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ABSTRACT

The development of large datasets for various tasks has
driven the success of deep learning models but at the cost of
increased label noise, duplication, collection challenges, stor-
age capabilities, and training requirements. In this work, we
investigate whether all samples in large datasets contribute
equally to better model accuracy. We study statistical and
mathematical techniques to reduce redundancies in datasets
by directly optimizing data samples for the generalization ac-
curacy of deep learning models. Existing dataset optimization
approaches include analytic methods that remove unimpor-
tant samples and synthetic methods that generate new datasets
to maximize the generalization accuracy. We develop Prune
then distill, a combination of analytic and synthetic
dataset optimization algorithms, and demonstrate up to 15%
relative improvement in generalization accuracy over either
approach used independently on standard image and audio
classification tasks. Additionally, we demonstrate up to 38%
improvement in generalization accuracy of dataset pruning al-
gorithms by maintaining class balance while pruning.

Index Terms— Dataset optimization, Dataset pruning,
Dataset distillation, Deep learning

1. INTRODUCTION

Improvements in data collection pipelines have enabled the
creation of large datasets for various tasks and have been a
driving force for the success of deep learning models. How-
ever, operating on larger datasets costs additional storage and
computational resources. Given these extrinsic constraints,
it is important to understand whether all samples in large
datasets contribute equally to improvement in model accu-
racy, especially when the increase in dataset size is associated
with increased label noise and duplication. As a result, de-
veloping methods to reduce dataset size with minimal loss in
generalization accuracy is an active research problem.

Based on existing research, dataset optimization methods
can be categorized as either analytic or synthetic methods.
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Analytic methods focus on selecting important data sam-
ples from a large dataset. Examples include removing sam-
ples that are forgotten during training [1], instance selection
using herding [2], and dataset pruning by selecting data sam-
ples ranked using pruning metrics [3, 4].

In contrast, synthetic methods generate entirely new
datasets optimized for a given task. Inspired by Knowl-
edge Distillation [5] where information from a larger model
is condensed into a smaller one, Dataset Distillation [6] is a
technique to condense information from a large dataset into
a smaller dataset of representative samples. Following the
condensation process, a model trained on synthetic data was
shown to generalize to unseen test data.

In this work, we first prune a dataset by carefully selecting
a subset of samples representative of the original dataset, then
further improve the information content of the pruned dataset
with dataset distillation. We call this approach Prune then
distill.

In Section 2, we discuss existing approaches to dataset op-
timization. In Section 3, we detail current state-of-the-art an-
alytic and synthetic approaches and describe Prune then
distill, our novel algorithm. In Section 4 we show that
combining analytic and synthetic approaches yields better re-
sults than either one used independently. We also show that
for high compression factors, pruning evenly across classes
yields better results than uneven pruning, and that training
on a specific percentile of EL2N scores yields the best re-
sults. Additionally, while prior work focuses on smaller 8-
class datasets [7], we extend dataset distillation to 30 classes
in the speech classification task.

2. RELATED WORK

2.1. Analytic methods

Examples of analytic methods include coreset methods, active
learning, forgetting, and importance sampling. Coreset meth-
ods select data points to approximate a larger dataset in terms
of performance on a downstream task, namely the generaliza-
tion error of trained models [8, 9]. Active learning methods
reduce the number of training points to label by intelligently
selecting informative unlabeled samples [10, 11]. Forgetting
methods compute the importance of a sample using the num-



ber of times a label change occurs during training [1]. Impor-
tance sampling techniques rank data samples by computing
and thresholding a scalar signal that quantifies importance,
and prune datasets by retaining only the important samples
[12, 13, 4, 3].

2.2. Synthetic Methods

Synthetic methods generate datasets optimized for a given
task. Dataset distillation [6] creates a synthetic dataset of
lower cardinality from a larger dataset. Optimizing syn-
thetic data samples to reduce training loss over the original
dataset ensures the satisfactory performance of synthetic
data on downstream tasks. More recent work includes La-
bel Distillation [14], Differentiable Siamese Augmentation
[15], Distribution Matching [16], Gradient Matching [17],
Synthetic-Data Parametrization [7], and Trajectory Matching
[18].

