bot must distinguish between cooking instruments,
recipe ingredients, beverages, and more. SVM was harnessed in tandem with Sentence-BERT [20]
embeddings to efficiently classify cooking-related items within user inputs. We leveraged the datasets
from Whole Foods and Serious Eats, which encompassed a comprehensive array of ingredients.
These datasets were grouped with data from widely recognized cooking instruments and beverages.
Sentence-BERT was then employed to encode these items for classification training. Even though
advancements in LLMs have birthed models capable of similar classification, this approach served as
a robust interim solution until such models are seamlessly integrated.

4.3 Syntactic Re-Ranking

Ranking results based on the salience of terms in the query is crucial in ensuring the return of relevant
tasks to the user. To achieve this, we rely on the syntax to approximate the salient terms within the
user’s input. A key component of this approach involves determining the head of a noun phrase or a
verb phrase and its associated modifiers within a user’s request. For instance, if it is discerned that
the head noun pertains to food, a search is initiated for recipes related to that specific dish type, with
the modifiers serving as the potential ingredients. For example, a user may say "let’s make a banana
smoothie", with a root verb (make), head noun (smoothie), as well as head noun modifiers (banana).
The syntactic search would then search for all smoothie recipes with ingredients including banana.

Improving results for WikiHow search requires attention to more than just the head and its modifiers,
since both the root verb and head-modifier combinations are varied in the DIY-Hobby space, and
user requirements will likely be very specific. For example, instructions for "painting a brick wall"
will unlikely fulfill a user’s original request to "build a brick wall". Although these tasks may share
some related elements or items, their required actions might demand significantly different methods
and equipment to achieve successful task completion Cooking tasks on the other hand have implied
cooking root verb, and have noun heads that specifically pertain to food as far as Alexa is concerned.
In this case, results need to be filtered to make sure root verbs and head nouns match closely to the
user’s literal request.

Parsing syntactic features allows for a more targeted and accurate search, ensuring that the results
align closely with the user’s request. Once intermediate results have been obtained, and not pertaining
to the original head noun are systematically excluded, thereby increasing the relevance of the output.
Results are then ranked by their user rating score, in order to assure quality of the recipe results.

Baseline recipe and syntactic re-ranked searches were compared on a sample of 30 real user utterances.
Out of 30 scenarios, baseline recipe search failed to return 8 relevant results, while syntactic re-ranking
failed on only 2. While this seems promising, the failures between the models didn’t have overlapping
scenarios, indicating that baseline results were still successful where the syntactic re-ranking was not.
From the cases that both models succeeded (total of 20), they retrieved the same number of relevant
results in 14 scenarios. Examples of the results are listed in Appendix 10.5.

7

5 User Experience

The taskbot caters to a diverse user base across different devices, including Smart TV, Smart Speakers,
Echo Shows, among others. Ensuring a smooth and efficient user interaction, while reducing the
learning curve for proficient engagement, is of utmost importance. Consequently, we have tailored
both the Voice User Interface (VUI) and Graphical User Interface (GUI) to enhance the overall user
experience.

5.1 Voice User Interface

5.1.1 Large Language Models for Flexible Response

Our taskbot’s mission is to provide user assistance by offering tutorials and guiding users through
them. In cases where users are unsure about the taskbot’s limitations, the response should be both
contextually appropriate and functional. This requires the response to first acknowledge user requests,
even when it detects out-of-scope queries, and then provides clarifying information.

When the taskbot identifies a "factual question answering" intent, it will forward the question to the
Cobot Neural Response Generator API. The taskbot will then utilize the API’s response when the
confidence level is high. Otherwise, the user will be advised to seek more reliable sources for the
question.

For chit-chats, we are currently planning on using the Conversationally Pre-Trained Alexa Teacher
Model [9] to provide smooth, safe, polite, flexible, and humorous responses.

5.1.2 Standard Voice Responses

Conveying the right amount of information is crucial for a pleasant user experience through voice
channels. We tailored voice responses based on speech acts [3]: assistance and task.

