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Abstract. Many security- and performance-critical domains, such as
cryptography, rely on low-level verification to minimize the trusted com-
puting surface and allow code to be written directly in assembly. How-
ever, verifying assembly code against a realistic machine model is a chal-
lenging task. Furthermore, certain security properties—such as constant- AQ1

time behavior—require relational reasoning that goes beyond traditional
correctness by linking multiple execution traces within a single specifica-
tion. Yet, relational verification has been extensively explored at a higher
level of abstraction. In this work, we introduce a Hoare-style logic that
provides low-level, expressive relational verification. We demonstrate our
approach on the s2n-bignum library, proving both constant-time disci-
pline and equivalence between optimized and verification-friendly rou-
tines. Formalized in HOL Light, our results confirm the real-world appli-
cability of relational verification in large assembly codebases.

Keywords: Relational Verification · Machine Code · Mechanized
Proofs

1 Introduction

Verification of low-level program properties is paramount for security-critical
systems. This applies to microkernels [25], where processors and other hardware
may have effects that are not captured by high-level abstractions, as well as
cryptographic libraries [6,13], which aim to minimize the trusted computing
base and build-toolchain dependencies. Additionally, performance-critical code
is often written directly in assembly to maximize performance.

Many challenges arise when verifying low-level code, as programs execute
on machines with finite memory, bounded integers, unstructured control flow,
and memory space that is shared between data and code. In contrast, high-level
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verification uses abstractions that simplify reasoning and hide hardware-specific
details. For instance, low-level verification must consider that primitives, when
storing data, need to have free memory space. Furthermore, the verification
process becomes much harder when dealing with relational properties [16]. Rela-
tional properties link multiple execution traces together within a single property
specification. They are necessary for critical applications, such as proving that a
cryptographic routine runs in constant time with respect to secret data, or that
two versions of a program are functionally equivalent.

In this work, we target the s2n-bignum library,1 a cryptographic library
written in assembly for arm and x86 architectures. It includes mathemati-
cal operations on large integers, such as modular multiplication, as well as
more cryptographic-oriented operations, such as elliptic curve operations. As
part of the AWS’s TLS/SSL implementation, these arithmetic routines are both
performance- and security-critical. The library features both highly optimized
routines that are hard to verify as well as verification-friendly variants that
are easier to verify but slower in practice. By verifying the latter and proving
that they are functionally equivalent to the former, we can ensure that the high-
performance versions do not compromise correctness. We also aim to ensure that
the high-performance routines execute in constant time, a property necessary to
prevent timing side-channel attacks, which could compromise sensitive data.

A number of works previously studied Hoare-style logics for realistically mod-
elled machine code [4,14,29,37,42,48]. Hoare-style reasoning has also been per-
vasively studied for relational properties [9,12,45]. However, relational verifica-
tion for low-level code remains underexplored, especially for machine code with
realistic features such as finite memory and unstructured control flow. Ideally,
a binary verification toolkit would use a robust Hoare-style logic that supports
realistic machine code, can express relational properties, provides sound and
complete proof rules, and retains key properties that users naturally expect.
These include, for instance, commutativity, as well as the ability to weaken and
strengthen pre- and postconditions and to unify contracts across different con-
texts. Such natural properties enable modular reasoning, support multiple proof
strategies, and make the framework practical for real-world applications. To the
best of our knowledge, no existing work has presented a relational Hoare logic
for realistically modelled machine code that satisfies all these properties.

In this paper, we fill that gap by introducing a novel Hoare-style logic for
low-level, relational verification. Our framework, fully formalized in the HOL
Light theorem prover [18,19], offers proof rules designed to meet users’ natural
expectations. We demonstrate our approach via two major case studies: in the
first, we show how our framework can be used to verify constant-time behavior
of various routines; in the second, we show it can be used to prove the functional
equivalence of two different implementations of the same routine (e.g., one opti-
mized for speed and the other optimized for verifiability). These case studies are
conducted on the s2n-bignum cryptographic library. Results show that our logic
scales to large assembly programs and yields practical value.

1 https://github.com/awslabs/s2n-bignum.
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While our primary application is the s2n-bignum library, the generality of
our relational Hoare logic extends beyond cryptographic code. It supports low-
level features including indirect branches and self-modifying code, even though
cryptographic libraries such as s2n-bignum may not employ these features.

We summarize our contributions as follows:

i) A novel relational Hoare logic tailored to realistically modelled machine code,
formalized in HOL Light.

ii) A first case study on constant-time behavior of cryptographic routines in the
s2n-bignum library, including the copy and modular inversion routines.

iii) A second case study involving equivalence proofs between optimized and
verification-friendly implementations of s2n-bignum routines.

2 Related Work

Hoare-Style Reasoning for Realistically Modelled Machine Code. Verifying real-
istically modelled machine code is challenging due to unstructured control flow,
which traditional Hoare logics [20] struggle to handle. While Affeldt [2] uses
Hoare logic to verify low-level arithmetic routines, their work is limited to assem-
bly fragments with structured control flow. Several approaches address unstruc-
tured control flow, such as the inductive assertion method [39, Section 2] used by
Barthe et al. [7] and Lehner and Muller [28] to generate verification conditions,
and the program logic by Tan et al. [47] based on continuation-passing style rea-
soning [8]. However, these methods often fail to specify pre- and postconditions
with shared continuation labels.

Other notable efforts include a logic for total correctness of communicat-
ing unstructured programs [4,21,22], formalized in Isabelle/HOL, and one for
reasoning about MIPS assembly in Coq [30]. However, these logics are compo-
sitional only for nonoverlapping fragments. Full compositionality is critical for
modular reasoning, which, in turn, is needed for scalability.

Wang [48] proposes a logic for total correctness of unstructured programs
with multi-exit postconditions, but it does not guarantee postconditions upon
first encounter. Unstructured programs may, in fact, go through the last instruc-
tion, jump back, and then meet the postcondition later. While this might seem
misleading, we argue that functional specifications are generally confined to func-
tion boundaries, where the final instruction is a return statement. This ensures
the program cannot continue execution and revisit the postcondition later, effec-
tively solving the issue of first-met postconditions.

Myreen and Gordon [38] introduce a logic for unstructured code applied in
the verified CakeML compiler [27], leveraging decompilation into logic [33–37].
Despite its major impact in verifying seL4 compilation [46] and realistic exe-
cutables [47], it lacks a conjunction rule, a property that is naturally expected
from a Hoare-style logic in order to unify contracts over different postcondi-
tions. The lack of a conjunction rule significantly increases the proof burden.
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✞ ☎
0 mov x0 ,xzr
1 loop:
2 add x0 ,x0 ,#1
3 cmp x0 ,#3
4 bne loop✝ ✆

For instance, this assembly program increments x0 by 1
until it reaches 3, then halts. Let P = (x0 = 1), Q = (x0 =
2), and Q′ = (x0 = 3). The program satisfies Q and Q′

separately, on line 3, after two and three iterations, respec-
tively, but Q and Q′ cannot possibly hold simultaneously.
In Sect. 5, we show how to handle such cases.

