
Alquist: The Alexa Prize Socialbot

Jan Pichl
FEE, CTU Prague

Prague, Czech Republic
pichljan@fel.cvut.cz

Petr Marek
FEE, CTU Prague

Prague, Czech Republic
marekp17@fel.cvut.cz

Jakub Konrád
FEE, CTU Prague

Prague, Czech Republic
konrajak@fel.cvut.cz

Martin Matulík
FEE, CTU Prague

Prague, Czech Republic
matulma4@fel.cvut.cz

Hoang Long Nguyen
FEE, CTU Prague

Prague, Czech Republic
nguyeho7@fel.cvut.cz

Jan Šedivý
CIIRC, CTU Prague

Prague, Czech Republic
jan.sedivy@cvut.cz

Abstract

This paper describes a new open domain dialogue system Alquist developed as part
of the Alexa Prize competition for the Amazon Echo line of products. The Alquist
dialogue system is designed to conduct a coherent and engaging conversation on
popular topics. We are presenting a hybrid system combining several machine
learning and rule based approaches. We discuss and describe the Alquist pipeline,
data acquisition, and processing, dialogue manager, NLG, knowledge aggregation
and hierarchy of sub-dialogs. We present some of the experimental results.

1 Introduction

One of the biggest natural language processing (NLP) challenges today is the design of a conversa-
tional system. Here we present our contribution the Alquist conversational bot. Alquist is one of the
contenders in the Alexa Prize Competition. The primary goal of the competition is to design and
implement a bot engaging in a dialogue about popular topics such as latest news, movies, sports,
celebrities, and chit-chat. The quality of the bot is determined based on the user rating (users rate the
bot on a scale one to five) and the duration of the dialogue. The bot with the highest average rating or
if there is a tie, the bot with the longest conversation becomes the winner. Therefore, the goal of the
design is to maximize the user experience and the duration.

One of the relatively simple conversational tasks is a goal based dialogue. This task can be compared
to form filling. The goal is well defined, for example, a restaurant reservation, air ticket purchase,
etc. The user achieves the goal by answering questions posed by the system. Once the form is filled,
the goal is reached, and the dialogue stops. These conversations work reasonably well in Interactive
Voice Response (IVR) environments. Rule based dialogue managers achieve high accuracy in these
tasks, but their development and maintenance are hard and time-consuming. Another disadvantage
of the rule based systems is their low flexibility. Rule based system fails when the task is slightly
different.

Open dialogues are much more demanding. The dialogue is longer and less constrained. However, it
still contains knowledge and information unique to the conversation. It is difficult to design large and
unexpected dialogues as rule based systems. Therefore, the recent research focuses on generative, end-
to-end models leveraging neural networks [1]. The goal is to design a system controlling the entire
dialogue and to utilize available information about the topic. It is hard to train these systems because
we usually do not have enough quality training data. Secondly, we face the problem of extracting and
again including entities and entity specific knowledge, as well as utilizing this knowledge during the
interaction.
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We have chosen to design a hybrid system combining the end-to-end system and rule based approach.
We split the system to smaller rule based topic specific dialogues, such as sports or movies. A good
dialogue contains specific information about the conversational topic. Rule based approach and
constrained dialogue allow us to work with this information easily. On the other hand, we use the
end-to-end dialog implementation once the dialogue diverges from the rule based topics. Naturally,
the user experience is lower.

Our way of making the dialogue constrained but keep the impression of an open dialogue is designing
a hierarchical system of dialogues. The top dialogue is routing the conversation to topic oriented
rule based sub-dialogues. The whole conversation is always going through the top-level dialogue
responding to the user in case they change the topic or ask for help. It also allows for some simple
commands like “say it again” etc. The sub-dialog is composed of even smaller, elementary dialogues
taking advantage of their re-usability. These elementary dialogues handle, for example, the yes/no
answers or answering a name of a person, location, etc. and can be used in different high-level
dialogues throughout the whole system.

With our approach, the dialogues authoring becomes an essential part of a successful conversational
system. Good wording helps us to narrow the possible range or users’ replies. Designing such
dialogues and still keeping them entertaining is a significant part of a successful design.

