
ROLE OF BIAS TERMS IN DOT-PRODUCT ATTENTION

Mahdi Namazifar, Devamanyu Hazarika, Dilek Hakkani-Tür

Amazon Alexa AI

ABSTRACT
Dot-product attention is a core module in the present genera-
tion of neural network models, particularly transformers, and
is being leveraged across numerous areas such as natural lan-
guage processing and computer vision. This attention module
is comprised of three linear transformations, namely query,
key, and value linear transformations, each of which has a
bias term. In this work, we study the role of these bias terms,
and mathematically show that the bias term of the key lin-
ear transformation is redundant and could be omitted without
any impact on the attention module. Moreover, we argue that
the bias term of the value linear transformation has a more
prominent role than that of the bias term of the query linear
transformation. We empirically verify these findings through
multiple experiments on language modeling, natural language
understanding, and natural language generation tasks.

Index Terms— Attention, Transformer, Softmax

1. INTRODUCTION

Attention mechanism has revolutionized the application of
neural networks in numerous areas such as computer vision
and natural language processing. Different mechanism of at-
tention such as Additive Attention [?], Multiplicative Atten-
tion [?], and Key-Value Attention [?] have been introduced in
the past. Among all different attention mechanisms, perhaps
the one that is used most frequently is the Dot-Product At-
tention [?] that was introduced for transformers. Hereon, any
mention of attention refers to this Dot-Product attention.

In the recent past, the attention module has been analyzed
by various works, primarily in attempts to improve its squared
complexity and aid its feasibility for long sequences [?]. Ad-
ditionally, other works have analyzed potential redundancies
in components like the multiple attention heads [?, ?, ?].
While these variants have shown promising evidence, the
original transformer seems to be performing the best when
compared in various scales of model sizes [?]. In this work,
we analyze the attention module and attempt to dissect it to
better understand its components.

© 2023 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Attention mechanism includes three linear transforma-
tions, namely query, key, and value transformations, which
are affine transformations with respective bias terms. In this
work, we study the role of these bias terms, and mathemati-
cally show that the bias term for the key linear transformation
does not have any role in the attention function and could
be omitted altogether. This result was also independently
reported in [?]. We next verify this result numerically, and
show that replacing these bias vectors with arbitrary and ran-
dom vectors does not result in any significant difference1

in the output of transformers. Another implication of this
result is in BitFit [?] where only bias terms in a transformer-
based language model are fine-tuned on downstream tasks for
parameter-efficient training. We show that by freezing the key
bias parameters in attention, we could reduce the number of
trainable parameters in BitFit by over 11% with no impact on
the performance of the final model on downstream tasks.

2. NOTATION

In attention mechanism, an input vector h ∈ Rd, attends to
a set of n vectors (subject of attention) which are represented
as columns of matrix C ∈ Rd×n. Within the attention mech-
anism, first a query vector q ∈ Rd is constructed based on
h using a linear transformation, i.e., q = Wqh + bq , where
Wq ∈ Rd×d and bq ∈ Rd are the respective weight and bias
parameters. Also, a set of key vectors that establish a key
matrix K ∈ Rd×n are constructed by applying another lin-
ear transformation on C, i.e., K = WkC + bk1

T , where
1 ∈ Rn is a vector of 1s. Next, score distribution between the
query and the keys is created by applying softmax (σ(.)) on
the product of these two linear transformations:

σ
(
(Wqh+ bq)

T
(
WkC + bk1

T)
))

= σ
(
qTK

)
,

which is referred to as attention distribution. On the other
hand, similar to the process of creating the set of key vec-
tors (K), a set of value vectors, constituting matrix V , are
created by applying another linear transformation on C, i.e.,
V = (WvC+bv1

T). Finally, attention is computed by mul-
tiplying the value vectors and the attention distribution:

AttnC(h) = V σ
(
qTK

)T
, (1)

1The difference is non-zero due to numerical errors. See Section 4.1 for
details.

which could be thought of as a convex combination of
value vectors (columns of V).2

3. DISSECTING ATTENTION

To better understand the inter-workings of attention, we take
a deeper look into the interactions of the different elements
that form the attention mechanism. First, we expand V in
Equation (1):

AttnC(h) = V σ
(
qTK

)T
= (Wvh+ bv1

T)σ
(
qTK

)T
= Wvhσ

(
qTK

)T
+ bv1

Tσ
(
qTK

)T
. (2)

Since bv1
T is a matrix with identical columns bv , any

convex combination of its columns, including the one using
σ
(
qTK

)
as weights, is essentially equal to bv , i.e.,

bv1
Tσ

(
qTK

)T
= bv.