Ray et al. [43] address conjunction rules and first-met postconditions by
tracking execution steps, while Lundberg et al. [29] extend this to handle multi-
exit locations, ensuring postconditions hold at the first encounter. However, their
approaches assume deterministic semantics, incompatible with architectures like
x86. Jensen et al. [23] addresses this gap by using separation logic [40,44] but
only for a subset of x86 code. Furthermore, EverCrypt [42] verifies cryptographic
primitives using a Hoare-style logic through C and assembly code interoperabil-
ity, but it does not support arm architecture. Similar to our embedding of rela-
tional to unary Hoare triples, exploiting the event list, EverCrypt is able to prove
constant-time. Fiat-Crypto [17] generates verified cryptographic code from high-
level specifications with applications to big-number arithmetic, in scope similar
to the s2n-bignum library. All these approaches lack a robust foundation for
generic relational properties—not only the ones reducible to unary properties.

Relational Hoare Logics. Relational Hoare logics [39] extend unary Hoare triples
to reason about multiple execution traces. Benton [9] gives a relational Hoare
logic for two execution traces, later generalized by Blatter et al. [12] to any
number of traces. While Benton also covers relational properties of low-level
unstructured code [8], their logic relies on an idealized computational model.
We propose a generic framework for manual proof of relational properties.

In credible compilation, Rinard [45] developed relational logics for pointer
allocation, and Benton [10] proposes a sound-but-incomplete fully automatic
tool for equivalence preservation of compiled programs with minor differences.
They verify HHVM bytecode, which is not a high-level language but not as low
as assembly; for instance, they do not handle physical registers. Instead, our
approach sacrifices automation, gaining both soundness and completeness.

Barthe et al. [5] propose product program constructions for equivalence rea-
soning, later extended [3,11] to support equivalence across multiple programs.
Kang et al. [24] describe a relational logic for LLVM code which lacks support for
indirect branches and self-modifying code. Pit-Claudel et al. [41] further extend
relational verification to low-level stack machines. Our logic handles relational
properties but does not trade off any low level features of assembly code.

3 Running Example

We use the program compare, shown in Fig. 1 (left), as a running example for
the rest of the paper. It compares byte-by-byte the contents of a key buffer k
and a data buffer x of length n. It takes as input the buffer length n and the
memory addresses of the buffers k and x, provided via the registers n, k, and
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Fig. 1. Two programs to perform byte-by-byte comparison of buffers. The program
compare (left) is not constant-time, while the program compare-constant (right) is.

x, respectively. Temporary values are stored in the registers kn, xn, diff, and
temp, while the result is stored in res. The private data is the content of the
key buffer. The program compare iterates backwards, comparing corresponding
elements from both buffers. If a mismatch is detected, the program jumps to the
label neq and sets res to 0. Otherwise, if all elements match, it reaches the label
eq and sets res to 1. This behavior results in variable execution time depending
on the buffer contents. An attacker can exploit this timing variation to deduce
the position of mismatches and reconstruct the secret buffer k in linear time.

To address this issue, program cst-compare in Fig. 1 (right) implements
a constant-time comparison. It always iterates over the entire buffer length,
regardless of mismatches, accumulating possible differences in diff. The pro-
gram’s execution time is constant for any buffer content, ensuring no timing
leaks and preventing attackers from inferring secret information. Furthermore,
the two programs are functionally equivalent.

4 Unary Hoare Logic L1

This section provides background on an unary Hoare logic used in the verification
framework described in [29,38]. We refer to this logic as L1. The definitions and
theorems of L1 have been fully mechanized in HOL Light by previous researchers.

States. Let Σ denote a set of machine states, represented as the set of functions
mapping observable resources L (e.g., memory, registers, program counter) to
their values. For example, in the arm architecture, the resources Larm include
a 64-bit program counter pc, 32 general-purpose registers regsi, flags flagsk,
and memory memoryh, indexed accordingly by i, k, and h. Similarly, the x86
architecture has resources like an instruction pointer (rip) and extended flags.
To generalize across different architectures, the label instr refers to the address
of the next instruction, where instr = pc for arm and instr = rip for x86.
We use s(l) for the value of resource l ∈ L in the state s ∈ Σ and s[l "→ v] for
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the updated state. Resource values depend on the architecture; e.g., for arm,
s(pc) ∈ int64, s(regsi) ∈ int64, and s(memoryh) ∈ byte, where byte def= {0, 1}8

and intn def= {0, 1}n.

Properties. A property P is a subset of machine states Σ. A state s satisfies the
property P ⊆ Σ if s ∈ P . The execution of a single instruction is modelled as the
small-step operational semantics τ ⊆ Σ × Σ, where s

τ−→ s′ describes the fetch-
decode-execute cycle, updating state s to s′ and advancing instr. The compo-
sition of two relations τ1, τ2 is defined as τ1 ◦ τ2

def= {(s, s′′) | ∃s′. s
τ1−→ s′ τ2−→ s′′}.

The n-th composition of τ is τn. The decoding function decodeτ (s, i) maps
bytes in the memory at address i either to an instruction or to ⊥ if undecodable.
arm instructions have a length of 4 bytes and are 4-byte aligned. x86 instruc-
tions have variable lengths. We write lengthτ (C) for the number of bytes that
the program C occupies in the memory without padding for alignment. Exe-
cution halts when the first undecodable instruction is encountered, denoted by
endτ (s, i) def⇐⇒ s(instr) = i ∧ decodeτ (s, i) = ⊥.

We use alignτ (s, i0, C) in this paper to denote that the program C is stored
in memory starting from the address i0 where s(instr) = i0 and i0 satisfies
the alignment constraint of a program if the architecture is arm. The predicate
alignτ (s, i0, C) may appear as a conjunctive clause in P to describe the program
of interest. The notation prog(P ) refers to the program C constrained by P .

The eventually Property. Assume that a machine state s ∈ Σ satisfies a pre-
condition. A postcondition Q ⊆ Σ must eventually hold after a finite number
of steps from s. To represent such s, eventuallyτ (Q) defines the set of states
from which Q eventually holds along every possible path through τ .

Definition 1 (Eventually). Given an operational semantics τ ⊆ Σ ×Σ and a
property Q ⊆ Σ, the property eventuallyτ (Q) ⊆ Σ is defined inductively as:

s ∈ Q

s ∈ eventuallyτ (Q)
∃s′. s

τ−→ s′ ∀s′. s
τ−→ s′ =⇒ s′ ∈ eventuallyτ (Q)

s ∈ eventuallyτ (Q)

The second inference rule expands eventually2 if every next state s′ is in
eventuallyτ (Q). This notion of eventually is essential for reasoning about non-
deterministic operational semantics, such as in x86, where certain instructions
exhibit nondeterministic behavior. For instance, the mul instruction3 nondeter-
ministically sets the SF flag to either 0 or 1. A simplified small-step semantics
for mul is as follows:

s(instr) = i decodeτx86(s, i) = mul r r ∈ int16 s(r) = x sf ∈ {0, 1}
s

τx86−−−→ s [EAX "→ s(AX) · x, SF "→ sf, instr "→ i + lengthτ (mul r)]
mul

2 We omit the τ symbol when the operational semantics is clear from the context.
3 https://www.felixcloutier.com/x86/mul#flags-affected.
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Example 1. Consider a program C consisting of the instructions mul ax, sets dl,
and imul edx, eax. The program starts at instruction register i0, where AX (the
least significant 16 bits of EAX) is multiplied by itself, setting SF to 0 or 1. In the
second instruction, the least significant byte of EDX, referred to as DL, is set to SF.
After then, the values of EAX and EDX are multiplied, and the truncated result up
to 32 bits is stored in EDX. The program terminates at i0 +9 because each of the
x86 instructions is 3 bytes, and EDX is equal to either 0 or x2. The postcondition
can be expressed as:

{
s′
∣∣ endτx86(s′, i0 + 9) ∧ (s′(EDX) = x2 ∨ s′(EDX) = 0)

}
. It

holds under a precondition requiring AX to initially be equal to x and EDX to 0.