The variation in assistance information depends on the user’s conversation state. Instead of over-
whelming the user with instructions, a gradual approach is adopted, wherein minimal yet sufficient
instructions, accompanied by supportive prompts through the voice channel, are offered. In situations
where the user faces confusion with the given instructions, BoilerBot offers separate information to
assist the user in comprehending how to proceed. In contrast to assistance information, the communi-
cation of task aims for concise instructions that minimize distractions while conveying what needs to
be done. Table 4 in Appendix 10.3 shows a sample voice conversation.

5.1.3 Flexible Selection and Navigation

BoilerBot ensures natural interaction to improve the user experience at selection and navigation. It is
unnatural to ask the user to give specific rules during interaction with the system, for example, a user
must say "option 3" or "step 3" to select a result or go to a specific step. Instead of looking for specific
commands, we allow a user to use causal language to select a task or navigation through a task, for
example, "I don’t know, maybe the coffee one" or "show me the fifth step. First, we enable cardinal
and ordinal recognition to extract the number from utterance, so that the user can select a task or
navigate a task by saying "let’s see the fifth one" or "go to the twenty-first step". In addition to cardinal
and ordinal selection, we enable flexible selection by leveraging TheFuzz [21] library to calculate the
partial matching ratio between sequences using Levenshtein Distance. For cases like "the coffee one"
when a user tries to select from a list of cakes, we remove the common identifier token "cake" from
the result titles and compute string similarities only with the unique identifier tokens. Additionally,
when the similarity ratio is below the threshold, the system interprets the request as a new task search,
for example, "how to make coffee" even when the list of cakes contains a coffee flavor.

5.2 Graphical User Interface

Our team conducted a small-scale user study at the beginning of the competition to identify user
preferences on a Graphical User Interface (GUI) design. The study revealed three key findings:

1. Experienced cooks prefer a single-page format that includes all ingredients and steps. They
then adapt the information to suit their comfort and style.

8

2. New users can be confused about navigating through different pages.

3. Users with some technical experience are interested in how the bot interprets their requests.

To cater to diverse user preferences, we implemented a preview page presenting comprehensive
information in a scrollable format. Additionally, users have the option to switch to a step-by-step
view. This simple strategy ensures a personalized user experience for distinct user groups.

For the other findings, we revisited both the GUI design and the issues users and our taskbot
encountered on each page. The following subsections will identify the challenges and present our
solutions.

5.2.1 Communication through GUI

The launch page plays a critical role in acquainting users with the taskbot’s capabilities and scope. Its
primary functions encompass: 1) aiding users in formulating search requests that yield more precise
and relevant results, and 2) communicating the taskbot’s limitations.

Significant modifications were undertaken to transform the default launch page, which featured three
buttons leading to default search results in each category. Our initial redesign (V1) removed all the
buttons, thus maximizing the utilization of screen space to exhibit sample questions that users can
ask. The objective of this redesign was to mitigate instances where users express dissatisfaction with
the search results and subsequently submit new search requests on the search result page. In such
cases, distinguishing between a user’s intent to select a specific item from the search result list or
initiate a fresh search can pose considerable challenges.

Figure 2: Launch Page V1 (left), Launch Page V2 (mid), and Unknown Responder (right) Design

The enhanced version, “Launch Page V1," can be conveniently adapted to promote special events.
During the event period, a distinct button dedicated to the special event is visible on the screen,
leading users to a curated compilation of tutorials specifically curated by the taskbot team for the
event. Additionally, the dynamically displayed floating questions will align with the theme of the
special event.

After analyzing user inputs on the launch page, it was observed that a significant number of users
asked questions recommended on the page. However, some users had difficulty understanding the
taskbot’s scope despite the presence of floating questions. They tried to use the taskbot for purposes
beyond its intended functionalities, such as controlling smart home devices, playing music, news,
weather information, or engaging in chit-chat. The original redesign, ’Launch Page V1,’ didn’t
effectively address these limitations. To rectify this, the ’V2 Redesign’ was proposed to provide
explicit and unambiguous guidance to users about the taskbot’s capabilities and constraints.

