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Abstract

We introduce the Block Rearrangement Problem (BRaP),
a challenging component of large warehouse management
which involves rearranging storage blocks within dense grids
to achieve a goal state. We formally define the BRaP as a
graph search problem. Building on intuitions from sliding
puzzle problems, we propose five search-based solution algo-
rithms, leveraging joint configuration space search, classical
planning, multi-agent pathfinding, and expert heuristics. We
evaluate the five approaches empirically for plan quality and
scalability. Despite the exponential relation between search
space size and block number, our methods demonstrate ef-
ficiency in creating rearrangement plans for deeply buried
blocks in up to 80×80 grids.

1 Introduction
Amazon Robotics fulfillment centers are large warehouses
that utilize robotic Automated Storage and Retrieval Sys-
tems to store inventory and fulfill customer orders. As illus-
trated in Figure 1, fulfillment centers store inventory items
in shelves (blocks) arranged into storage grids separated by
travel lanes. Robot drives can lift and move these blocks.
When a station at the periphery requests an assigned block
for item picking or stowing, robot drives move that block,
transport it to the storage grid’s boundary and then utilize
travel lanes to bring it to the station. The system leverages
dense storage grids to achieve efficient space utilization and
lower fulfillment costs. This creates a challenge: assigned
blocks may be deeply buried and obstructed by other blocks,
requiring complex rearrangement plans.

We define the Block Rearrangement Problem (BRaP) as
follows. Given a grid layout containing assigned blocks,
unassigned blocks, empty cells, and obstacles, as illustrated
in Figure 2a, the objective is to find the lowest-cost plan to
move each assigned block to a set of desired goal locations.
Note that the blocks are also referred to as agents in other
problem settings (Stern et al. 2019). These goal locations
can be either contiguous or disjoint. When goal locations
are at the grid boundary, assigned blocks are rearranged for
direct travel lane access. Alternatively, when goal locations
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(a) Photo

(b) Illustration diagram

Figure 1: Fulfillment center with blocks in storage grids sep-
arated by travel lanes. Assigned blocks marked in orange.

are within the grid, assigned blocks are positioned for poten-
tial future access. The plan consists of block moving actions
with their associated timestamps. Cost metrics can include
sum of action costs, makespan, or other user-defined objec-
tives. An example plan for the problem shown in Figure 2a
is illustrated in Figure 2b.

The Block Rearrangement Problem in dense warehouses
shares fundamental structural similarities with various puz-
zles and real-world problems, including the sliding tile puz-
zle (Gozon and Yu 2024), Rush Hour puzzle (Cian et al.
2022), block relocation problem (Lu, Zeng, and Liu 2020),
box world/Sokoban (Zawalski et al. 2024), parking lot re-
arrangement (Guo and Yu 2023), Multi-Agent Path Finding
(MAPF) (Stern et al. 2019; Li et al. 2022; Shen et al. 2023;
Okumura 2023b), and MAPF with Unassigned Agents (Fel-
ner and Stern 2026). These problems involve rearrangement
in discrete space, aiming to achieve goal configurations un-
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Figure 2: Block Rearrangement Problem definition.

der movement constraints. Due to the combinatorial increase
in the number of possible configurations, these problems are
generally NP-hard (Ratner and Warmuth 1986; Flake and
Baum 2002; Yu and LaValle 2013a).

This paper makes several contributions: it formally de-
fines the Block Rearrangement Problem, establishes simi-
larities and differences between BRaP and existing puzzles
and research problems, develops five distinct solution algo-
rithms, and evaluates their optimality and computational ef-
ficiency. Through this comprehensive analysis, we establish
baseline approaches for solving BRaPs and identify direc-
tions for future research.

2 Problem Description
A BRaP is defined on a graph G = (V,E) with the set of
vertices V and edges E = {(u, v) | u, v ∈ V } connecting
adjacent vertices. Let I = {1, · · · , nI} denote the set of
assigned blocks (marked in orange in Figure 2) and each as-
signed block i ∈ I starts at an initial vertex si ∈ V and must
be moved to a set of desired goal vertices Vi ⊆ V . Addition-
ally,J = {nI+1, · · · , nI+nJ } denotes unassigned blocks
without desired goals. Actions A = {move,wait, complete}
comprise a set of operations that modifies the time or loca-
tion of the blocks. A path pi for block i ∈ I ∪ J consists
of an action sequence (a1i , a

2
i , · · · , a

|pi|
i ), aki ∈ A. Assigned

block paths must move assigned blocks to goal vertices to be
completed, while unassigned block paths facilitate assigned
block movements. A solution P = {pi | i ∈ I ∪ J } to a
BRaP is a set of conflict-free paths, that transition all the as-
signed blocks to their goal vertices. The objective is to find
a feasible solution minimizing either sum of action costs,
makespan, or other user-defined cost metrics, as detailed in
Sec. 2.3.