Therefore, from Equation (2), we can write the attention func-
tion as,

AttnC(h) = Wvhσ
(
qTK

)T
+ bv. (3)

Next, we expand K in Equation (3):

AttnC(h) = Wvhσ
(
qTK

)T
+ bv

= Wvhσ
(
qT (WkC + bk1

T)
)T

+ bv

= Wvhσ
(
qTWkC + qT bk1

T
)T

+ bv. (4)

Using the fact that bk1T is a matrix with identical columns, it
follows that qT bk1

T is a vector with equal elements, where
all elements are equal to qT bk. On the other hand, softmax is
invariant under translation by the same value in each coordi-
nate. In other words, ∀δ ∈ R,∀z ∈ Rn, σ(z + δ) = σ(z),
where δ = δ1. As a result, and from Equation (4) we can
conclude that,

AttnC(h) = Wvhσ
(
qTWkC

)T
+ bv.

Next, in the equation above we replace q with its original
linear transformation, resulting in,

AttnC(h) =

Wvhσ
(
(Wqh+ bq)

TWkC
)T

+ bv. (5)

This rewriting of attention highlights the different roles that
bq , bk, and bv play in the attention function. From Equa-
tion (5) it is clear that bk plays no role in the attention func-
tion and it is in fact redundant. bv on the other hand plays

2Note that we omit writing the scaling factor 1√
d

employed on the dot-
product, for brevity.

a very important role in attention since it is one of the two
terms that are added to each other to constitute the attention
function. Finally, bq plays a role in creating the attention dis-
tribution along with other parameters of the attention namely,
Wq and WK .

4. NUMERICAL ANALYSIS

In Section 3, we mathematically show that the bias term of the
key linear transformation within the attention mechanism, i.e.,
bk, is redundant in the attention function and can be removed.
In this section, we verify these results numerically. We also
discuss some computational gains that could be achieved due
to this result.

4.1. Changing bk in Pre-Trained Language Models

We examine the sensitivity of transformer-based pre-trained
language models to changes to attention bias terms, i.e., bk,
bq , and bv , for all attention modules within the model. The
idea behind this analysis is that since we show that bk is re-
dundant in theory, changing its pre-trained values to arbitrary
values should not impact the output of the models in practice.
On the other hand, for bq and bv , which are not redundant in
the attention function, changing their values should result in
significant changes in model outputs.

For this analysis, we take the first 100 sentences from the
Wikipedia page for “Machine Learning”3. The length of these
sentences ranges from 1 (“Overview”) to 75 tokens (counted
using spaCy4). Next, we feed these sentences to several pre-
trained language models and get their last layer’s hidden state
for each sentence. We represent this hidden state matrix for
sentence i as Hi ∈ Rd×si , where si is the length of sen-
tence i. We also feed these sentences to the same pre-trained
language models but with changes applied to their bk, bq , or
bv (details are forthcoming) and represent the corresponding
hidden state matrix as H ′

i , which is also in Rd×si . We then
compare Hi and H ′

i across all is for each of the models:

x⋆ := inf
{
x ∈ Z | max

i
∥Hi −H ′

i∥max≤ 10x
}
,

where ∥.∥max is matrix max norm 5, Z is the set of all
integers, and i ∈ {1, . . . , 100}. In other words, the tolerance
level (i.e., 10x

⋆

) at which Hi and H ′
i are equal across all

sentences is calculated.
We run this analysis for base and large sizes of both

RoBERTa [?] and BART [?] using Huggingface. We set the
values of the elements of bias vectors bk, bq , or bv to 0, 1,
10, and random numbers uniformly sampled from [−5, 5]. In
other words, bk, bq , or bv is set to a vector of zeros, ones,

3https://en.wikipedia.org/wiki/Machine˙learning
4en_core_web_sm package. https://spacy.io/
5https://en.wikipedia.org/wiki/Matrix˙norm#Max˙norm

bk bq bv
0 1 10 [-5, 5] 0 1 10 [-5, 5] 0 1 10 [-5, 5]

RoBERTa-base 10−4 10−4 10−4 10−4 10 10 102 102 10 10 102 102

RoBERTa-large 10−5 10−5 10−5 10−5 1 1 1 1 1 1 10 10

BART-base 10−5 10−5 10−5 10−5 10 1 10 10 1 10 10 10

BART-large 10−5 10−5 10−5 10−5 10 1 10 10 1 10 10 10

Table 1. Tolerance level at which the final hidden state of the models before and after changing values of attention bias terms
bk, bq , or bv for 100 sentences are equal. The elements of bias vectors are set to one of 0 (equivalent to removing), 1, 10, or a
random value between -5 and 5. The models are not sensitive to even drastic changes to bk.