Throughout the conversation, users frequently submitted out-of-scope requests, requiring a holistic
approach. To address this, we introduced the "unknown responder," a slide-in window from the
right side of the screen. This feature displays acceptable request types and examples relevant to
the ongoing interaction, occupying only 40% of the screen. It keeps users oriented and minimizes
confusion.

9

5.2.2 Mitigating Parsing Challenges with Query Confirmation

In the previous section, extracting structured recipe search parameters from user input proved
challenging. To address this issue from a GUI design perspective, we added an additional stage, the
“Confirmation Stage," between the launch stage and the search result stage.

The recipe confirmation stage consists of two pages (Figure 3): “Recipe Query Confirmation" and
“Recipe Query Edit." The confirmation page displays the user’s utterance alongside its parsing into
various search parameters. If a user wishes to adjust the search parameters, they can proceed to the
edit page where they have the option to add or remove ingredients, dietary types, or meal types.

Figure 3: Recipe Request Confirmation (left) and Edit (right) Page Design

6 Engineering Challenges

The taskbot exhibits a diverse array of functionalities, presenting a considerable engineering challenge.
The primary objectives include reducing the latency, increasing the throughput rate, and optimization
of cost-efficiency. We used various techniques to overcome the engineering challenges.

6.1 LLM Quantization, Fine-tuning, and Serving

The majority of the development and experiment were completed on servers with A10 (24GB) or T4
(16GB) GPUs in order to comply with the budget. Quantization techniques [11][6] allowed us to
load large models on hardware without enough VRAM or even without a GPU. Quantization is also
helpful in one of the work-in-progress projects (Section 8.2).

Full-parameter fine-tuning of a 7B LLM requires at least 160GB VRAM which was not easily
accessible by our team. As a solution, we adopted the parameter-efficient fine-tuning (PEFT)
techniques like Lora [15] and QLora [7] (which combined quantization and Lora to further save
memory). On a GPU server with 4*A10 GPUs, we were able to comfortably load a 13B model and
fine-tune it with at least 1024 max sequence length.

Serving the LLMs in a production environment requires high throughput and low latency. We
currently deployed a 13B model using vLLM [23] on a server with 4*A10 GPUs. The latency
for intent classification ranges between 0.7 to 1.7 seconds and latency for parsing remains below
1.2 seconds. With even smaller models and shorter prompts, the latency is likely to be further
reduced. However, under the current serving capability and inference settings, we are only using the
LLM-based components in the B testing.

6.2 Changes to the Cobot Framework

The Cobot Framework establishes a strong foundation for our conversational agent. We extend this
functionality in the following ways:

ASK-Cobot APL Bridge The Cobot SDK provides access to a set of APL templates that may
be used to develop multimodal interfaces for Alexa users. However, these are limited and lack

10

customizability, making it hard to develop interfaces that utilize the full range of APL features towards
the competition. We independently developed APL interfaces, taking input files used by a custom class
extending cobot_core.path.to.BaseAplDocument. This class overrides build_document, and
is rendered by the Alexa front-end as an equivalent to a Cobot template, enabling us to extensibly
utilize the ASK stack for our taskbot designs.

Restrictions on Lambda Environments AWS Lambda’s provided environments enable the use of
up to Python v3.10. Additionally, AWS S3 artifacts do not allow us to roll back without rebuilding.
By containerizing the Lambda function, obtaining fine-grained control over the runtime environment,
we made it possible by using ECR to enable rollbacks in case of failure. This also enabled us to set
up parallel TaskBot deployments for quicker prototyping and testing.

Microservice to Monolithic Accelerated-Compute Cluster The Cobot framework uses a
microservice-based architecture that processes NLU/NLP modules asynchronously on user input.
The primary concerns with this approach are: a) microservices run inference even with incompatible
input, which requires integrating redundancy, and b) creating microservers for every individual NLU
functionality on the default instances results in significant cost overheads that scale linearly.