2.1 Actions
The action set A contains three types of actions that can
be applied to the blocks, each takes one time step to exe-
cute and is associated with a corresponding cost. The action
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Figure 3: Three types of conflicts (Stern et al. 2019).

move(i, t, u, v) moves block i ∈ I ∪ J between two adja-
cent vertices (u, v) ∈ E at time step t if u is a block and v is
an empty vertex. wait(i, t) forces a block to wait in place at
time t. The complete(i, t, v) action can only be applied when
an assigned block i ∈ I is at one of its goal vertices v ∈ Vi.
The complete action removes the block from the assigned
block set: I ← I\i.

It is important to note that, according to the above defini-
tion, the destination of a move action must be an empty ver-
tex. We prohibit platooning, where one block closely follows
another, to better align with warehouse operational con-
straints. Specifically, the movement must avoid three con-
flicts (Stern et al. 2019):
• Vertex Conflict (Figure 3a), where two blocks use the

same vertex at the same timestep,
• Edge Conflict (Figure 3b), where two blocks use the same

edge at the same timestep,
• Following Conflict (Figure 3c), where one block occu-

pies a vertex that was occupied by another block in the
previous time step.

2.2 Terminal State
The objective is to empty the assigned block set through
completion actions. Three distinct completion actions are
possible for assigned blocks. In the first case, an assigned
block reaching the goal (e.g., the boundary) is considered
rearranged and removed, converting its location to an empty
vertex. In the second case, an assigned block becomes unas-
signed upon reaching its goal location. In the third case,
an assigned block becomes an obstacle at its goal location.
Each completion action corresponds to a specific practical
scenario. This paper focuses on developing algorithms and
conducting experiments using the third option.

2.3 Objectives and Metrics
Multiple metrics can be used to evaluate the quality of the
BRaP solutions, including the number of moves of assigned
blocks, the number of moves of unassigned blocks, sum of
action costs, and the makespan of the whole plan. In Block
Rearrangement, we care about all of these metrics.

Let c(a) denote the cost of an action a ∈ A. c(a) returns
the cost according to the types of the blocks and the actions.
An example action cost matrix is illustrated in Table 1.

The cost of a path pi = (a1i , · · · , a
|pi|
i ) is defined as:

c(pi) =

|pi|∑
k=1

c(aki ) (1)



Block type move wait complete

Assigned 2 1 2
Unassigned 2 0 N/A

Table 1: Example action costs

We define the objectives: composite cost of a solution P =
{pi | i ∈ I∪J } and the makespan of the solution, according
to (2)-(3), respectively.

Composite cost: c(P ) =
∑

i∈I∪J
c(pi) (2)

Makespan: cm(P ) = max
i∈I∪J

c(pi) (3)

2.4 Variants of the Problem
The Problem can be extended in several ways to accommo-
date different operational requirements:

• Constraint on simultaneous actions: Limiting the num-
ber of blocks that can move concurrently to reflect real-
world constraints.

• Shared or distinct goal sets for blocks: Blocks might have
individual specific goals or share a common set of accept-
able end positions.

• Priority assignments: Additional priority for certain
blocks, ensuring critical blocks are rearranged first.

3 Related Work
As mentioned in Sec. 1, BRaP is closely related to various
puzzles and research problems. Solutions to these problems
have employed diverse approaches including symbolic plan-
ning (Davesa Sureda et al. 2024), search and conflict reso-
lution (Li et al. 2022; Sharon et al. 2015; Ma et al. 2019),
mixed-integer programming (Guo and Yu 2023; Lu, Zeng,
and Liu 2020), boolean satisfiability (Cian et al. 2022), rein-
forcement learning (Shoham and Elidan 2021; Damani et al.
2021; Wang et al. 2025), and supervised learning formu-
lations (Li et al. 2020; Jiang et al. 2025) to find low-cost
plans. Given their demonstrated optimality and efficiency,
we leverage symbolic planning and MAPF algorithms to de-
velop the planning methods in this paper.

3.1 Symbolic Planning and PDDL
Symbolic planning is a model-based approach in artificial
intelligence that solves decision-making problems by ex-
plicitly representing states, actions, and their transitions us-
ing symbolic logic. Planning languages like Planning Do-
main Definition Language (PDDL) enable the formulation
of complex planning problems as structured domains, en-
compassing crucial elements such as initial conditions, fea-
sible actions, and desired goal states, allowing planners to
search for action sequences that achieve specified goals.
PDDL has been successfully applied to various domains:
modeling Rush Hour and sliding puzzles (Davesa Sureda
et al. 2024), formulating Rubik’s cube solutions (Mup-
pasani, Pallagani, and Srivastava 2024), solving logistics

problems for transport routing (Helmert 2009), and find-
ing robot paths in grid worlds (Estivill-Castro and Ferrer-
Mestres 2013). Symbolic representations have also proven
effective in task and motion planning for robotic manipula-
tion (Garrett et al. 2021; Silver et al. 2021). Recent work has
combined the symbolic representation with deep learning
and large language models to create flexible long-horizon
plans (Srivastava et al. 2022; Agia et al. 2023; Lin et al.
2023). Building on this foundation, we apply symbolic plan-
ning in configuration space and PDDL descriptions to de-
velop planning algorithms for BRaPs.