Another important part of the conversation is natural language understanding. To lead an engaging
conversation about a specific topic, the bot needs to understand it, i.e. it needs to understand user’s
intent as well as the information in the uttered sentence. The bot needs to extract the entities and
intents to make the conversation successful. We needed a reliable approach for recognizing the intent,
the entities, and their relations. Alquist is using different algorithms at different dialogue levels. The
selection of intent and entity extraction algorithm was therefore dictated by the state complexity and
by the size of available training data. We collected the largest corpora for the top level, which is using
a neural network. The lower levels use the information retrieval algorithms representing an utterance
by averaged embeddings as will be explained in section 4.

2 Related Work

The early conversational systems primarily used a pattern matching approach. Eliza [2] is one of the
most famous chat-bots from that era. Alice [3] is another important system which was inspired by
Eliza. It uses its own XML based structured language called Artificial Intelligence Markup Language
(AIML). Various utterances and their corresponding responses can be stored in this format.

More recent systems can be divided into task oriented and open-domain systems. Furthermore, in
[4], the task oriented systems are divided into those which use a database or statistical text matching
as the source of information. They are often used as a tourist guide [5], reservation assistants [6] or
technical support bots [1], because the task oriented systems are suitable for guiding the user using
questions to achieve his goal.

Several methods of implementation of the open domain dialogue system have been proposed. The
system can be based on natural language understanding [7] or the responses can be generated using a
recurrent neural network with sequence-to-sequence architecture [1, 8]. Taking advantage of semantic
parser outputs such as predicate-argument structure was introduced in [9].

Statistical approaches were proposed to avoid handcrafting the rules for dialogue management
(DM). Partially observed Markov decision process (POMDP) [10, 11] has been widely used as a
DM since it can handle the uncertainty caused by automatic speech recognition (ASR) or natural
language understanding (NLU). The dialogue state tracking challenge [12] has provided several
labeled dialogue data as well as the evaluation framework to accelerate research of DM.

The recent work [13] shows how to reduce an amount of data required to train end-to-end RNN
network using a combined system which uses both RNN and handcrafted domain-specific knowledge.

3 System overview

This section describes high-level system architecture and how our system processes the input message.
As shown in the Figure 1, the system starts with the message received from a Lambda function (1).
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At the beginning, the message is processed by all of the analysis components (2) described in 4.2.2.
After finishing the initial analysis of a message, the pipeline routes the dialog to a Structured Topic
Dialogue (3). For example, the user says: “Let’s chat about movies.” This interrupts the previous
dialogue and starts the movie Structured Topic Dialogue. If there is no new dialogue detected, the
system tries to continue in previous Structured Topic Dialogue and the topic-level dialogue manager
(described later) is called. The idea behind the decision being made before the actual dialogue
manager is executed is that the Structured Topic Dialogue can often produce a response despite the
low ASR confidence.

Figure 1: The information flow through the system

If there is no currently running Structured Topic Dialogue, the message activates other components.
The decision whether the bot understood correctly (4) is made based on the token confidence produced
by ASR as described in section 4.2.2. Initially, if the bot is not confident about the user’s message, it
asks the user to repeat it. Secondly, the message is checked for profanity or inappropriate content
(5). If the module detects a topic the bot is not comfortable talking about, it kindly asks the user to
choose a different topic. This decision is made using a static list of blacklisted keywords and phrases.

Finally, the message is processed by the top-level dialogue manager (6). The DM decides which of
the response generation modules (chit-chat, opinion, question answering, personal information or one
of the Structured Topic Dialogues) should produce an answer. If the message falls into the structured
dialogue category, the dialogue manager also selects the dialogue topic. Each topic has its own rule
based topic-level dialogue manager (7). The topic-level DM selects the current state of the dialogue,
and the bot produces the corresponding response.

4 Architecture

In this section, we describe the system architecture in detail. Our system takes advantage of the
speech recognition and text-to-speech provided by the Amazon Echo, allowing us to work directly
with text input and output. The architecture is divided into two categories, Information Aggregation
and Alquist Pipeline. Information Aggregation part gathers information from various sources for
later use. It is described in section 4.1. Alquist Pipeline is the actual system’s core which accepts the
message from the user and generates a response. Alquist Pipeline and its components are described
in section 4.2.

4.1 Information Aggregation

Since the goal of the system is to maintain an engaging conversation about popular topics such as
movies, sports, or politics, external sources of information are required. We take advantage of several
types of information sources:

• Knowledge Bases include the facts which do not change over time, or whose values change
only occasionally. We obtain this type of information from an RDF database Freebase [14].
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We also use the Microsoft Concept graph1 to recognize concepts belonging to the individual
entities in user’s message. We expanded the Concept graph data with additional entries
containing movies and games. These entries were obtained from The Movie Database and
Internet Game Database respectively.
Additionally, we use The Movie Database, Internet Game Database, Goodreads and Last
FM APIs to obtain another movie, game, book, and music related information respectively2.