An effective solution for both of these was using a monolithic remote module server, using an instance
with GPU acceleration through the NVIDIA T4 that runs accelerated functions on a query, not by user
utterance. We discuss specific costs and compute savings from this approach in Appendix 10.2.1.

7 Data Analysis and Annotation

7.1 BoilerBot Data Studio

The Data Studio allows the entire team access to key data and tools necessary for the competition. It
is a website developed in-house that visualizes all conversation ratings (Figure 5), allows the team to
annotate the conversation with notes or labels (Fig 4), access debugging logs quickly, and test our
in-house APIs. The Data Analysis Studio centralizes all of our data and annotation processes.

7.2 Annotate with Large Language Models

The Alpaca project [22] proved that by using outputs from larger models, smaller models could
significantly improve their overall capability through the process of fine-tuning.

For the recipe and WikiHow parsing dataset, we developed a semi-automated pipeline to annotate the
data. The first step is to collect diverse search phrases. Our data came from the following sources (all
stored in the data studio):

1. Real user inputs from the chat logs labeled by our team members
2. Recipe and WikiHow titles from the offline datasets augmented with irregular language

elements (vocal fillers, prefix like “how to make" and “how do i cook", suffix like “please"
and “thank you").

We then carefully created chain-of-thought few-shot prompt templates and tasked a 30B LLM to
annotate each user request. Some of the outputs did not follow the format we expected. Therefore,
we used rule-based scripts to validate the outputs and filter out the bad responses. Finally, a team
member inspected the filtered annotations and manually removed the low-quality ones.

With the semi-automated data annotation pipeline, we managed to quickly create the dataset for
fine-tuning WikiHow and recipe parsing LLMs.

7.3 Content Moderation

The WikiHow dataset poses challenges due to the inclusion of tutorials that may be unsuitable for a
younger audience or may be dangerous if followed by untrained individuals. To address this concern,
we initially developed a neural-net classifier to identify hazardous user requests. However, this
approach unintentionally blocked some legitimate and safe queries, negatively impacting the overall
user experience.

11

To resolve these issues, we implemented a comprehensive content moderation process at the data
source. Initially, we used keyword-based filtering to remove inappropriate content, resulting in a
dataset of 30,000 articles. Subsequently, human inspection was conducted on this filtered dataset,
with annotations performed by our team members through the Data Studio website. Despite these
efforts, certain edge cases, such as requests involving activities like "play shotgun game" or "build a
bomb in Minecraft," triggered content violation alerts.

These challenges emphasized that content moderation extends beyond a purely technical problem
and necessitates interdisciplinary solutions. Striking a balance between ensuring absolute safety and
providing a seamless user experience proved to be a complex undertaking, requiring insights from
diverse domains beyond technical considerations.

8 Work in progress

8.1 Streamlining the Data Annotation, LLM finetuning, and Deployment Pipeline

As we learned from projects like Orca [18], WizardLM[27], LIMA [30], and phi-1[13], having the
correct data is the key to train or fine-tune better LLMs. We are currently building a semi-automated
pipeline to streamline the process from data collection to LLM deployment. As we received chat
logs from the users every day, some team members will identify the cases where our LLM fails and
then annotate the cases with the correct response. The data studio will fine-tune our current LLM
checkpoints periodically with the newly annotated data and then deploy the new checkpoints for A/B
testing. Thanks to the quantization and parameter-efficient finetuning techniques, our LLMs will be
able to improve continuously with minimum human intervention.

8.2 Automated Testing with LLMs

Identifying problematic user inputs and taskbot responses typically requires human effort. Since
we can now deploy a 4-bit quantized LLaMa-2 70B model [24] with less than 48GB VRAM
(latency is acceptable for testing and larger models show less degradation after quantization [29] [5]),
fully automated testing has become possible with larger models and more sophisticated prompting
techniques like Tree of Thoughts [28]. Instead of having human testers interact with the taskbot and
identify issues from the taskbot outputs, LLM could potentially fulfill the testing role, interacting
with the taskbot through the testing API. Using larger models to evaluate outputs from smaller models
has been used widely in LLM benchmarks [17]. Our team is working on adapting the methodology
to the taskbot domain.