3.2 Multi-Agent Path Finding

Multi-Agent Path Finding (Stern et al. 2019) is a problem
of navigating a team of agents from their start locations to
goal locations without collisions. The BRaP can be mod-
eled as a complex MAPF variant that combines elements
from the classic MAPF problem (Stern et al. 2019), where
agents (blocks) must be moved to dedicated goal locations,
the anonymous MAPF problem (Stern et al. 2019; Yu and
LaValle 2013b), where goal vertices are unlabeled and are
interchangeable for assigned blocks, and the Graph Mo-
tion Planning Problem (Papadimitriou et al. 1994), where
unassigned blocks exists and must be moved to clear paths
for assigned blocks but is limited to one motion per step.
More recently, Felner and Stern (2026) introduced the Multi-
Agent Path Finding with Unassigned Agents (MAPFUA),
which formally defines this setting where assigned agents
(our assigned blocks) have goals and others (our unassigned
blocks) can move to clear the way. Our BRaP can be seen
as a specific, challenging variant of MAPFUA, character-
ized by extremely dense environments, strict movement con-
straints, and task assignments. For a broader discussion of
the MAPFUA problem and its potential variants, we direct
readers to the MAPFUA paper (Felner and Stern 2026).

Different from the anonymous MAPF problem, assigned
blocks may be assigned distinct goal vertex sets thus goal
vertices are not fully interchangeable. This aspect is related
to the Target Assignment and Path Finding (TAPF) prob-
lem (Ma and Koenig 2016), where agents in a team can be
assigned to any of one of the team’s dedicated goal vertices.
However, the TAPF problem does not include unassigned
agents or blocks.

The BRaP is made further challenging by the high-density
environment, where unassigned blocks often occupy the vast
majority of the workspace, and by its specific operational
constraints prohibiting following. Although “following con-
flicts” are defined in the literature, most solvers ignore them
and it is non-trivial to incorporate them into certain MAPF
algorithms. These combined factors mean that even though
powerful, state-of-the-art solvers like LaCAM (Okumura
2023b,a, 2024) are effective for high-density MAPF prob-
lems, they are not directly applicable to BRaPs. Therefore,
building upon these advanced frameworks, we develop a
MAPF-based solution tailored to the specific complexities
of the BRaP.



Figure 4: A graph of configuration states and actions.

4 Applicable Methodologies
4.1 Configuration Space Search
The BRaP can be formulated as a graph search in configura-
tion space. Starting from an initial grid configuration, avail-
able actions transform the state until reaching a goal configu-
ration that satisfies desired criteria. Actions at each time step
represent edges that transition between neighboring config-
uration states. Each state comprises time, assigned block set
(vertices containing assigned blocks), empty vertex set, and
completed block set (vertices containing completed assigned
blocks).

An example graph of configuration states and actions is
illustrated in Figure 4. According to the above definition,
the root state in the graph is: time: 0, assigned blocks: {(2,5),
(2,6)}, empty vertices: {(2,3), (2,4)}, completed blocks: ∅.
The assigned block set in the goal state should be empty.

The configuration space can be modified using the three
actions described in Sec. 2.1. To ensure computational
tractability and reduce the branching factor, we restrict the
system to one action per time step. This restriction renders
the wait action redundant and thus disallowed. Methods sup-
porting multiple actions at each time step will be discussed
in subsequent sections.

A configuration graph can be constructed from the de-
fined states and actions, as shown in Figure 4. With the cost
of the actions defined, graph search techniques like Dijkstra
and A* algorithms can be applied to find the minimum cost
path from the initial state to the goal state (where there is no
longer any assigned blocks).

A* with an admissible heuristic function is guaranteed to
be complete (always find a solution if there is) and optimal.
We formulate an admissible heuristic by assuming assigned
blocks move along least-blocking vertices, with each block-
ing block requiring only one move action for removal. The
detailed heuristic formulation is presented in Appendix.

4.2 PDDL-based Configuration Space Search
The configuration space search can also be described using
PDDL. We define five predicates: (emp ?u), (asb ?u), (blk
?u), (cmp ?u), and (goal ?u), indicating whether a vertex
u ∈ V contains an empty space, assigned block, unassigned
block, completed block, or potential goal, respectively. The

Algorithm 1: Priority-based search
1 Input: Grid G(V,E), assigned block set I, goal vertices

Vi(i ∈ I)
2 Isorted ← computePriority(I, Vi, V, E)
3 P ← ∅ //The initial plan
4 for i ∈ Isorted do
5 ξ ← computeConstraint(P )
6 pi ← computeConstrainedPlan(i, Vi, V, E, P, ξ)
7 P ← P ∪ pi
8 return P

predicate (adjacent ?u ?v) denotes that vertices u and v
are adjacent to each other, i.e., (u, v) ∈ E. Three actions
are defined in the PDDL domain: (move blk ?u ?v) and
(move asb ?u ?v) for moving unassigned and assigned
blocks, respectively, and (complete ?u) for completion.