• Regularly updated information usually depends on the current events or other time-related
aspects. As we want to deliver up-to-date content, we regularly save data from several
services. We download daily news articles from The Washington Post, and headlines from
Today I Learned3 subreddit, which we present as fun facts in conversations.

Figure 2: The architecture of the Alquist Pipeline. It is separated into logic blocks by the dashed
lines. There is central memory called Context used in every part of the pipeline, and its content is
regularly stored into a persistent DynamoDB.

4.2 Alquist pipeline

The Alquist pipeline consists of several interconnected components. It was designed to be highly
modular, allowing us to swap individual components and test different approaches quickly.

The core Alquist pipeline was inspired by Apache UIMA [15]. We adopted several design concepts
such as central annotation storage – we call it context – where every component stores its results. We
describe the context in detail in section 4.2.1.

There are two main types of components in the pipeline, analysis components and response producing
components. The purpose of the analysis components is to extract intent and entities from the user’s
input. The response producing components are either generative or retrieval based neural networks
and finite state automata. Additionally, for a specific, small subset of messages, we use various
handcrafted responses.4 All of the response producing components are described in detail in section
4.2.4

The response producing components are grouped into modules according to the types of the response
they produce. We currently employ following modules: Chit-chat, Question Answering, Structured
Topic Dialogues, Personal information, and Opinion. These modules are selected by the top-level
DM based on information extracted during message analysis.

1https://concept.research.microsoft.com/Home/Download
2The URLs of the services: www.themoviedb.org, www.igdb.com, www.goodreads.com, www.last.fm
3https://www.reddit.com/r/todayilearned/
4Handcrafted responses usually answer questions about personal information which require specific lines to

be delivered.
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4.2.1 Context

The context contains all the information relevant to the current session. All modules of the pipeline are
storing and accessing information in the context. It holds the ASR hypotheses, CoreNLP annotations,
recognized entities and eventually the final response. The information that needs to be stored for
whole sessions or all following sessions can be marked as a session context or long term context
respectively. It can be used, for example, for storing a user’s name of user’s favorite topics. The
information about a topic and last state of ongoing Structured Topic Dialogue is also stored in the
context. Additionally, for each topic, the last state and discussed entity are stored in the session
context.

The context is regularly (after each response) stored in persistent Dynamo Database. This allows the
bot to retrieve the context even if the session was interrupted and to continue with the dialogue.

4.2.2 NLP Analysis

The NLP analysis part of the pipeline uses its components to extract the necessary information from
user’s message. This information is then used by the dialogue manager and following parts of the
pipeline to produce a response. The analysis components can be general or topic-specific. General
analysis components are used for all user’s messages. These components create tokens, part-of-speech
(POS) tags and detect entities from the message. Topic-specific analysis components are used only in
certain states of Structured Topic Dialogues. An example of such topic-specific analysis component
is specialized entity recognition of book or movie titles.

General analysis components We use Stanford CoreNLP [16] for natural language processing
(NLP) tasks. The tool provides several annotators. Currently, we use annotators for sentence splitting,
tokenization, part of speech tagging, dependency parsing, lemmatisation, sentiment analysis and
named entity recognition (NER). Additionally, we take advantage of TrueCase annotation which
reconstructs the letter case which was lost by ASR. This is helpful for NER which has a model trained
on sentences with original case.

The entity recognition is implemented using two approaches. The first one is Microsoft Concept
Graph [17, 18] which provides a list of possible concepts for a given entity (for example “Frozen” has
following concepts: film, feature, processed food, . . . ). We have a snapshot of the Concept graph5

stored in Elasticsearch instance. This allows us to query for a specific entity name and retrieve a
concept quickly. The second tool is based on Label-lookup6 which is used in question answering
system YodaQA [19]. Label-lookup uses the cross-wikis [20] dataset to match strings together with
the nearest Wikipedia concept. Our version of the tool has two minor modifications. Firstly we
include the Freebase ID in the database and thus eliminate a SPARQL query to DBpedia [21] to
retrieve it. Secondly, we deleted all cross-wiki labels with the Levenshtein distance greater than 3
from the canonical label.