9 Conclusion

In this paper, we presented BoilerBot, a conversational agent designed for the Alexa Prize TaskBot
2 competition. Through fine-tuning large language models on curated domain-specific data, we
demonstrated the efficacy of this approach for specialized downstream tasks requiring complex
linguistic understanding and inference. Techniques such as chain-of-thought prompting and few-shot
learning enabled accurate parsing and classification for challenging user requests.

Furthermore, insights from user studies informed a redesigned interface aimed at providing a smooth
user experience. Features such as confirmation stage and unknown responder serve to orient users
and minimize confusion, and also mitigated certain technical challenges with graphical user interface
elements.

Moving forward, priorities include continuing to streamline integration of large language models
with lower latency, higher throughput rate, and better reliability. Automating data annotation,
training, and deployment will enable continuous enhancements as more conversational data is
gathered. Additionally, exploring larger models and advances in prompting methodology will further
augment capabilities for automated testing. By combining cutting-edge natural language processing
technology with user-centered design, we aim to develop an increasingly natural and useful task-
oriented conversational agent.

12

References
[1] Eugene Agichtein, Yoelle Maarek, and Oleg Rokhlenko. “Alexa Prize TaskBot Challenge”. In:

Alexa Prize TaskBot Challenge Proceedings. 2022. URL: https://www.amazon.science/
alexa-prize/proceedings/alexa-prize-taskbot-challenge.

[2] Eugene Agichtein et al. “Alexa, Let’s work together: Introducing the Second Alexa Prize
TaskBot Challenge”. In: Alexa Prize TaskBot Challenge 2 Proceedings. 2023. URL: https:
//www.amazon.science/alexa-prize/proceedings/alexa-lets-work-together-
introducing-the-second-alexa-prize-taskbot-challenge.

[3] James F Allen and C Raymond Perrault. “Analyzing intention in utterances”. In: Artificial
intelligence 15.3 (1980), pp. 143–178.

[4] Christiane Attig et al. “System latency guidelines then and now–is zero latency really con-
sidered necessary?” In: Engineering Psychology and Cognitive Ergonomics: Cognition and
Design: 14th International Conference, EPCE 2017, Held as Part of HCI International 2017,
Vancouver, BC, Canada, July 9-14, 2017, Proceedings, Part II 14. Springer. 2017, pp. 3–14.

[5] Tim Dettmers and Luke Zettlemoyer. “The case for 4-bit precision: k-bit inference scaling
laws”. In: International Conference on Machine Learning. PMLR. 2023, pp. 7750–7774.

[6] Tim Dettmers et al. “LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale”. In:
arXiv preprint arXiv:2208.07339 (2022).

[7] Tim Dettmers et al. “Qlora: Efficient finetuning of quantized llms”. In: arXiv preprint
arXiv:2305.14314 (2023).

[8] Rafael Ferreira et al. “TWIZ: A conversational Task Wizard with multimodal
curiosity-exploration”. In: Alexa Prize TaskBot Challenge Proceedings. https://www.
amazon. science/alexa-prize/proceedings/twiz-a-conversational-task-wizard-with-multimodal-
curiosity-exploration (2022).

[9] Jack FitzGerald et al. “Alexa teacher model: Pretraining and distilling multi-billion-parameter
encoders for natural language understanding systems”. In: Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 2022, pp. 2893–2902.

[10] Carlos Gemmell, Iain Mackie, and Jeffrey Dalton. “GRILLBot: A flexible conversational agent
for solving complex real-world tasks”. In: 2022. URL: https://api.semanticscholar.
org/CorpusID:249261462.

[11] Georgi Gerganov. llama.cpp: Port of Facebook’s LLaMA model in C/C++. https://github.
com/ggerganov/llama.cpp. 2023.

[12] Anna Gottardi et al. Alexa, Let’s Work Together: Introducing the First Alexa Prize TaskBot
Challenge on Conversational Task Assistance. 2022. arXiv: 2209.06321 [cs.CL].