In the problem file, vertices serve as objects, denoted as
node-0-0, node-0-1, etc., excluding vertices containing ob-
stacles. The initial state specifies each node’s type as either
(asb node-x-y), (blk node-x-y), or (emp node-x-y).
All vertices except assigned blocks are marked with (cmp
node-x-y), and valid terminal locations are marked with
(goal node-x-y). The goal state requires all vertices to
be marked as (cmp node-x-y), with total action cost as the
optimization metric.

While this formulation allows simultaneous moves, the
fast-downward solver used in Sec. 5 generates totally-
ordered plans with single actions per timestep. Formulations
that support multi-agent temporal planning would introduce
prohibitively high branching factors for PDDL solvers, mo-
tivating the restriction to single-action plans.

4.3 Priority-based Configuration Space Search

In contrast to the single action per time step approach of Sec.
4.1, we now develop a formulation allowing one action per
assigned block per time step, enabling parallel execution and
reducing rearrangement makespan.

Algorithm 1 begins by assigning priorities based on block
proximity to goals, as our experiments showed this produces
better solutions. The priority for each assigned block i ∈ I
is determined using the heuristic h(s, i) described in Ap-
pendix, where smaller values indicate higher priorities.

The search iteratively creates rearrangement plans for in-
dividual assigned blocks while respecting plans of higher-
priority blocks as constraints. For a prior plan P , the com-
puteConstraint(P ) function generates constraints ensuring
the preconditions of higher-priority actions are satisfied. For
example, if move(i, t, u, v) appears in P , a constraint in ξ
ensures block i occupies u at time t while v remains empty,
and no other actions can modify these vertices at time t.
The computeConstrainedPlan() function generates plans by
pruning states violating ξ and treating prior plans as external
forces, ensuring parallel executability of the resulting plans.



Algorithm 2: Heuristic approach
1 Input: Grid G(V,E), assigned block set I, goal vertices

Vi(i ∈ I)
2 Isorted ← computePriority(I, Vi, V, E)
3 P ← ∅ //The initial plan
4 for i ∈ Isorted do
5 ψ ← computeVertexBlockingTime(P )
6 Ui ← leastBlockingPath(i, Vi, V, E, P )
7 pi ← ∅
8 for u ∈ Ui do
9 pui ← createEmptyVertexAt(u, V,E, P, ψ)

10 pi ← pi ∪ pui ∪ move(i, t, uprevious, u)

11 P ← P ∪ pi ∪ complete(i, t, u)

12 return P

Figure 5: Move assigned blocks along the least blocking
path.

4.4 Heuristic Approach: Moving Along the Least
Blocking Path

Given the exponentially growing configuration search space
with respect to the block number, algorithms in the previous
three sections do not scale efficiently to large grids with nu-
merous assigned blocks. In this section, we propose a pure
heuristic-based approach that moves each assigned block
along the least-blocking vertex path.

Algorithm 2 outlines the heuristic approach. The process
begins by allocating priorities to assigned blocks using the
method described in Sec. 4.3. As illustrated in Figure 5, for
each assigned block, the planner first creates a least-blocking
path, Ui = {u1i , · · · , u

|Ui|
i }, to the goal vertices. Then, for

each vertex along this path, uli ∈ Ui, the planner create an
empty vertex at uli by iteratively moving blocks to the clos-
est empty vertex and subsequently moves the assigned block
to the emptied vertex uli, thus generating a block movement
plan. A least-blocking path is defined as the lowest-cost path
where assigned blocks, unassigned blocks, and empty ver-
tices are assigned different traversal costs.

During planning, the plan for the current assigned block
i is created based on the map status where all previous as-
signed block plans have been executed. However, executing
the plan for assigned block i does not require waiting for
complete execution of all previous plans. Instead, it only re-
quires waiting for the completion of plans affecting vertices
that will be used by plan pi. The function t = ψ(u) takes
a vertex u ∈ V and returns this waiting time. By ensur-
ing actions in pi occur no earlier than times specified by ψ,
the planner enables parallel movements of multiple assigned
block.

4.5 LaCAM-based Multi-Agent Path Finding
By discretising time into timesteps and allowing multiple
blocks to move to empty vertices simultaneously in each
timestep, the problem is similar to a Multi-agent Path Find-
ing problem. With the recent advances in solving large scale
and high density MAPF problems, we introduce Block Rear-
rangement LaCAM, a Lazy Constraints Addition Search (La-
CAM) (Okumura 2023b,a, 2024) based algorithm to solve
the Block Rearrangement Problem in this section.

Lazy Constraints Addition Search LaCAM is a heuris-
tic search algorithm that aims to rapidly find an initial solu-
tion and then continuously search for lower cost ones. The
algorithm has three major components: (1) the high-level
search tree, (2) the configuration generator, and (3) the low-
level constraints. Similar to the Configuration Space Search
presented in Sec. 4.1 and Figure 4, the high-level search
component of LaCAM searches over the configuration space
for solutions. A high-level search node n in LaCAM not
only stores a configuration state n.π, but also low-level con-
straints n.ξ which store spatial constraints that force the
constrained blocks to perform the constrained actions. To
rapidly find an initial solution, LaCAM searches in a way
that combines Depth-first Search (DFS) and Greedy Best-
first Search (GBFS).