3. METHOD

In this work, we show that combining analytic and synthetic
dataset optimization methods achieve better results than either
one used independently. In particular, we use dataset pruning
followed by distillation using trajectory matching.

Dataset pruning methods select the most important sam-
ples to train a dataset by computing a scalar signal represent-
ing the importance of each data sample to model accuracy
such as forgetting scores [1], norm of error vectors [4], proxy
models [12], and memorization estimates [13].

Trajectory matching for dataset distillation [18], on the
other hand, uses models trained on real data to distill addi-
tional knowledge into smaller, synthetic datasets. Minimiz-
ing the matching loss between trajectories of models trained
on real and synthetic data is used to ensure that both models
produce comparable results.

In Subsection 3.1 we discuss the EL2N score [4], a mech-
anism for pruning datasets. In Subsection 3.2 we discuss the
trajectory matching algorithm for dataset distillation [18]. In
Subsection 3.3 we detail Prune then distill.

3.1. Importance Sampling with Class Balance

The EL2N score [4] of a data sample is a scalar signal that
quantifies how difficult it is to classify that data sample given
a set of classifiers and determines its importance to model
accuracy. Samples are ranked according to their EL2N score,
and lowest scoring samples are removed from the dataset until
a required compression factor is attained. Empirically, it is
shown that removing these samples have the least impact on
resulting classification accuracy [4].

The EL2N score of a data sample (x, y) using the weights
of a model on the j-th iteration of training wj is defined as the

Algorithm 1 Prune then distill

Input: Dataset D, Experts T , K classes, N samples per class
Parameter: compression ∈ [0, 1]
Output: New dataset Dnew

1: % Dataset pruning
2: for t← T do
3: for (xi, yi) ∼ D do
4: Compute EL2N(xi, yi|t)
5: end for
6: end for
7: EL2N(xi, yi)← ET [EL2N(xi, yi|t)] ∀i = [1,KN ]
8: for k = 1 : K do
9: Select {(x, y)} ∼ D | y = k

10: Sort {(x, y)} by EL2N(xi, yi)
N
i=1

11: Dprune ← top compression factor of {(x, y)}
12: end for
13:
14: % Dataset Distillation
15: Dnew ← Dprune

16: for each distillation step do
17: Sample expert t randomly from T
18: Compute student trajectory θ on Dnew

19: Compute matching loss L(θ, t)
20: Update Dnew wrt L(θ, t)
21: end for
22: return Dnew

L2-norm of the difference between the predicted probability
p(wj , x) and the one-hot label y.

EL2N(x, y) = Ew||p(wj , x)− y||2 (1)

Consider a supervised classification problem consisting of
a training datasetD = {(xi, yi)}Ni=0, to be pruned. We train a
set of classifiers T to classify the entire training dataset before
pruning. We follow the same procedure as Paul et al. [4] with
one modification; we prune the dataset evenly across classes.
That is, we compute the EL2N score for all samples of each
class. Then, based on the required compression factor, we
select samples equally across classes to ensure class balance
in the pruned dataset.

3.2. Trajectory Matching

The trajectory matching algorithm [18] uses multiple pre-
trained expert trajectories to distill knowledge into a synthetic
dataset. The synthetic dataset is first initialized with noise or
random samples from the dataset. For each distillation step,
an expert trajectory is selected from the list of pretrained tra-
jectories. The student network is initialized with the weights
of the expert at iteration j (θ∗j ) and is updated J times to
reduce classification loss on the synthetic dataset. After the
updates, a matching loss, given in Equation 2, is computed
between the weights of the student after J iterations (θ̂j+J )



and the weights of the expert after M iterations (θ∗j+M )
(J ≤ M ). Minimizing the matching loss encourages the
weights of a model trained on synthetic data to be as close as
possible to one trained on real data.

L =
||θ̂j+J − θ∗j+M ||
||θ∗j − θ∗j+M ||

(2)

3.3. Prune then distill

As the name suggests, our method Prune then distill
combines dataset pruning and distillation. First, we train ex-
pert models to classify training data. We compute EL2N
scores for each training data sample given these expert mod-
els. We discard samples from each class with the lowest
EL2N scores based on the required compression factor to
obtain the pruned dataset while maintaining class balance.