[13] Suriya Gunasekar et al. “Textbooks Are All You Need”. In: arXiv preprint arXiv:2306.11644
(2023).

[14] Dilek Hakkani-Tür. “Alexa Prize Socialbot Grand Challenge Year IV”. In: Alexa Prize Social-
Bot Grand Challenge 4 Proceedings. 2021. URL: https://www.amazon.science/alexa-
prize/proceedings/alexa-prize-socialbot-grand-challenge-year-iv.

[15] Edward J Hu et al. “Lora: Low-rank adaptation of large language models”. In: arXiv preprint
arXiv:2106.09685 (2021).

[16] Ziwei Ji et al. “Survey of hallucination in natural language generation”. In: ACM Computing
Surveys 55.12 (2023), pp. 1–38.

[17] Yang Liu et al. “Gpteval: Nlg evaluation using gpt-4 with better human alignment”. In: arXiv
preprint arXiv:2303.16634 (2023).

[18] Subhabrata Mukherjee et al. Orca: Progressive Learning from Complex Explanation Traces of
GPT-4. 2023. arXiv: 2306.02707 [cs.CL].

[19] Shishir G Patil et al. “Gorilla: Large language model connected with massive apis”. In: arXiv
preprint arXiv:2305.15334 (2023).

[20] Nils Reimers and Iryna Gurevych. “Sentence-bert: Sentence embeddings using siamese bert-
networks”. In: arXiv preprint arXiv:1908.10084 (2019).

[21] Seatgeek. TheFuzz. https://github.com/seatgeek/thefuzz. 2021.
[22] Rohan Taori et al. Stanford Alpaca: An Instruction-following LLaMA model. https://

github.com/tatsu-lab/stanford_alpaca. 2023.

13

https://www.amazon.science/alexa-prize/proceedings/alexa-prize-taskbot-challenge
https://www.amazon.science/alexa-prize/proceedings/alexa-prize-taskbot-challenge
https://www.amazon.science/alexa-prize/proceedings/alexa-lets-work-together-introducing-the-second-alexa-prize-taskbot-challenge
https://www.amazon.science/alexa-prize/proceedings/alexa-lets-work-together-introducing-the-second-alexa-prize-taskbot-challenge
https://www.amazon.science/alexa-prize/proceedings/alexa-lets-work-together-introducing-the-second-alexa-prize-taskbot-challenge
https://api.semanticscholar.org/CorpusID:249261462
https://api.semanticscholar.org/CorpusID:249261462
https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/llama.cpp
https://arxiv.org/abs/2209.06321
https://www.amazon.science/alexa-prize/proceedings/alexa-prize-socialbot-grand-challenge-year-iv
https://www.amazon.science/alexa-prize/proceedings/alexa-prize-socialbot-grand-challenge-year-iv
https://arxiv.org/abs/2306.02707
https://github.com/seatgeek/thefuzz
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

[23] vLLM Team. “vLLM: Easy, Fast, and Cheap LLM Serving with PagedAttention”. In: GitHub
repository (2023).

[24] Hugo Touvron et al. “Llama 2: Open Foundation and Fine-Tuned Chat Models”. In: arXiv
preprint arXiv:2307.09288 (2023).

[25] Hugo Touvron et al. “Llama: Open and efficient foundation language models”. In: arXiv
preprint arXiv:2302.13971 (2023).

[26] Jason Wei et al. “Chain-of-thought prompting elicits reasoning in large language models”. In:
Advances in Neural Information Processing Systems 35 (2022), pp. 24824–24837.

[27] Can Xu et al. “Wizardlm: Empowering large language models to follow complex instructions”.
In: arXiv preprint arXiv:2304.12244 (2023).

[28] Shunyu Yao et al. “Tree of thoughts: Deliberate problem solving with large language models”.
In: arXiv preprint arXiv:2305.10601 (2023).

[29] Zhewei Yao et al. “A comprehensive study on post-training quantization for large language
models”. In: arXiv preprint arXiv:2303.08302 (2023).