However, unlike DFS that blindly expands from one node
to the next or GBFS which applies a heuristic function to
evaluate all possible successor states and expands the most
promising one, LaCAM utilizes a configuration generator
f(n) to expand a given node n and generate a single suc-
cessor node n′ for exploration. f(n) itself is a lightweight
one step planner (e.g. PIBT (Okumura et al. 2022)) which
suggests the most promising next state without enumerating
all possible successor states.

If the new configuration, n′.π, has not yet been explored,
the algorithm advances to n′ and continues its deep dive in
a DFS-style exploration, until a goal node is found. Con-
versely, if n′.π has already been explored, the algorithm
backtracks to the parent node n and grows its constraints,
n.ξ. This addition forces the configuration generator, f(n),
to generate an alternative successor configuration state. n.ξ
grows in a brute-force manner to gradually take over the con-
trol of blocks from the configuration generator, and eventu-
ally force the exploration of all possible successor nodes of
n if f(n) keeps returning explored states.

BR-PIBT Configuration Generator With the existence
of following conflicts, PIBT (Okumura et al. 2022) is no
longer applicable as a configuration generator for LaCAM in
BRaP. This is because PIBT recursively decides the actions
for chains of movable blocks, while, due to following con-
flicts, only the blocks next to empty vertices are movable.
The additional complexity is the BRaP has multiple goal
vertices for each assigned block, and the configuration gen-
erator needs to decide which goal vertex to move towards.
In this section, we introduce BR-PIBT as the configuration
generator for Block Rearrangement LaCAM (BR-LaCAM).

The core intuition of the BR-PIBT algorithm is that ev-
ery block takes turns to call for empty vertices in a priority-
based manner, ensuring that each block is processed exactly



Algorithm 3: BR-PIBT
1 Input: Grid G(V,E), assigned block set I, unassigned set
J , goal vertices Vi (i ∈ I), priorities ω, current states π,
next states π′, current temp goals g,

2 UpdatePriorities(I, Vi, ω, π);
3 g′ ← ∅; //Next temp goals
4 for each block k ∈ I in descending priority order do
5 if π′

k =⊥ then BR PIBT(null, k) ;

6 return π′, g′

7 BR PIBT(parent, block i): begin
8 π′

i ← πi; //Default action wait
9 if i ∈ I then g′i ← if gi is null or occupied in g′ then

closest goal v ∈ Vi, v /∈ g′ else gi ;
10 if no unused empty vertices left then return true ;
11 C ← neighbors(πi)∪ {πi}; //Candidate locations

12 for each u ∈ C do AssignPreferences(u, i, g′i) ;
13 Sort C by preference in ascending order;
14 for each candidate u ∈ C do
15 if u is occupied in π′ then continue ;
16 if parent ̸= null and u = πi then continue;
17 j ← the block occupies u in π;
18 if j ̸= null and j ̸= i then
19 if π′

j ̸=⊥ or not BR PIBT(i, j) then
continue;

20 if j = null then π′
i ← u; //Move if empty

21 return true;

22 return false;

23 UpdatePriorities(I, Vi, ω, π): begin
24 for each i ∈ I do
25 ωi ← if πi ∈ Vi or ωi = null then rand(0, 1)

else ωi + 1.0

26 AssignPreferences(u, i, g′i): begin
27 u.preference← if i ∈ I then

(Distance(u, g′i), DistanceToEmpty(u)) else
(DistanceToEmpty(u), random())

once per step to maintain algorithmic efficiency. This ap-
proach ensures that all blocks have the opportunity to make
progress toward their goals by dynamically updating their
priorities. Algorithm 3 describes the process of BR-PIBT .

The BR-PIBT algorithm operates as a single-step plan-
ner that generates the next configuration state by iteratively
assigning actions and temporary goals to blocks based on
dynamically managed priorities. The algorithm maintains
three key components: 1) Priority Management, 2) Recur-
sive Planning and 3) Temporary Goal Allocation.

1) Priority Management: Similar to PIBT, each block
i maintains a priority value ωi that determines the order
in which blocks are processed. Priorities are dynamically
updated based on goal achievement and movement status.
When a block i reaches any vertex in Vi, its priority is re-
set to a floating number in (0, 1). When the block i is dis-
placed from its goal vertices Vi, its priority is incremented
by 1. This priority update process happens at the beginning
of each configuration generation phase (Algorithm 3 line 2
and 23).

2) Recursive Planning: The algorithm processes as-
signed blocks according to their priority (Algorithm 3 lines 4
- 5). For each block, it attempts to move to the most pre-
ferred adjacent location. If the desired spot is occupied, the
algorithm makes a recursive call on the blocking block, find-
ing a chain of displacement requests that reaches an empty
vertex (Algorithm 3, lines 7 - 22). During this process, the
algorithm returns the default action wait if no empty ver-
tices are left or the chain of displacement is not possible. It
then identifies available neighboring vertices and sorts them
based on action preference metrics (Algorithm 3 lines 11 -
12). The wait action is only considered as a preferred option
if the block is not being actively pushed by another block to
find the chain (Algorithm 3 line 16). The process ensures
that a block remains stationary unless a move is strategically
advantageous for itself or required to accommodate another
block’s movement.