tens, or a random vector. This is done for all attention mod-
ules (e.g., both self- and cross-attentions in BART) within
the models. A small python script for this is shown in the
Appendix. The tolerance levels (10x

⋆

) for this analysis are
reported in Table 1. For both BART-base and -large, as well
as for RoBERTa-large, we see the models are not sensitive
to the values of bk at 10−5 tolerance level. For RoBERTa-
base this tolerance level is 10−4. On the other hand, for the
other two attention bias terms bq and bv , the models are very
sensitive to changes to these bias terms. For instance, for
RoBERTa-base, changing the elements of bq or bv to random
values in [−5, 5], results in the elements of the final hidden
states to change up to 100 in value. This study shows that
bk does not have any significant impact on the output of the
models.

From the conclusion of Section 3 that bk is redundant in
the computations of attention, one might expect that the tol-
erance levels reported in Table 1 under bk should be much
lower. This discrepancy is simply due to numerical errors
associated with calculating softmax within the attention func-
tion. For example, in theory, softmax of [0.1, 0.2] is equal
to the softmax of [5.1, 5.2], since softmax is invariant under
translation by the same value in each coordinate. However,
numerically this equality only holds at 10−9 tolerance level6.
These errors propagated across hundreds of dimensions (in-
stead of 2 in this example), and numerous transformer layers
would lead to tolerance levels of 10−4 and 10−5 that are re-
ported in Table 1.

We conduct a similar experiment on text classification
task and measure how changes in bk, bq , and bv impact the
accuracy of models. For this purpose for three GLUE [?]
tasks, namely SST-2, MNLI, and QQP, we take pre-trained
RoBERTa-large based models and change the values of bk,
bq; and bv to random values uniformly sampled from [−5, 5];
we report accuracy of models on the validation set before and
after these changes in Table 2. From the numbers, it is imme-
diately clear that applying these drastic changes to bk results
in no change in the accuracy of the models. On the other hand
these changes to bq and bv result in very large degradation in
the performance of the models. It is also evident that changes

6Calculated using the implementation of softmax in the nn module of
PyTorch version 1.10.0

[-5,5]
Original bk bq bv

SST-27 0.9644 0.9644 0.7007 0.4908
MNLI8 0.9060 0.9060 0.4101 0.3182
QQP9 0.9214 0.9214 0.6434 0.3682

Table 2. Accuracy of GLUE [?] tasks as the values of bk,
bq , and bv of trained models, which are based on RoBERTa-
Large, are set to uniform random values between -5 and 5.

GPT-2 RoBERTa-base

Original 2.9251 5.8890

No bk 2.9250 5.8909

Table 3. Average loss (on test set) of GPT-2 (small) and
RoBERTa-base compared to their variants without bk, trained
from scratch. Numbers are average over 3 runs with different
random seed, and no statistically significant difference is ob-
served.

in bv result in much larger degradation than changes in bq ,
which supports the evidence in Section 3 about role of bv .

4.2. Pre-Training of Language Models without bk

We train two transformer-based language models, GPT-2 [?]
and RoBERTa, from scratch both with and without bk, and
compare the language modeling performance of the model
on a test set. We use Huggingface with the original hyper-
parameters for training these models. Both of these models
are trained on wikitext-103-v1 [?] dataset. We train each of
the GPT-2 (small) and RoBERTa (base) models from scratch
with three different random seeds for 50,000 steps, and we re-
port the loss of final model on the test set averaged over three
runs in Table 3. Note that there is no statistically significant
difference between the two settings at a p-value ≤ 0.05 in an
unpaired two-tailed T-test.

7https://huggingface.co/philschmid/roberta-large-sst2
8https://huggingface.co/roberta-large-mnli
9https://huggingface.co/howey/roberta-large-qqp

Average Rouge
R-1 R-2 R-L R-Sum

BART-large Orig. 40.66 17.32 32.25 32.25
No bk 40.67 17.33 32.26 32.26

Table 4. BitFit on BART-large with/without bk on XSUM.
Second row has 11.11% less trainable parameters than the
first row. No statistically significant difference in the eval-
uation set accuracy according to a two-tailed T-test at p-value
0.05.