Next, we use the pruned dataset as an initialization for the
trajectory matching algorithm in place of random samples /
Gaussian noise used by Cazenavette et al. [18]. We update
the pruned dataset to minimize the matching loss described in
Equation 2. Algorithm 1 details Prune then distill.

4. EXPERIMENTS

We study Prune then distill on CIFAR-10, CIFAR-
100 [19], Tiny ImageNet [20], and Google Speech Com-
mands [21]. Table 1 compares different approaches on the
four datasets. We run experiments for 1000 distillation
steps using 100 expert models trained separately for each
dataset. Prune then distill obtains improvements
on CIFAR-10, Speech Commands, and Tiny ImageNet for
various compression factors. With larger synthetic datasets,
the generalization accuracy of a model trained on this dataset
increases since more information is available. Our approach
does not yield noticeably better results on the CIFAR-100
dataset. We hypothesize that this is because 10% compres-
sion with 100 classes may be too aggressive for this dataset.
While Tiny ImageNet has the same ratio of images per class
as CIFAR-100, the images are of higher resolution, and a
depth-4 ConvNet is used as opposed to a depth-3 ConvNet
for the CIFAR experiments.

4.1. Impact of Initialization

The choice of initialization plays an important role in the
dataset distillation algorithm. Initializing the synthetic dataset
with random noise results in a 24% decrease in generalization
accuracy when compared with initializing from random sam-
ples in the dataset, as seen from the results in Table 2.

4.2. Impact of Class Balance

While the original version of the dataset pruning algorithm
removes samples based on their EL2N score, it disregards the

fact that some classes may be more challenging than others to
classify. We hypothesize that maintaining class balance while
pruning datasets helps alleviate this issue. Table 3 compares
the dataset pruning algorithm with and without class balance
for 10% compression across datasets. Results from Table 3
indicate that pruning with class balance yields better results
on CIFAR-100 and Tiny ImageNet, and near-identical perfor-
mance on CIFAR-10.

At lower compression ratios, pruning based on only the
EL2N score has the unintended consequence of modifying the
underlying distribution of data samples across various classes,
hurting the ability of models trained on pruned datasets to
generalize to unseen test data. Table 4 presents the KL-
divergence between the distribution of data samples across
various classes before and after pruning. Table 4 shows that
pruning based on EL2N score without class balance signifi-
cantly changes the distribution of data samples across classes
on CIFAR-100 and Tiny ImageNet (larger KL-divergences)
and not as much for CIFAR-10 (smaller KL-divergence). In
comparison to CIFAR-100 (100 classes) and Tiny ImageNet
(200 classes), CIFAR-10 has far fewer classes (10 classes),
resulting in more samples per class in the pruned dataset,
improving the generalizability of trained models.

4.3. Cross-Architecture Portability

In line with previous dataset distillation algorithms, Prune
then distill performs well on architectures other than
the one used as expert models in the trajectory matching al-
gorithm. Table 5 details the generalization accuracy of dif-
ferent model architectures trained on the pruned and distilled
Speech Commands dataset. A ConvNet three times as large
as the original expert architecture achieves better performance
since there are more model parameters. The performance of
an LSTM is comparable to the expert ConvNet with a sim-
ilar number of parameters. The performance of an MLP is
worse, which we attribute to the simplicity of the model’s ar-
chitecture. Still, the MLP performs better than random chance
(3%), implying that the pruned and distilled dataset contains
useful information from which other architectures can learn.