3) Temporary Goal Allocation: For assigned blocks,
BR-PIBT allocates temporary goals to guide them. When a
block decides its action, a temporary goal is selected from
the closest unallocated goal locations if the block does not
have one or if its goal was taken away by a higher priority
block (Algorithm 3 line 9).

The action preference differentiates between assigned
blocks and unassigned blocks (Algorithm 3 line 26). As-
signed blocks prioritize moves that minimize the distance to
their goals, while also considering proximity to empty ver-
tices for tie breaking. Unassigned blocks focus primarily on
maintaining access to empty vertices to facilitate overall sys-
tem mobility. The algorithm’s efficiency stems from its guar-
antee that each block is processed at most once per timestep.
When a block is called recursively to facilitate movements,
it is immediately decided an action, thus is marked as pro-
cessed.

Integration with LaCAM The BR-PIBT configuration
generator integrates seamlessly with the LaCAM framework.
For each high-level node expansion, LaCAM uses BR-PIBT
to generate a single successor configuration state. If explored
state are generated and low-level constraints are imposed,
LaCAM forces BR-PIBT to satisfy the low-level constraints
by first setting the next states in π′ as the constrained loca-
tions of constrained blocks, then calling BR-PIBT for deci-
sions on unconstrained blocks. The combination of LaCAM
and BR-PIBT , called BR-LaCAM, enables the rapid explo-
ration of the configuration space while still maintaining La-
CAM’s completeness guarantee.

Claim 1: BR-LaCAM is complete, which returns a solu-
tion for solvable Block Rearrangement Problems.

Proof. Following (Okumura 2023b), the search space is fi-
nite and the number of configuration states is |V ||I∪J |.
Since the low-level constraints enumerate all possible com-
binations of movements for all blocks, it generates all
possible configuration states that connects to a high-level
node’s configuration state. Consequently, all reachable con-
figuration states from the start configuration state are ex-
plored.



Parameter Setup

Grid size 4x10, 6x10, 8x10, 10x10, 20x20, 40x40, 80x80

Assigned
blocks
number

Minimum: 1
Maximum: 12.5% of grid vertices

Empty
vertex
number

Minimum: 1
Maximum: 25% of grid vertices

Goal type
Goal B: All boundary vertices
Goal R1: Random goals, 1× # of assigned blocks
Goal R2: Random goals, 2× # of assigned blocks

Random 10 cases for each parameter combination

Table 2: Experimental setup parameters. For Goal B, the
maximum assigned block number is limited to either 12.5%
of |V | or twice the grid height, whichever is smaller.

Anytime Improvement The other advantage of LaCAM
is its anytime search ability. After an initial solution is found,
it uses this initial solution cost as an upper bound and con-
tinues to explore the search space for a lower cost solution.

5 Results and Discussion
In this section, we evaluate the solution quality, computa-
tional time, and scalability of the algorithms proposed in
Sec. 4 using an extensive set of 13,860 test cases. We sys-
tematically vary grid size, number of assigned blocks, num-
ber of empty vertices, and goal location selection methods.
Table 2 lists the parameters used for generating these test
cases, with representative examples visualized in Figure 6.
Goal type B represents boundary vertex goals, while types
R1 and R2 denote randomly selected goals, with type R1 be-
ing more restrictive in selection. Obstacles are modeled as a
square region occupying 1/5 of the grid length, positioned in
the bottom right corner of the grid. The PDDL formulation
is solved using fast-downward1. All algorithms are evalu-
ated on a single machine with AMD EPYC 7R13 Processor.
The time limit for one test case is 10 seconds, in line with
the typical convergence time of the algorithms.

For each test case, success indicates finding a feasible
plan within the time limit. To compare solution quality
across algorithms, we establish a baseline for each test in-
stance using the algorithm that finds the lowest final com-
posite cost. Each algorithm’s final composite cost is divided
by the baseline to calculate cost ratios (resulting in ratios
always greater than 1). Makespan ratios are calculated in a
similar way.

Table 3 summarizes the success rate, composite cost ra-
tio, and makespan ratio of the proposed algorithms across
different grid configurations (13,860 test cases). The BR-
LaCAM achieves the highest success rate, followed by the
heuristic, priority, config, and PDDL algorithms. Only BR-
LaCAM and heuristic algorithms successfully generate solu-
tions for large instances. Overall, BR-LaCAM and heuristic
algorithms achieve the lowest composite cost and makespan

1Fast-downward: https://fast-downward.org

ratios, followed by priority, config, and PDDL approaches.
Note that, the BR-LaCAM algorithm exhibits a higher stan-
dard deviation in composite cost on grid sizes 20×20 to
80×80 and for goal type R1. This variability indicates that
for instances with goal vertices sparsely distributed and on
large maps, BR-PIBT’s myopic behavior may leads to sub-
stantially higher solution costs than its average performance.