Unary Hoare Triple. Reasoning about machine code differs from reasoning about
high-level languages in several ways. First, the machine code is not represented
as a syntactic program but instead as a set of instructions in the memory space.
Second, a machine code may modify anything during its execution, including
itself and callee-save registers. To denote unwanted modifications after the pro-
gram execution, a frame condition F ⊆ Σ × Σ bounds allowed changes of state
components between the input and output states. We explain the formal defini-
tion of the predicate ensures which is the Hoare triple in L1. The notation used
in this paper follows the convention you may find in the s2n-bignum library.

Definition 2 (Ensures). Given an operational semantics τ ⊆ Σ × Σ, a pre-
condition P ⊆ Σ, a postcondition Q ⊆ Σ, and a frame condition F ⊆ Σ × Σ,
we define the predicate ensuresτ (P,Q, F ) as follows:

ensuresτ (P,Q, F ) def⇐⇒
∀s. s ∈ P =⇒ s ∈ eventuallyτ ({s′ | s′ ∈ Q ∧ (s, s′) ∈ F})

Example 2. Consider the program C from Example 1, starting from the precon-
dition {s | alignτx86(s, i0, C) ∧ s(AX) = x ∧ s(EDX) = 0}, ensuring that the mem-
ory is aligned with C and AX is equal to x. By application of the operational
semantics, we eventually satisfy the postcondition where C terminates with EDX
equal to 0 or x2.

During execution, C may modify EAX, EDX, and the sign flag SF. We denote
by mayChange : ℘(L) → ℘(Σ × Σ) the resources that the program may mod-
ify. Formally, mayChange(L) def= {(s, s′) | ∀l ∈ L. l /∈ L =⇒ s(l) = s′(l)}. Thus,
the frame condition can be written as mayChange({instr, EAX, EDX, SF}). The
correctness of C is captured by:

ensuresτx86




{s | alignτx86(s, i0, C) ∧ s(AX) = x ∧ s(EDX) = 0} ,{
s | endτx86(s, i0 + 12) ∧

(
s(EDX) = x2 ∨ s(EDX) = 0

)}
,

mayChange({instr, EAX, EDX, SF})





Recall that the frame rule in separation logic [40,44] states that if {P} C {Q}
holds, then for a disjoint memory region R, {P ∗ R} C {Q ∗ R} also holds. Sim-
ilarly, in our logic, if R is invariant under mayChange(L), i.e., ∀s, s′. (s, s′) ∈
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mayChange(L) =⇒ (s ∈ R ⇐⇒ s′ ∈ R) then ensures(P,Q,mayChange(L))
implies ensures(P ∩ R,Q ∩ R,mayChange(L)). Therefore, L1 supports modu-
lar verification while preserving the simplicity of first-order predicates, enabling
efficient proof automation.

The logic L1 is equipped with the usual derivation rules for reasoning about
the program execution [32, Appendix A]. The logic core and tactics are imple-
mented in 10k lines of HOL Light [18]. It is currently used to verify functional
safety properties of the s2n-bignum library, comprising 615 arithmetic routines
written in arm and x86 assembly languages for P-256/384/521, x25519/ed25519
and RSA. A total of 1013 functional properties have been verified, amounting
to 860k lines of proofs.

5 Program Logic L2 for Relational Verification

In this section, we first introduce a stronger variant of the eventually predicate.
Then, we present the relational logic L2 as a natural extension of L1. We show
how to prove a unary Hoare triple from a relational one and vice versa. This last
step is essential in demonstrating the robustness of our logic and allows proofs
to transition between L1 and L2. We highlight the main extensions that allow
us to prove relational properties and leave a discussion about the details of the
challenges in Appendix B [32].

5.1 Unary Hoare Triples with Number of Steps

Building on [43], we propose a stronger eventually operator that explicitly
specifies the number of steps required to reach a given postcondition.

Definition 3 (Stronger Eventually). Given an operational semantics τ ⊆
Σ × Σ and a number of steps n ∈ N, for any postcondition Q ⊆ Σ, we define:

eventuallynτ
n(Q) def=

{
s ∈ Σ

∣∣∣∣∣
∀s′. s

τn

−−→ s′ =⇒ s′ ∈ Q ∧
∀s′, l ∈ N. l < n ∧ s

τ l

−→ s′ =⇒ ∃s′′. s′ τ−→ s′′

}

That is, it defines the set of states such that for all states reachable in n steps,
the postcondition Q must hold, and for all states reachable in less than n steps,
there must exist a successor state.

There are two merits in specifying the number of steps n. First, it makes
the conjunction rule sound. In low-level languages, a program execution that
failed to satisfy the postcondition at instr may continue as long as it encoun-
ters decodable instructions, and then branch back prior to instr and eventually
satisfy the postcondition. Therefore, writing multiple postconditions at instr
that hold at different steps but not together would break the conjunction rule
as shown in Sect. 2. Explicitly stating the exact number of steps to arrive at
the postcondition as an additional constraint resolves such problem. Second, it
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retains soundness of the commutativity and composition of nested eventuallyn
operators, which are similarly important for proving natural properties of rela-
tional Hoare triples. When a low-level program exhibits nondeterministic behav-
ior, each trace may meet the postcondition after different numbers of steps.4 The
definition of eventuallyn is stronger than eventually, cf. Definition 1.

Lemma 1. ∀Q ⊆ Σ, n ∈ N. eventuallynn(Q) ⊆ eventually(Q)
The stronger eventually operator supports the following properties:

Conjunction. As we require postconditions to hold after exactly n steps, we
can unify contracts stating different postconditions on the final states.

s ∈ eventuallynn(Q) s ∈ eventuallynn(Q′)
s ∈ eventuallynn(Q ∩ Q′)

conj

Commutativity. Nested eventually operators commute, implying that the order
of the two programs specified by the relational property will not matter.
Whenever Q× ⊆ Σ × Σ is eventually satisfied in n0 and n1 steps, for the
first and second components of Q×, the inverse {(s1, s0) | (s0, s1) ∈ Q×} is
satisfied in n1 and n0 steps, respectively.

s0 ∈ eventuallynn0

({
s′
0

∣∣∣ s1 ∈ eventuallynn1

(
Q̇×

π0=s′
0

)})

s1 ∈ eventuallynn1

({
s′
1

∣∣∣ s0 ∈ eventuallynn0

(
Q̇×

π1=s′
1

)}) comm

Here, Q̇×
πi=sx

⊆ Σ contains all states that satisfy Q together with sx in the i-
th component, i.e., Q̇×

πi=sx

def= {π1−i(s, s′) | πi(s, s′) = sx ∧ (s, s′) ∈ Q×}. The
projection πi retrieves the i-th component of a pair of states (zero indexed).
Projections are lifted to sets of states by πi(Q×) def= {πi(s, s′) | (s, s′) ∈ Q×}.