4.3. BitFit without bk

One place where removing the redundant bk could result in
significant savings in computation is in BitFit [?], where a
pre-trained transformer based language model is fine-tuned
for downstream tasks such as text classification, summa-
rization, etc., by freezing all the trainable parameters of the
model, except for bias terms within different modules of the
model. This is further discussed in details in Section 4.3.

Next, we study the effect of freezing bk vectors across
all transformer layers in BitFit. Normally in BitFit, bk vec-
tors are among the fine-tuned parameters, but since we show
that bk is redundant in the attention function, we study what
happens if these vectors are not fine-tuned in BitFit. In
this section all models are fine-tuned using the exact hyper-
parameters used in [?] for the corresponding models. Table
4 shows the results of BitFit for summarization task on the
XSUM [?] dataset, using BART-large with and without fine-
tuning bk. Freezing bk in BitFit results in 11.1% decrease
in the number of trainable parameters. Each model is fine-
tuned three times with different random seeds. The reported
numbers in Table 4 are different rouge metrics averaged over
the three runs. According to a two-tailed T-test there is no
statistically significant difference between the rouge metrics
at p-value ≤ 0.05.

We conduct a similar experiment for a text classification
problem, namely SST-2 from the GLUE benchmark using
RoBERTa. The main difference between this and the sum-
marization setting is the new classification layers that need to
be added to RoBERTa for performing classification, whose
parameters are fine-tuned along with the bias parameters in
BitFit. As a result, the savings in the number of trainable
parameters by freezing bk in this setting is smaller than the
summarization setting with BART. For RoBERTa-base and
RoBERTa-large freezing bk during fine-tuning using BitFit
results in 1.3% and 1.9% savings in trainable parameters, re-
spectively. Table 5 shows the average accuracy (over five runs
with different random seeds) of the fine-tuned models on the
evaluation set for SST-2. According to a two-tailed T-test, at
p-value ≤ 0.05 there is no statistically significant difference
between the BitFit results with and without bk for both base
and large sizes of RoBERTa.

Eval. Accuracy

RoBERTa-base Original 94.98
No bk 94.92

RoBERTa-large Original 95.83
No bk 95.85

Table 5. Average accuracy over 5 runs of BitFit on RoBERTa-
base and -large with and without bk on SST-2. No statistically
significant difference in accuracy is observed according to a
two-tailed T-test at p-value 0.05.

5. IMPLICATIONS FOR TRANSFORMERS

As was shown in the previous sections, the bias term of the
key linear transformation, i.e., bk in the attention function is
redundant. In the context of transformers, if we consider one
transformer layer, bk constitutes only less than 0.01% of the
parameters of the layer. As a result, removing bk from the
transformer architecture both during training or even from a
pre-trained model at inference time does not result in signif-
icant savings in computations. However, for the following
reasons we argue that this finding is important. (1) The small
size of these redundant parameters within one of the most
widely used neural networks architectures does not change
the fact that they are redundant, and we argue that this redun-
dancy, however small, should be addressed. (2) It is impor-
tant to note that this small redundancy appears in thousands
of transformer-based models that are being invoked millions
of times a day across academia and different industries within
different products. From this aggregate perspective this re-
dundancy results in significant redundant computational oper-
ations that could be avoided. (3) Recent works such as (IA)3

[?] show how a small set of parameters (of the same size as bk)
could be used for efficiently adapting large language models
to downstream tasks (often rivaling fully fine-tuned variants).
From this angle, the redundant bk parameters could be re-
purposed to improve the performance of models. (4) Finally,
in some recent works the bias terms of “dense kernels” and
“layer norms” are dropped from the architecture based on the
observation of positive impact on stability of the training pro-
cess. Our analysis reveals that from a theoretical standpoint
some additional biases (bk) could be dropped from these ar-
chitectures as well.

6. CONCLUSIONS

In this work, we analyze the attention function predominant in
present-day transformer architectures and find that the biases
in the linear transformations of the attention function play dif-
ferent roles. Our analysis reveals that bv is an important com-
ponent in the attention computation, whereas the bias of the
key linear transformation, bk, is completely redundant. We
also numerically confirm that removing bk does not signifi-
cantly change the outcome of transformers.

While our analysis has been focused on the softmax-based

(scaled) dot-product attention, recent works have demon-
strated how attention can be generalized from the kernel lens.
This has led to innovations in different kernel designs that
perform equivalently or better and it would be interesting to
explore the role of bias terms in the proposed kernels.

	 Introduction
	 Notation
	 Dissecting Attention
	 Numerical Analysis
	 Changing in Pre-Trained Language Models
	 Pre-Training of Language Models without
	 BitFit without

	 Implications for Transformers
	 Conclusions