As shown in Table 3, algorithm success rates decrease
with increasing grid size. Only the BR-LaCAM and heuris-
tic algorithms successfully solve large instances (grid size
≥ 20×20). It is important to note that the maximum number
of assigned blocks increases proportionally with grid size.
Notably, BR-LaCAM failures occur only when the grid size
or assigned block number exceeds computational capacity
within the 10-second time limit, confirming its completeness
as an algorithm - it fails only due to time constraints rather
than algorithmic limitations. Not reflected in the table, in-
creasing the number of empty vertices reduces search depth,
empirically improving success rates and reducing both com-
posite cost and makespan. Table 3 also demonstrates that
algorithms achieve higher success rates with goal types B
and R2. Goal type R1, due to its more restrictive selection
criteria, results in relatively lower success rates. Figure 7 vi-
sualizes the composite cost ratios across all 13,860 test in-
stances, with each instance represented by a single dot. Con-
sistent with the results in Table 3, failure rates increase with
grid size and number of assigned blocks. The Cost Ratios
among algorithms typically range between 1 and 10 relative
to the best performer.

Figure 8 illustrates the time required for each algorithm to
report its first solution. The BR-LaCAM and heuristic-based
algorithms find solutions within 1 millisecond for over 50%
of the test cases. BR-LaCAM’s initial solution time exceeds
1 second in fewer than 10% of cases.

6 Conclusion
This paper formally defines the Block Rearrangement Prob-
lem and establishes its relationship to sliding puzzles. We
develop five solution algorithms: configuration space search,
PDDL-based planning, priority-based search, BR-LaCAM,
and heuristic-based methods. Through extensive evaluation
across 13,860 test cases with varying grid sizes, assigned
block numbers, and goal configurations, we evaluate the
effectiveness of the proposed approaches and provide in-
sights into their relative strengths. While most algorithms
show degraded success rates with increasing grid size and
more restrictive goal choices, the BR-LaCAM and heuristic-
based approaches successfully solve large instances, achiev-
ing 99% and 93% success rates respectively with dense grids
from 4×10 to 80×80. Among the proposed methods, the
BR-LaCAM and heuristic approaches demonstrate superior
performance in both solution quality (composite cost and
makespan) and computational efficiency, finding solutions
within 1 millisecond for over 50% of test cases and within 1
second for over 90% of cases. These results establish a com-
prehensive baseline for solving Block Rearrangement Prob-
lems.

Based on our comprehensive analysis, future research
directions include exploring various problem variants in-



(a) 4×10 (b) 4×10 (c) 4×10 (d) 6×10, 6 assigned (e) 6×10, 5 assigned (f) 6×10, 5 assigned

(g) 10×10, 13 assigned,
3 empties

(h) 10×10, 1 assigned,
1 empty vertex

(i) 10×10, 13 assigned,
8 empties

(j) 20×20, 40 assigned,
10 empties

(k) 40×40,
160 assigned, 40 empties

(l) 80×80, 128 assigned,
160 empties

(m) 80×80, 128 assigned,
1600 empties

(n) 80×80, 800 assigned,
160 empties

(o) 80×80, 800 assigned,
1600 empties

Figure 6: Example test cases. Dark gray vertices indicate the goals for the assigned blocks. Black vertices indicate obstacles.

Figure 7: Composite Cost Ratio for each instance, grouped by number of assigned blocks (AB) and grid size (GS). The number
and dots in the no solution region shows how many instances are unsolved for each algorithm in each group.



Groups
BR-LaCAM Heuristic Priority Config PDDL

Succ.
Rate

Comp.
Cost

Make-
span

Succ.
Rate

Comp.
Cost

Make-
span

Succ.
Rate

Comp.
Cost

Make-
span

Succ.
Rate

Comp.
Cost

Make-
span

Succ.
Rate

Comp.
Cost

Make-
span

4×10 100 1.000.03 1.010.04 93 1.220.31 1.340.59 91 1.270.31 1.530.61 87 1.460.38 1.770.76 89 1.390.46 1.720.85

6×10 100 1.010.04 1.000.03 97 1.220.26 1.400.54 87 1.270.26 1.530.55 76 1.480.41 1.820.87 76 1.550.73 1.961.33

8×10 100 1.010.03 1.000.03 97 1.230.24 1.450.57 75 1.270.23 1.540.55 60 1.530.48 1.901.08 54 1.630.93 2.011.43

10×10 100 1.000.03 1.000.02 96 1.220.23 1.500.63 60 1.260.21 1.560.57 42 1.560.60 1.961.38 34 1.701.27 2.041.67

20×20 100 1.010.10 1.000.02 95 1.190.17 1.670.69 15 N/A N/A 7 N/A N/A 4 N/A N/A
40×40 99 1.040.51 1.010.15 91 1.110.12 1.560.55 8 N/A N/A 3 N/A N/A 0 N/A N/A
80×80 92 1.040.12 1.010.04 80 1.060.09 1.340.38 2 N/A N/A 0 N/A N/A 0 N/A N/A

Goal B 100 1.010.03 1.000.03 97 1.130.14 1.370.44 56 1.200.21 1.450.46 49 1.490.47 1.941.05 45 1.510.88 1.891.28