Composition. Two fragments reaching Q× and R× in n0, n1 and m0, m1 steps,
respectively, can be composed to reach R× in n0 + m0 and n1 + m1 steps.

s0 ∈ eventuallynn0

({
s
∣∣∣ s1 ∈ eventuallynn1

(
Q̇×

π0=s

)})

∀s′
0, s

′
1.(s

′
0, s

′
1) ∈ Q =⇒ s′

1 ∈ eventuallynm0

({
s
∣∣∣s′

0 ∈ eventuallynm1

(
Ṙ×

π0=s

)})

s0 ∈ eventuallynn0+m0

({
s
∣∣∣ s1 ∈ eventuallynn1+m1

(
Ṙ×

π0=s

)}) comp

With the three properties of eventuallyn (cf. conj, comm, and comp),
we can define a unary Hoare triple that maintains the properties that users
would naturally expect from a Hoare logic. To do so, we employ a step function
fn : Σ → N to make the number of steps dependent on a given state.

4 https://github.com/awslabs/s2n-bignum/blob/c747b1b66801e3975a8da502e18962838d3be945/
common/relational2.ml#L86-L243.
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https://github.com/awslabs/s2n-bignum/blob/c747b1b66801e3975a8da502e18962838d3be945/common/relational2.ml#L86-L243
https://github.com/awslabs/s2n-bignum/blob/c747b1b66801e3975a8da502e18962838d3be945/common/relational2.ml#L86-L243
https://github.com/awslabs/s2n-bignum/blob/c747b1b66801e3975a8da502e18962838d3be945/common/relational2.ml#L86-L243
https://github.com/awslabs/s2n-bignum/blob/c747b1b66801e3975a8da502e18962838d3be945/common/relational2.ml#L86-L243
https://github.com/awslabs/s2n-bignum/blob/c747b1b66801e3975a8da502e18962838d3be945/common/relational2.ml#L86-L243
https://github.com/awslabs/s2n-bignum/blob/c747b1b66801e3975a8da502e18962838d3be945/common/relational2.ml#L86-L243
https://github.com/awslabs/s2n-bignum/blob/c747b1b66801e3975a8da502e18962838d3be945/common/relational2.ml#L86-L243
https://github.com/awslabs/s2n-bignum/blob/c747b1b66801e3975a8da502e18962838d3be945/common/relational2.ml#L86-L243
https://github.com/awslabs/s2n-bignum/blob/c747b1b66801e3975a8da502e18962838d3be945/common/relational2.ml#L86-L243
https://github.com/awslabs/s2n-bignum/blob/c747b1b66801e3975a8da502e18962838d3be945/common/relational2.ml#L86-L243
https://github.com/awslabs/s2n-bignum/blob/c747b1b66801e3975a8da502e18962838d3be945/common/relational2.ml#L86-L243
https://github.com/awslabs/s2n-bignum/blob/c747b1b66801e3975a8da502e18962838d3be945/common/relational2.ml#L86-L243
https://github.com/awslabs/s2n-bignum/blob/c747b1b66801e3975a8da502e18962838d3be945/common/relational2.ml#L86-L243
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Definition 4 (Stronger Ensures). Given an operational semantics τ ⊆ Σ ×
Σ, a precondition P ⊆ Σ, a postcondition Q ⊆ Σ, a frame condition F ⊆ Σ×Σ,
and a step function fn : Σ → N, a unary Hoare triple is a statement of the form
ensuresnfn(P,Q, F ), where:

ensuresnfn(P,Q, F ) def⇐⇒
∀s. s ∈ P =⇒ s ∈ eventuallynτ

fn(s)

({
s′ ∣∣ s′ ∈ Q ∧ (s, s′) ∈ F

})

Whenever precondition P holds for state s, postcondition Q holds for any
state s′ that is related by fn(s) steps of the execution of the program prog(P ),
and prog(P ) modifies only the memory locations specified by the frame condition
F .

As a consequence of Lemma 1, the unary Hoare triple ensuresnfn(P,Q, F )
is stronger than ensures, cf. Definition 2.
Theorem 1. ∀P,Q, F, fn. ensuresnfn(P,Q, F ) =⇒ ensures(P,Q, F )

The other direction of the implication is not always true; in fact, it holds only
for deterministic programs. The reason is that the program may branch based on
a nondeterministic choice, and the postcondition may hold in a different number
of steps than the one specified in the Hoare triple.
Theorem 2. For any operational semantics τ , precondition P , postcondition Q,
frame condition F , if τ is deterministic, then:

ensuresτ (P,Q, F ) =⇒ ∃fn. ensuresnτ
fn(P,Q, F )

5.2 Relational Hoare Triples
We now define the relational Hoare triple ensures2fn0,fn1

(P×, Q×, F×) that
allows us to reason about the behavior of two programs. Whenever the pre-
condition P× ⊆ Σ × Σ holds for a pair of states (s0, s1), the postcondition
Q× ⊆ Σ × Σ should eventually hold for any pair of states (s′

0, s
′
1) that are

related by respectively fn0 and fn1 steps of the execution of the two programs
C0 and C1. As for the logic L1, the two programs are not explicitly given but
instead are constrained in the memory space by P , i.e., C0 = prog(π0(P )) and
C1 = prog(π1(P )). The frame condition F× ⊆ (Σ × Σ) × (Σ × Σ) specifies the
memory locations that can be modified by the two programs. Formally:
Definition 5 (Relational Ensures). Given operational semantics τ ⊆ Σ×Σ,
a precondition P× ⊆ Σ×Σ, a postcondition Q× ⊆ Σ×Σ, and a frame condition
F× ⊆ (Σ × Σ) × (Σ × Σ), two step functions fn0, fn1 : Σ → N, a relational
Hoare triple is a statement of the form ensures2fn0,fn1

(P×, Q×, F×), where:

ensures2fn0,fn1

(
P×, Q×, F×) def⇐⇒ ∀s0, s1. (s0, s1) ∈ P× =⇒ s0 ∈ Ms0,s1

where Ms0,s1

def= eventuallynfn0(s0)

({
s′
0

∣∣ s1 ∈ Ns0,s1,s′
0

})

and Ns0,s1,s′
0

def= eventuallynfn1(s1)

({
s′
1

∣∣ (s′
0, s

′
1) ∈ Q× ∧ ((s0, s1), (s′

0, s
′
1)) ∈ F×})
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https://github.com/awslabs/s2n-bignum/blob/c747b1b66801e3975a8da502e18962838d3be945/common/relational_n.ml#L363-L366
https://github.com/awslabs/s2n-bignum/blob/c747b1b66801e3975a8da502e18962838d3be945/common/relational_n.ml#L394-L399
https://github.com/awslabs/s2n-bignum/blob/c747b1b66801e3975a8da502e18962838d3be945/common/relational2.ml#L22-L28
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The definitions of Ms0,s1 and Ns0,s1,s′
0

nest eventuallyn requirements:
Ms0,s1 includes all the states where the program C0 reaches a state s′

0 within
fn0(s0) steps, and Ns0,s1,s′

0
includes all the states where the program C1 reaches

a state s′
1 where (s′

0, s
′
1) ∈ Q× and ((s0, s1), (s′

0, s
′
1)) ∈ F× hold within fn1(s1)

steps.
As this definition is based on nested eventuallyn operators, thanks to its

properties conj, comm, and comp, it follows that the relational Hoare triple
ensures2 commutes, is compositional, and allows contract unification.