[30] Chunting Zhou et al. “Lima: Less is more for alignment”. In: arXiv preprint arXiv:2305.11206
(2023).

14

10 Appendix

10.1 Data Studio Screenshots

Figure 4: The BoilerBot Data Studio - Chat Logs

15

Figure 5: The BoilerBot Data Studio - Data Visualization Dashboard

16

10.2 Infrastructure

As part of the changes made to the cobot infrastructure, BoilerBot makes significant changes to the
build format, illustrated in the following diagram:

Alexa
Endpoint

Users

ECR

Lambda PIpeline

Lambda
Lambda

Repository

Cobot APIs

Search
Recipes

Dangerous
Classi�er

Domain
Classi�er

Remote Modules Pipeline

ECRData
Visualization

Data
Subsetting

Conversational
Logs

Data Studio

Data
Annotation

Automated
Testing

WikiHow

DuckDB +
Parquet

Local Modules (FastAPI)

Search
WikiHow

Query
Parser

Intent
Classi�er

Raw Dataset Module Repository

Module
Builder

Figure 6: The BoilerBot Infrastructure diagram.

10.2.1 Cost Savings on Monolithic Computer Cluster

Currently, we host 11 remote functions in our monolithic server. Even with GPU acceleration,
the monolithic server has proven significantly cheaper than hosting 4 microservices without GPU
acceleration, while serving a larger number of users. For a fine-grained comparison, find below cost
estimates that highlight service usage to costs, with 11 microservices instead of 4:

Architecture Monthly Cost Estimate GPU Acceleration Workload
Microservices $3567.23 CPU only Baseline: 11, Peak: 22 @ 4h/day

Monolithic $1123.00 NVIDIA T4 1 instance, consistent: 55%/month
Table 3: On-Demand costs for asynchronous remote modules. Costs and utilizations are representative
to observed metrics.

17

10.3 Voice Response Examples

Taskbot (A) Hi, this is an Alexa Prize Taskbot. You can ask me how to do a DIY task
like making a lego car, or search for a recipe like mashed potato

User I don’t know
Taskbot (A) If you need help with cooking or home improvement tasks, I can help!

Ask me how to make pasta or build a fence
User Okay, make pasta
Taskbot (T) Here is what I found in Whole Foods Market. Say option number to

select. Option 1 is...
User Alright
Taskbot (A) I found these great options! You can tell me the option number, or the

option title
User The pasta with peas
Taskbot (A) Great! Before we get started, please be careful when using any tools or

equipment... Once you are ready, just say, start cooking
User What should I do
Taskbot (A) You can ask me about the ingredients, or say "start" to begin the recipe.

You can also jump to a step by telling me the step number
User What are the ingredients
Taskbot (T) You will need 2 tablespoons olive oil ...
User Okay I got everything. Let’s go to the last step
Taskbot (T) Step 12. You can serve with ...
User All set
Taskbot (T) Task complete! You can say "stop" to exit the taskbot mode. Or ask

anything to start a new search
Table 4: Examples of Voice UI. A stands for assistance information and T is task information. All
user inputs are synthetic.

10.4 Intents

Intent Description
BoilerBot.NextIntent Go to the next page, proceed with the conversation, or confirm something.
BoilerBot.StopIntent End the conversation.

BoilerBot.CompleteIntent Finished with the current task.
BoilerBot.PreviousIntent Go to the previous page or undo an action.
BoilerBot.SelectionIntent Selecting a task or a task step.

BoilerBot.MoreTasksIntent Would like more tasks after an initial search.
BoilerBot.QAIntent Asking a general question BoilerBot can reasonably answer.

BoilerBot.SearchTaskIntent Wants to start a new task.
BoilerBot.UnknownIntent Unknown intent.

Figure 7: BoilerBot Intents Classified by DistilBERT

18

10.5 Syntactic Re-Ranking Recipes

The following is a sample of results of baseline recipe search pipeline compared to a syntactic-based
search. The bold items are irrelevant returned from corresponding utterances. While the pipelines
agree in many cases, or have multiple recipes in common and in order, the baseline pipeline returned
nothing during several interactions. On the other hand, the syntactic parsing and re-ranking currently
tended not to return enough relevant recipes when the baseline pipeline could.