Goal R1 98 1.020.34 1.010.10 82 1.270.29 1.630.74 33 1.290.28 1.510.64 22 1.350.33 1.460.62 22 1.450.82 1.711.16

Goal R2 99 1.020.10 1.010.04 100 1.160.22 1.420.52 56 1.290.27 1.560.61 47 1.530.48 1.851.02 44 1.570.76 1.961.35

All 99 1.020.21 1.010.06 93 1.180.23 1.460.59 48 1.260.26 1.510.57 39 1.480.46 1.811.00 37 1.520.82 1.881.29

Table 3: Algorithm performance across different configurations grouped by grid sizes and goal types, including success rate,
mean composite cost ratio, and mean makespan ratio. The subscript values are standard deviations. Smaller ratios indicate better
performance. Bold values indicate the best performance across all algorithms. Ratio metrics are omitted for success rates below
20%. The algorithm abbreviations are as follows. BR-LaCAM: LaCAM with BR-PIBT , Heuristic: heuristic approach, Priority:
priority-based configuration space search, Config: configuration space search, PDDL: PDDL-based configuration space search.

Figure 8: Time to find the first solution.

cluding different terminal states (where assigned blocks be-
come empty vertices, obstacles, or unassigned blocks), ad-
ditional objective functions, constraints on simultaneous ac-
tions, and practical priority requirements. Given BR-LaCAM
approach’s superior performance in this work, improving its
solution quality and scalability through enhanced goal selec-
tion processes and informative action preference heuristics
emerges as a particularly promising direction.

Appendix: Admissible Heuristic for
Configuration Space Search

An admissible heuristic is formulated by assuming assigned
blocks move along least-blocking vertices and each block-
ing block can be cleared using only one move action. Using
the example state s in Figure 9, we demonstrate the heuris-
tic value calculation for two assigned blocks. We calculate a
lower bound cost for moving each assigned block to its goal
set. Block 1 requires: an initial move, clearing the block at
(3, 4) (minimum one move), a final move, and a complete ac-
tion. Therefore, the lower bound cost for block 1 is h(s, 1) =
cmove+cmove+cmove+ccomplete = 3cmove+ccomplete. Similarly,

the movement of block 2 to the goals requires two move ac-
tions and one complete action, yielding a lower bound cost
of h(s, 2) = cmove+cmove+ccomplete = 2cmove+ccomplete. Since
actions moving one assigned block can benefit the move-
ment of other assigned block, we estimate a joint cost lower
bound by averaging individual costs. Thus, for this exam-
ple: h(s) = (h(s, 1) + h(s, 2))/2 = [(3cmove + ccomplete) +
(2cmove + ccomplete)]/2 = 2.5cmove + ccomplete.

Let the lowest action cost to move the assigned blocks to
the goals be h∗(s).

Claim 2: h(s) is admissible: h(s) ≤ h∗(s).

Proof. Let the lowest cost to move each assigned block i ∈
I to their goal vertices be h∗(s, i). By definition, h(s, i) un-
derestimates the cost to move block i. Therefore, h(s, i) ≤
h∗(s, i) ≤ h∗(s). Therefore, h(s) = 1

|I|
∑

i∈I h(s, i) ≤
1
|I| |I|h

∗(s) = h∗(s).

Figure 9: Illustration of the formulated heuristic. The goal of
the assigned blocks is the boundary.



References
Agia, C.; Migimatsu, T.; Wu, J.; and Bohg, J. 2023. Stap:
Sequencing task-agnostic policies. In 2023 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
7951–7958. IEEE.
Cian, L.; Dreossi, T.; Dovier, A.; et al. 2022. Modeling and
solving the rush hour puzzle. In CEUR Workshop Proceed-
ings, volume 3204, 294–306. CEUR-WS.
Damani, M.; Luo, Z.; Wenzel, E.; and Sartoretti, G. 2021.
PRIMAL 2: Pathfinding via reinforcement and imitation
multi-agent learning-lifelong. IEEE Robotics and Automa-
tion Letters, 6(2): 2666–2673.
Davesa Sureda, C.; Espasa Arxer, J.; Miguel, I.; and Vil-
laret Auselle, M. 2024. Towards High-Level Modelling in
Automated Planning. arXiv e-prints, arXiv–2412.
Estivill-Castro, V.; and Ferrer-Mestres, J. 2013. Path-
finding in dynamic environments with PDDL-planners. In
2013 16th International Conference on Advanced Robotics
(ICAR), 1–7. IEEE.
Felner, A.; and Stern, R. 2026. Multi-Agent Path Finding
with Unassigned Agents (MAPFUA). In Proceedings of the
AAAI Conference on Artificial Intelligence.
Flake, G. W.; and Baum, E. B. 2002. Rush Hour is PSPACE-
complete, or “Why you should generously tip parking lot
attendants”. Theoretical Computer Science, 270(1-2): 895–
911.
Garrett, C. R.; Chitnis, R.; Holladay, R.; Kim, B.; Silver, T.;
Kaelbling, L. P.; and Lozano-Pérez, T. 2021. Integrated task
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