Lemma 2 (Commutativity). Given precondition P×, postcondition Q×,
frame condition F×, and step functions fn0, fn1, the relational Hoare triple com-
mutes:

ensures2fn0,fn1

(
P×, Q×, F×) ⇐⇒ ensures2fn1,fn0

(
PS , QS , FS

)

where the swapped versions are defined as XS def=
{
(s1, s0)

∣∣ (s0, s1) ∈ X×}.

This symmetry above ensures that the relational logic is invariant to the
program orders, allowing their roles to be interchanged without affecting the
triple’s validity.

Lemma 3 (Compositional). Given three properties P×, R×, Q×, two frame
conditions F×

0 , F×
1 , and four step numbers n0, n1,m0,m1, it holds that two rela-

tional Hoare triples can be composed transitively:

ensures2λs.n0,λs.m0

(
P×, R×, F×

0

)
∧ ensures2λs.n1,λs.m1

(
R×, Q×, F×

1

)

=⇒ ensures2λs.n0+n1,λs.m0+m1

(
P×, Q×, F×

0 ◦ F×
1

)

Similarly, also the frame condition can be transitively composed. This is
essential in Sect. 7 for the composition of program equivalences.

Lemma 4 (Compositional of Frame Conditions). Given two precondi-
tions P, P ′, two postconditions Q,Q′, and three frame conditions F0, F1, F2, and
three step functions fn0, fn1, fn2, it holds that two relational Hoare triples can
be composed transitively with respect to the frame conditions:

ensures2fn0,fn1
(P,Q, {((s0, s1), (s′

0, s
′
1)) | (s0, s

′
0) ∈ F0 ∧ (s1, s

′
1) ∈ F1})

ensures2fn1,fn2
(P ′, Q′, {((s0, s1), (s′

0, s
′
1)) | (s0, s

′
0) ∈ F1 ∧ (s1, s

′
1) ∈ F2})

ensures2fn0,fn2
(P ◦ P ′, Q ◦ Q′, {((s0, s1), (s′

0, s
′
1)) | (s0, s

′
0) ∈ F0 ∧ (s1, s

′
1) ∈ F2})

Lemma 4 formalizes equivalence transitivity: when a program C0 is equivalent
to C1 and C1 is equivalent to C2, then C0 is equivalent to C2. This Lemma is vital
in the equivalence proofs because proving the correctness of each optimization
step independently is easier than directly proving the equivalence of the original
and optimized program.
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https://github.com/awslabs/s2n-bignum/blob/c747b1b66801e3975a8da502e18962838d3be945/common/relational2.ml#L22-L28
https://github.com/awslabs/s2n-bignum/blob/c747b1b66801e3975a8da502e18962838d3be945/common/relational2.ml#L393-L415
https://github.com/awslabs/s2n-bignum/blob/c747b1b66801e3975a8da502e18962838d3be945/#1
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Lemma 5 (Conjunction). Given two preconditions P×
0 , P×

1 , two postcondi-
tions Q×

0 , Q×
1 , and a frame condition F×, two contracts can be unified with a

conjunction:

ensures2fn0,fn1

(
P×

0 , Q×
0 , F×) ∧ ensures2fn0,fn1

(
P×

1 , Q×
1 , F×)

=⇒ ensures2fn0,fn1

(
P×

0 ∩ P×
1 , Q×

0 ∩ Q×
1 , F×)

All these properties of our Hoare triples enable us to reason about the behav-
ior of two programs, while maintaining the natural properties of a Hoare logic.
Appendix C [32] presents the additional properties of our program logic L2,
including the weakening and strengthening of pre-, post-, and frame conditions.
Implemented in HOL Light, the core of the relational verification amounts to
1704 lines of code.

5.3 Connection with Unary Hoare Triples

We compare the relational Hoare triple ensures2 with the unary counterpart
ensuresn, demonstrating two key transformations: (1) deriving relational Hoare
triples from two unary ones, and (2) extracting a unary Hoare triple from a
hybrid relational one. These transformations serve a dual purpose. First, deriving
a relational triple from unary ones enables reasoning about the behavior of two
programs by analyzing each independently:

Theorem 3. Given two sets of pre-, post-, and frame conditions P, P ′, Q,Q′,
F, F ′, and two step functions fn0, fn1, it holds that:

ensuresnfn0
(P,Q, F ) ∧ ensuresnfn1

(P ′, Q′, F ′)

=⇒ ensures2fn0,fn1
(P × P ′, Q × Q′, F × F ′)

Second, extracting a unary triple from a hybrid relational one allows results
obtained in the unary logic to be seamlessly promoted to the relational frame-
work. A hybrid relational triple is a relational triple where the pre-, post-, and
frame conditions relate to unary pre-, post-, and frame conditions, respectively.
The goal is to be able to extract a unary Hoare triple from a relational one;
hence: (i) the relational precondition should always have a satisfying pair (s0, s1)
when s1 satisfies the unary precondition; (ii) if a pair (s0, s1) satisfies the rela-
tional postcondition, then s1 should satisfy the unary postcondition; and (iii)
the frame condition should be satisfied for the product relation whenever the
second component satisfies the frame condition of the unary relation.

Definition 6 (Hybrid Relational Ensures). Given the pre-, post-, and
frame conditions for the product relation P×, Q×, F×, and unary pre-, post-
, and frame conditions P,Q, F , and two step functions fn0, fn1 : Σ → N, a
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https://github.com/awslabs/s2n-bignum/blob/c747b1b66801e3975a8da502e18962838d3be945/common/relational2.ml#L349-L355
https://github.com/awslabs/s2n-bignum/blob/c747b1b66801e3975a8da502e18962838d3be945/common/relational2.ml#L331-L334
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hybrid relational Hoare triple, written hensures2fn0,fn1
(P×, Q×, F× | P,Q, F ),

holds if:

ensures2fn0,fn1

(
P×, Q×, F×)

∧ ∀s1. s1 ∈ P =⇒ ∃s0. (s0, s1) ∈ P× (i)
∧ ∀s0, s1, (s0, s1) ∈ Q× =⇒ s1 ∈ Q (ii)

∧ ∃F ′. ∀s0, s1, s
′
0, s

′
1.

(
((s′

0, s
′
1), (s0, s1)) ∈ F× ⇐⇒

(s′
0, s

′
1) ∈ F ′ ∧ (s0, s1) ∈ F

)
(iii)

Employing the hybrid relational triple hensures2 (with the prefix h denoting
“hybrid”) simplifies the verification process and makes the logic more robust. For
instance, it enables translating correctness proofs for one program to another,
equivalent program without having to reprove them, saving time and effort. The
next result shows that a hybrid relational Hoare triple can be transformed into
a unary Hoare triple.