4.4. Impact of Sample EL2N Score

In addition to maintaining class balance during pruning, it is
necessary to ensure that the pruned dataset is not corrupted by
label noise. For aggressive compression factors (10%), many
of the samples with the highest EL2N score may be ones be-
longing to incorrect classes. Utilizing these samples has the
unintended consequence of hurting the performance of mod-
els trained on pruned datasets. To avoid this issue, we choose
samples in the 70th - 80th percentile of EL2N scores from
each class while pruning. Figure 1 presents the generaliza-
tion accuracy of the same model trained on different subsets
of CIFAR-100, where each subset is 10% of the size of the
original dataset. Subsets are formed based on the EL2N score



Dataset Compression (%) Random Selection Prune only Distill Only Prune-then-distill Full Dataset
CIFAR10 0.02 14.4 ± 2.0 19.35 ± 0.3 44.5 ± 0.4 44.7 ± 1.5

84.8 ±0.1CIFAR10 0.2 26.0 ± 1.2 39.8 ± 0.4 62.7 ± 0.2 63.1 ± 0.7
CIFAR10 1 43.4 ± 1.0 57.3 ± 0.3 68.5 ± 0.2 69.7 ± 0.4
CIFAR10 10 69.6 ± 0.2 73.73 ± 0.2 69.8 ± 0.4 76.11 ± 0.3

Speech Commands 10 60.8 ± 1.45 69.80 ± 0.9 67.96 ± 1.4 71.23 ± 0.9 85.3 ± 0.1Speech Commands 20 75.43 ± 1.3 76.57 ± 0.7 76.33 ± 0.8 77.21 ± 0.5
CIFAR100 0.2 4.2 ± 0.3 3.48 ± 0.2 23.0 ± 0.3 23.0 ± 0.2

56.2 ± 0.3CIFAR100 2 14.6 ± 0.5 23.59 ± 0.2 35.8 ± 0.4 36.2 ± 0.5
CIFAR100 10 30 ± 0.4 45.27 ± 0.2 45.4 ± 0.2 45.5 ± 0.5

Tiny ImageNet 2 6.226 ± 0.2 12.4 ± 0.2 8.48 ± 0.775 14.32 ± 0.4 37.6 ± 0.4Tiny ImageNet 10 17.0 ± 0.2 26.8 ± 0.3 23.56 ± 0.2 27.66 ± 0.3

Table 1. Comparison of generalization accuracy of approaches on various datasets (in %)

Dataset Noise Init Sample Init
CIFAR-10 45.02 69.8

CIFAR-100 21.13 45.40
Speech Commands 49.12 67.96

Table 2. Random sample initialization performs better than
random noise initialization for 10 % compression.

Dataset (# classes) W/o Class Balance Class Balance
CIFAR-10 (10) 73.96 73.73

CIFAR-100 (100) 36.2 45.27
Tiny ImageNet (200) 13.14 26.8

Table 3. Comparison of Dataset Pruning approaches, 10%
compression. As the number of classes increase, pruning
while maintaining class balance is better.

of the samples. The bin on the left represents 10% of data
samples with the largest EL2N scores, while the bin on the
right represents those with the smallest EL2N scores. From
Figure 1, it is evident that training on 70th - 80th percentile
of EL2N scores yields the best results. Training on samples
with scores that are too high or too low is suboptimal. The
highest scoring samples contain label noise, while the lowest
scoring samples do not contain enough information for gen-
eralization.

5. CONCLUSION

In this work, we introduced Prune then distill, a
dataset optimization method combining dataset pruning using
EL2N scores and dataset distillation by trajectory matching.
We showed that for a given compression factor, combining
both approaches yields better generalization accuracy than
either one used independently on CIFAR-10, Tiny-ImageNet,
and Speech Commands. Additionally, we showed that prun-
ing while maintaining class balance outperforms pruning
without class imbalance for low compression factors.

Dataset KL divergence
CIFAR-10 0.000856

CIFAR-100 0.008066
Tiny ImageNet 0.043840

Table 4. KL-divergence between distribution of data samples
with and without class balance for 10% pruning.

Evaluation Model Number of Parameters Accuracy
Expert ConvNet 36k 71.23 ± 0.9

ConvNet 100k 77.72 ± 0.4
LSTM 34k 73.03 ± 0.2
MLP 33k 51.12 ± 0.06

Table 5. Prune then distill generalization accuracy
across models on Speech Commands for 10% compression.

Fig. 1. Generalization accuracy using pruned CIFAR100
datasets selected using different fractions of EL2N scores
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