User Utterances Baseline Recipe Results Syntactic Re-ranking Results
’how do i get smoothie’

1. ’Sorry, I didn’t find anything related. Please ask me
another question, hopefully about cooking or d.i.y.’

1. ’Green Smoothie’

2. ’Coffee Smoothie’

3. ’Superfood Smoothie’

4. ’Pomegranate Smoothie’

5. ’Blueberry smoothie’

’how do i cook an egg’

1. ’Eggs In Clouds’

2. ’Cloud Eggs’

3. ’Cloud Eggs (Egg Nests)’

4. ’Avocado Toast with Egg’

5. ’Eggs Florentine’

1. ’Egg Bhurji’

2. ’Sausage-wrapped Soft Boiled Egg (Scotch Egg)’

’how to make croutons’

1. ’I probably misheard. Let’s try again. I can help you
with cooking tasks or D.I.Y. tasks.’

1. ’Garlic Croutons’

2. ’Homemade Croutons’

3. ’Croutons’

4. ’Croutons’

5. ’Croutons’

’how to make a doughnut’

1. ’African Doughnut (Drop Doughnut)’

2. ’Vegan Doughnuts’

3. ’Italian Doughnuts’

4. ’Italian Doughnuts’

5. ’Galaxy doughnuts’

1. ’African Doughnut (Drop Doughnut)’

’make banana’

1. ’Blueberry Banana Smoothie’

2. ’Banana Cream Pie’

3. ’Fluffy Banana Pancakes’

4. ’Banana Crunch Muffins’

5. ’Banana Banana Bread’

1. NONE

’alexa how to make smoothies’

1. ’Raspberry molten chocolate cupcakes’

2. ’Air Fryer Salmon’

3. ’Easy Overnight Oats’

4. ’Air Fryer Sweet Potato Fries’

5. ’Lebanese Garlic Sauce (Toum)’

1. ’Ombré Smoothies’

’ask her how to make a salad’

1. ’Sorry, I didn’t find anything related. Please ask me
another question, hopefully about cooking or d.i.y.’

1. ’Shirazi Salad’

2. ’Broccoli Salad’

3. ’Ratatouille Salad’

4. ’Zucchini Salad’

5. ’Harvest Salad’

’barbecue rub’

1. ’I probably misheard. Let’s try again. I can help you
with cooking tasks or D.I.Y. tasks.’

1. ’Korean Pork Barbecue’

2. ’Pulled Pork Barbecue’

’how do you make a taco’

1. ’Sorry, I couldn’t find any relevant results. Let’s try
another question.’

1. ’Fish Taco’

2. ’Taco Hotdish’

3. ’Taco Salad’

19

	Introduction
	Overview of the Challenges
	Large Language Model Usage

	Architecture
	Logic Module

	Intent Classification
	Large Language Model and Chain-of-Thought Intent Classifier
	Lightweight Transformer Intent Classifier

	Query Parsing
	Large Language Model for Parsing
	Fallback Mechanism for Recipe Parsing
	Semantic classification of cooking-related items

	Syntactic Re-Ranking

	User Experience
	Voice User Interface
	Large Language Models for Flexible Response
	Standard Voice Responses
	Flexible Selection and Navigation

	Graphical User Interface
	Communication through GUI
	Mitigating Parsing Challenges with Query Confirmation

	Engineering Challenges
	LLM Quantization, Fine-tuning, and Serving
	Changes to the Cobot Framework

	Data Analysis and Annotation
	BoilerBot Data Studio
	Annotate with Large Language Models
	Content Moderation

	Work in progress
	Streamlining the Data Annotation, LLM finetuning, and Deployment Pipeline
	Automated Testing with LLMs

	Conclusion
	Appendix
	Data Studio Screenshots
	Infrastructure
	Cost Savings on Monolithic Computer Cluster

	Voice Response Examples
	Intents
	Syntactic Re-Ranking Recipes