Theorem 4. hensures2fn0,fn1
(P×, Q×, F× | P,Q, F ) =⇒ ensuresnfn1

(P,Q, F ).

6 Constant-Time Behavior

In this section, we show how our relational logic L2 can be applied to reason
about constant-time behavior. As is customary in security analysis, we discrimi-
nate between public and private input data by partitioning the state labels into
two disjoint sets, i.e., L = Lpub ∪ Lpri and Lpub ∩ Lpri = ∅. Public and private
data induce equivalence relations on states, i.e., 4pub and 4pri respectively. The
public data is accessible to the attacker, while the private data is kept secret. A
program is constant-time if, for the same public input data, any two executions
terminate with the same number of clock cycles. As a result, private data does
not influence the execution time of the program.

Constant-Time via Events Accumulation. It is not practical to specify constant-
time behavior by ensuring that the number of steps is equivalent in executions
with the same public data, as it is highly dependent on the underlying hardware.
Due to microarchitectural effects, such as memory access patterns or branch
prediction, the number of clock cycles can vary significantly between execu-
tions. Instead, we can safely reason about constant-time behavior by employing
a stronger notion of timing security: a program is constant-time if—for the same
public input data—any two executions of the program induce the same trace of
microarchitectural events.

To observe these events, we extend the state space Σ with an events com-
ponent in Le

def= L ∪ {events}. The events component records an ordered list of
events, such as memory accesses (load x, n or store x, n; where x is the accessed
address and n the operation size in bytes), and branch jumps (branch x, y; where
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x and y are the current and the destination program counter, respectively), Any
other variable-time instruction, such as division or floating point operations can
also be included in the event trace. In our case studies, these operations are inten-
tionally left unresolved by the operational semantics, and thus not included in
the event trace. These events are public data, i.e., events ∈ Lpub. The extended
state space is Σe with operational semantics τ e. For instance, loading a memory
address x into a 16 bit register r collects a load event of 2 bytes:

s(instr) = i decode(s, i) = load r, x
s(memoryx) = v s(events) = e length(r) = 16

s
τe

−→ s [r "→ v, events "→ (e ++ load x, 2), instr "→ i + lengthτ (load r,x)]
Load

Therefore, we are now able to specify constant-time behavior by ensuring that
the list of microarchitectural events is the same in both executions. Our approach
can be easily extended to include other side-channels, such as power consump-
tion.

While we do not include opcode-level information in our events, instruction
opcodes can influence the number of cycles (e.g., the cbz and b.ne instructions
in arm). This relies on an assumption that a program is public information, and
therefore the events do not need to carry opcode information. This assumption
can be broken if a program runs assembly instructions that are separately stored
in a private input buffer. We prove that such things do not happen individually.

Definition 7 (Constant-Time via Event Accumulation). Let τ e ⊆ Σe×Σe
be an operational semantics that collects the microarchitectural events, P ⊆ Σe
be a precondition, Q ⊆ Σe a postcondition, F ⊆ Σe × Σe a frame condition, and
fn0, fn1 : Σe → N two step functions. The program prog(P ) is constant-time
with respect to private data Lpri if it holds that:

ensures2τe

fn0,fn1




{(s0, s1) ∈ P × P | s0(Lpub) = s1(Lpub)} ,
{(s0, s1) ∈ Q × Q | s0(events) = s1(events)} ,
F × F





Note that, by constraining the public data to be equal in the precondition, we
also require that states share the same event trace before executing the program.

Example 3. The program cst-compare in Fig. 1 (right) is constant-time with
respect to the microarchitectural events of Definition 7. Indeed, cst-compare
first branches on the length n of the buffers if n = 0 at Line 2; otherwise, it
compares the buffers byte-by-byte. Assuming registers of 32 bits, each iteration
collects two 4-bytes load events: one for each buffer at Lines 5 and 6. Then,
it branches to start the next iteration at Line 9 until the end of the buffers,
no matter what the comparison result is. Hence, for any public input value,
cst-compare induces the same event trace.
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In contrast, the program compare in Fig. 1 (left) is not constant-time since
the event trace may be different for two executions. Consider the following coun-
terexample, where n = 1 and the buffers are k = 10 and x = 20. In mem-
ory, the two executions contain s0(memory10) = 0 and s0(memory20) = 0; and
s1(memory10) = 0 and s1(memory20) = 1 respectively. The two traces differ at
the first mismatch, as the loop in the second execution is terminated early. For
brevity, the following event traces are simplified omitting the address of branch
instructions with the evaluation of the condition:
s0(events) = [branch false, load 10, 4, load 20, 4, branch false, branch false]
s1(events) = [branch false, load 10, 4, load 20, 4, branch true]

Constant-Time via Unary to Relational Embedding. We can employ unary Hoare
logic to prove constant-time behavior by showing that private data does not
influence the event trace generated during program execution. In other words,
it is sufficient to provide a witness trace that depends only on public data.
Definition 8 (Constant-Time via Unary to Relational Embedding). Let
τ e be an operational semantics that collects the microarchitectural events, P be a
precondition, Q a postcondition, and F a frame condition. The program prog(P )
is constant-time with respect to private data Lpri if there exists a function f :
Σe(Lpub) → E such that:

∀vpub, e0. ensuresnτe

fn




{s ∈ P | vpub = s(Lpub) ∧ e0 = s(events)} ,
{s ∈ Q | s(events) = e0 ++f(vpub)} ,
F





where Σe(Lpub) is the partial projection of states Σe on public data Lpub, and
++ is the list concatenation.

This approach eliminates the need to run the symbolic simulation tactic
twice, but requires providing an explicit witness for the event trace function
f . Since this approach proves a statement about a single program execution,
the proof structure is very similar to the correctness proof. Therefore, we can
merge the two proofs for correctness and constant-time behavior into a single
one; thus eliminating the computational effort of checking each proof separately
and greatly reducing the overhead of writing and maintaining them. We can
retrieve the relational definition by instantiating Theorem 3 with two instances
of the same ensuresn proof, renamed accordingly.
Example 4. Using list comprehension, for a given public input vpub, the witness
f for the program cst-compare in Fig. 1 is defined as:

[branch (vpub(n) = 0)]++




load (vpub(x) + vpub(n) − 1 − i), 4
load (vpub(y) + vpub(n) − 1 − i), 4
branch (i < vpub(n))

∣∣∣∣∣∣
i ∈ [0, vpub(n))





where n, x, and y are public data and therefore accessible in vpub.
Note that, routines in the s2n-bignum library can be proven constant-time

by instantiating either Definition 7 or Definition 8, the two are equivalent.
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7 Equivalence Checking

In this section, we demonstrate the application of our relational Hoare logic
framework to equivalence checking between performance and verification-friendly
implementations of the same routine in the s2n-bignum library.

Equivalence Between Two Programs. Two programs are considered functionally
equivalent if they produce the same output states starting from equivalent input
states. When dealing with assembly-level programs, we must carefully define
what it means for two states to be “equal”. For instance, two equal input states
should not require the exact same code in memory; otherwise, only identical
programs could be compared. Similarly, because the calling convention allows
callee-save registers to hold different values, the value of these registers should
not be constrained.

On the output side, certain registers or memory regions may differ if they
are not designated as outputs. For example, eliminating dead stores to the stack
frame is a valid optimization because the stack frame is not used after function
returned. Two equivalent output states must allow those parts of memory to
contain different data.

As a consequence, the equivalence checking takes as a parameter the equiv-
alence relations 4in ⊆ Σ × Σ and 4out ⊆ Σ × Σ that define when input and
output states are considered equivalent. This relation has to be defined manually
for each pair of programs to be compared.

Example 5. Consider the two programs compare and cst-compare in Fig. 1.
Assuming a proof of correctness for compare already exists, our goal is to prove
that the secure constant-time version is functionally equivalent to the origi-
nal program, without needing to reprove the correctness of cst-compare from
scratch. To do so, we define the input equivalence 4in, relating the program
counter, input registers, and relevant part of the memory as follows:

4in = mayChange

(
L \

(
{instr, n, x, y} ∪
{memoryi | i ∈ [x, x + n) ∨ i ∈ [y, y + n)}

))

Note the use of the mayChange operator to define a relation that allows two
states to differ in all labels but the ones specified. For output equivalence 4out,
we relate only the output register, i.e., 4out = mayChange(L \ {res}).

Definition 9 (Equivalence). Let P0, P1 ⊆ Σ be two preconditions, Q0, Q1 ⊆
Σ two postconditions, F0, F1 ⊆ Σ ×Σ two frame conditions, and fn0, fn1 : Σ →
N two step functions. Given the input and output equivalences 4in,4out ⊆ Σ×Σ,
the programs prog(P0) and prog(P1) are equivalent if it holds that:

ensures2fn0,fn1




{(s0, s1) ∈ P0 × P1 | s04ins1} ,
{(s0, s1) ∈ Q0 × Q1 | s04outs1} ,
F0 × F1




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Example 6. We can prove that the constant-time program cst-compare is equiv-
alent to the original program in compare by applying Definition 9 with the input
and output equivalences defined in Example 5. Along the lines of the pre- and
postconditions defined in Sect. 6, we define:

P ′ =
{

s

∣∣∣∣
s(n) = n ∧ s(x) = x ∧ s(y) = y ∧
∀i ≤ n. s(memoryx+i) = xi ∧ s(memoryy+i) = yi

}
,

P0 =
{
s ∈ P ′∣∣alignτ (s, i0, cst-compare)

}
, P1 =

{
s ∈ P ′∣∣alignτ (s, i0, compare)

}
,

Q0 ={s |endτ (s, lengthτ(cst-compare))}, Q1 ={s |endτ (s, lengthτ(compare))},

F0 = mayChange({instr, n, xn, yn}),
F1 = mayChange({instr, n, xn, yn, diff, temp}),

fn0(s) = largestPrefixn(s, x, y), and fn1(s) = s(n),

where largestPrefixn(s, x, y) is the length of the largest prefix among the two
given memory addresses x and y of length n. In conclusion, Definition 9 provides
the specification for the equivalence proof between the two programs.

Composition of Program Equivalences. We slightly abuse notation and define
eqensures as a shorthand for the equivalence of two programs C0, C1 with 4in in
the precondition starting from pc0, pc1, eventually reaching 4out in the postcon-
dition at pc′

0, pc
′
1: eqensurespc0,pc′

0,pc1,pc′
1
(C0, C1,4in,4out). Notably, Lemma 3

proves that the sequential composition of two equivalence proofs is sound if
∀s, s′. s4outs′ =⇒ s4in

′s′. Formally, the sequential composition of two equiva-
lences is defined as follows:

eqensurespc0,pc′
0,pc1,pc′

1
(C0, C1,4in,4out) eqensurespc′

0,pc′′
0 ,pc′

1,pc′′
1
(C0, C1,4in

′,4out
′)

eqensurespc0,pc′′
0 ,pc1,pc′′

1
(C0, C1,4in,4out

′)

Lemma 4 instead proves the soundness of the transitive composition of two
equivalences, only if the result input and output equivalences preserve the exis-
tence of an intermediate state, i.e., s4in

′s′ ⇐⇒ ∃s′′.(s4ins′′ ∧ s′′4in
′s′) and

s4out
′s′ ⇐⇒ ∃s′′.(s4outs′′ ∧ s′′4out

′s′). Formally, the transitive composition of
two equivalences is defined as follows:

eqensurespc0,pc′
0,pc1,pc′

1
(C0, C1,4in,4out) eqensurespc1,pc′

1,pc2,pc′
2
(C1, C2,4in1,4out1)

eqensurespc0,pc′
0,pc2,pc′

2
(C0, C2,4in

′,4out
′)

Combining Equivalence and Correctness Proofs. In the following, we show how to
reuse a correctness proof of an original program to obtain a correctness proof of
an optimized program through program equivalence. Indeed, given the functional
correctness of the original program in the form of an ensuresn proof, we can
apply it to the optimized program by proving the equivalence of the two via
the relational Hoare triple ensures2. The correctness proof of the optimized
program is given in the form of a hybrid relational Hoare triple hensures2,
presented in Definition 6.
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Theorem 5 (Transfer of Correctness through Equality).

ensuresnτ
fn0

(P,Q, F ) ∧ ensures2τ
fn0,fn1

(
P×, Q×, F×)

=⇒ hensures2τ
fn0,fn1




{(s0, s1) ∈ P× | s0 ∈ P} ,
{(s0, s1) ∈ Q× | s0 ∈ Q} ,
{((s0, s1), (s′

0, s
′
1)) ∈ F× | (s0, s′

0) ∈ F}

∣∣∣∣∣∣

P,
Q,
F





Let P0 ⊆ Σ be the precondition, Q0 ⊆ Σ the postcondition, F0 ⊆ Σ × Σ the
frame condition, and fn0 : Σ → N the step function. We state functional correct-
ness as: ensuresnfn0

({s ∈ P0 | s(pc) = x0} , {s ∈ Q0 | s(pc) = xω} , F0). After-
wards, from Definition 9, given the two input-output equivalences 4in and 4out,
the equivalence between two programs is achieved by proving:

ensures2fn0,fn1




{(s0, s1) ∈ P0 × P1 | s04ins1} ,
{(s0, s1) ∈ Q0 × Q1 | s04outs1} ,
F0 × F1





where P1, Q1, F1 are the pre-, post-, and frame conditions of the second program,
respectively. Theorem 5 transfers the correctness and equivalence proofs to the
following hybrid relational Hoare triple:

hensures2fn0,fn1




{(s0, s1) ∈ P0 × P1 | s04ins1 ∧ s0(pc) = x0} ,
{(s0, s1) ∈ Q0 × Q1 | s04outs1 ∧ s0(pc) = xω} ,
F0 × F1

∣∣∣∣∣∣

{s ∈ P1 | s(pc) = x0} ,
{s ∈ Q1 | s(pc) = xω} ,
F1





Finally, by applying Theorem 4, we obtain the correctness proof of the
new program: ensuresnfn1

({s ∈ P1 | s(pc) = x0} , {s ∈ Q1 | s(pc) = xω} , F1).
In Appendix D [32], we provide the steps required to promote a correctness
proof that was originally written via the ensures operator—without an explicit
number of steps—to a proof that uses the ensuresn operator. The majority
of functional correctness proofs already available in the s2n-bignum library are
written using the ensures operator. In total, the core of the equivalence checking
proofs is 2629 lines of HOL Light code.

8 Obtaining Proofs for the Hol-Bignum Library

8.1 Case Study: Bignum Copy and Inversion Modulo Routine

We apply the constant-time verification to the s2n-bignum library, notably on
the copy program of large integers, cf. bignum_copy, and the inversion modulo
a prime p = 2255 − 19, cf. bignum_inv_p25519. The following should provide
guidance on which proof approach to apply depending on the program size and
complexity.

The bignum_copy routine is relatively small, comprising 16 instructions that
copy the content of buffer k to the buffer z, padding z with zeros if it is bigger
than k. Despite its size, bignum_copy has the most complex program flow in the
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library, making it a good candidate for constant-time verification. The functional
correctness proof is 180 lines. The constant-time proof, using Definition 7, is
276 lines: it does not require an explicit event trace and is fairly easy to prove
correct. On the other hand, the unary constant-time proof using Definition 8 is
245 lines, and requires an explicit event trace. Although the event trace is small
and intuitive, this parameter makes the proof more complex as it requires a
nontrivial induction on list comprehensions. Notably, we can combine correctness
and constant-time proofs together via Theorem 3 in a single, 277-line proof,
which yields the lowest proof size overhead.

The bignum_inv_p25519 routine instead is a 1033-instruction program that
finds the inverse of a big integer modulo a prime p = 2255 − 19. The functional
correctness proof is 2303 lines long. The constant-time proof, using the unary
embedding of Definition 8 combining correctness and constant-time proofs, is
2633 lines long. Most of the additions in the proof are due to the explicit defini-
tion of the event trace, which contains 90 memory events alone. However, after
defining the event trace, extending the correctness proof with the constant-time
proof was effortless. All the mechanized proofs are available in the artifact.5 In
future work, we plan to automate the generation of the event trace, which will
significantly reduce the required level of manual effort.

8.2 Case Study: Elliptic Curves and Montgomery Reduction

We utilized program equivalence to verify the functional correctness of opti-
mized implementations for (1) field and point operations of NIST elliptic curves
(specifically, curves P-256, P-384, and P-521), and (2) Montgomery reduction,
an algorithm that allows efficient modular arithmetic when the modulus is large.
These optimizations were achieved using an autovectorizer, a constraint solver-
based instruction scheduler called SLOTHY [1], and the point operations of
NIST curves were optimized using a custom memory instruction optimizer for
the arm architecture. We also have similar equivalence checking tactics for the
x86 architecture. Overall, we checked the equivalence for 15 pairs of arithmetic
routines, amounting to a total of 19k lines of proofs.

The autovectorizer replaces sequences of 64-bit scalar multiplication instruc-
tions, such as mul and umulh, with their equivalent NEON vector instructions.
This optimization targets the arm Neoverse N1 architecture, whose microarchi-
tecture contains only one multiplication pipeline. The mul/umulh instructions
stall this pipeline for a few cycles when executing scalar multiplication instruc-
tions. SLOTHY employs a constraint solver and cost model to find the optimal
instruction scheduling, significantly reducing these stalls. Specifically, SLOTHY
improves the scheduling of straight-line code in the main basic blocks of NIST
curves’ field operations, and also improves the software pipelining optimization in
the main loop of the Montgomery reduction. The memory instruction optimizer
performs two key tasks in the arm architecture: store-to-load forwarding and
dead store elimination. Store-to-load forwarding replaces load instructions with

5 https://doi.org/10.5281/zenodo.15309209.
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stored values, eliminating redundant memory accesses. Dead store elimination
removes store instructions with results that are never used.

Tactics for Program Equivalence Proofs. To automate the writing of equivalence
proofs, we developed proof tactics that can be used for two different classes of
optimizations: small localized updates and instruction reordering.

For local optimizations that update only small portions of the original pro-
gram, such as autovectorization, we implemented the tactic EQUIV_STEPS_TAC.
This tactic takes as input a list of line ranges and annotations describing whether
each range is optimized or left identical. For the identical portion, the tactic per-
forms lock-step symbolic simulation and eagerly abbreviates the common outputs
of the instructions with fresh variables to avoid exponential explosion of the sizes
of the output expressions. For optimized ranges, the tactic employs stuttering
simulation, which executes the corresponding sections of each program step-by-
step. To help EQUIV_STEPS_TAC automatically converge on complex cases, users
can register custom bit-vector equality theorems for output expressions.

For optimizations involving instruction reordering, we implemented two addi-
tional tactics: STEPS_ABBREV_TAC and STEPS_REWRITE_TAC. The first tactic per-
forms stuttering symbolic simulation for the first program, storing the symbolic
output expressions to an OCaml array. The second tactic takes as input an
instruction index mapping between the two programs, along with the symbolic
output generated by STEPS_ABBREV_TAC. Then, it simulates the second program
step-by-step, proving that the symbolic output of each instruction is equal to the
symbolic expression in the first program, according to the instruction mapping.

Software Pipelining of Montgomery Reduction. The Montgomery reduction is
heavily used in cryptographic operations performing modular exponentations.
Its original implementation in the s2n-bignum library includes a nested loop
structure, where the outer loop consists of three basic blocks: loop entry, inner
loop (which consists of a single basic block), and loop exit. A faster version was
achieved by: caching repetitive calculations, vectorizing mul and umulh in all
basic blocks, applying software pipelining optimizations to the inner loop, and
rescheduling instructions using SLOTHY.

We verified the functional correctness of the optimized Montgomery reduc-
tion by transitively composing equivalence proofs with the original correctness
proof after each optimization stage. For each optimization, we applied sequential
composition of equivalences between each basic block pair and induced the equiv-
alence of the whole loop. In the case of software pipelining, which transforms
the control flow graph by adding loop prologue and epilogue blocks, equivalence
composition has been applied between each block.

Overall, the optimized field operations of NIST curves achieved throughput
speedups up to 38%, and integrating these improvements into point operations
alongside memory optimizations resulted in up to 23% throughput gains. These
enhancements demonstrate the substantial impact of the new optimizations.
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9 Conclusion

This work presents a novel relational Hoare logic framework for verifying real-
istically modelled machine code, while preserving natural properties expected
from Hoare-style reasoning. Fully formalized in HOL Light, the framework is
applied in two case studies involving the s2n-bignum cryptographic library, a
key component of a TLS/SSL implementation. Our results show that the logic
scales to large assembly programs and yields practical value in the verification
of cryptographic codebases.

While Mazzucato et al. [31] have investigated constant-time verification for
libraries similar to s2n-bignum, their approach relies on abstraction-dependent
methods through an untrusted computing base to decompile assembly into C. In
contrast, our framework operates directly on the assembly level, ensuring higher
reliability of the verification results as it reduces the trusted computing base
to the minimal core of the HOL Light theorem prover and to the operational
semantics implementations. As future work, we plan to increase coverage of
relational properties on the s2n-bignum library and improve proof automation
to handle repetitive tasks. As a natural extension to constant-time proofs, we
aim to address speculative execution vulnerabilities [15,26].
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