Topic-specific analysis components The group of topic-specific analysis components consists of
the recognizers which are suitable for a specific Structured Topic Dialogue. Each topic has a fixed
list of keywords. If the keyword is found in the message, it is stored in the context. They are used, for
example, for recognition of sports teams, subjects of the news article or movie genre.

We also extract a focus phrase from the user’s message as candidate words for entity recognition.
This procedure is achieved by a combination of several approaches. The first approach selects all
words from the input sentence that are marked as a named entity (NE) by CoreNLP tool. The second
approach selects every sequence of consecutive words marked as a noun phrase (NNP) by POS tagger
as a focus phrase too. Additionally, a heuristic method based on the dependency parser output selects
the lowest noun modification (nmod) of the sentence root and its corresponding adjective modification
(amod). We also trained Conditional Random Fields (CRF) sequence labeling using data which
were generated using described heuristics and manually corrected. The results of all approaches are
combined, and the duplicates are removed.

5Snapshot was downloaded in March 2017.
6https://github.com/brmson/label-lookup
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ASR confidence and profanity filtering We compute a speech recognition confidence as follows.
We take all ASR hypotheses (up to 5 hypotheses are obtained from the Conversational ASR model
provided by Amazon) and their corresponding scores and eliminate some of them based on the
following procedure. First, we compute the average of the token probability over the tokens from the
sentence. Then, we remove all the sentences with the average smaller than a threshold. The threshold
was empirically set to 0.7. The system asks the user to repeat the message if no sentence remains.

The profanity filtering is done simply by searching for banned words from a list. If a word from the
list is found in a user’s message, the bot refuses to talk about that topic.

4.2.3 Dialogue manager

There are two types of dialogue managers (DM), top-level DM and topic-level DM. The top-level DM
decides which module should be executed (chit-chat, question answering, Structured Topic Dialogue,
etc.) and additionally which topic should be executed in Structured Topic Dialogue (sports, movies,
etc.). We experimented with several approaches (as described in section 5). The first approach
uses similarity of TF-IDF vectors. We convert training examples and user’s input to TF-IDF vector
representation. We calculate cosine similarity of user’s input to each training example and use
the label of the most similar training example as the recognized intent. The second approach uses
similarity to sentences represented by a vector calculated as an average of words embeddings in a
sentence. The third approach uses a logistic regression. It takes uni- and bi-grams of words from
the input message as well as the uni- and bi-grams of Part-of-speech tags. The last approach uses a
convolutional neural network (architecture described in section 5). The input to the neural network is
user’s message, recognized focus phrase and previous state (module and topic or START if it is a
beginning of a conversation).

In addition to a predicted topic, we implemented a feature which allows the bot to select a topic
according to a mentioned entity. Whenever the Structured Topic Dialogue module is recognized, the
bot checks if there is an entity matched to some entry in MS Concept Graph. If there is such entity,
the bot compares its concept to a predefined list of concepts corresponding to each topic. For each
topic, the bot sums up the popularity of the entity given each concept from a list. We select a topic
with the highest accumulated popularity count.

Topic-level DM (used in individual Structured Topic Dialogue) is implemented as a rule based system
with an extension for switching intents. The rule based DM works as follows. The Structured Topic
Dialogue is represented by a state graph. The nodes (states) represent the actions of the system (like a
creation of response, saving information into context or accessing the API) and edges are transitions
between states. There can be multiple transitions leading from one state. The system has to decide
which transition to use in such case. The decision can depend on user’s message, recognized entities
or data obtained from API for example. If no transition is possible, the system responds by response
generated by the generative network.

The system controls the dialogue flow using a state graph. However, we allow the user to take the
initiative. We detect an additional set of intents specific to given dialogue, and if one of these intents
is detected, the system switches to defined state. This approach allows us to handle a turn-taking
conversation with an initiative on both sides. Intent specific to dialogue is detected by embedding
similarity based method as described in earlier in this section.

4.2.4 Response production

Structured Topic Dialogues Structured Topic Dialogues cover the main interaction with the user.
They are designed to cover the most frequent topics and to provide more in-depth interaction and
engaging conversation to the user. The covered topics are books, fun facts, video games, gossip,
holidays, jokes, movies, music, news, and sports. The system additionally contains generic dialogue
about entities from Freebase, and dialogues providing easier and more fluent interaction with the bot
(help dialogue, initial dialogue, exit dialogue, recommendation dialogue). Since our system contains
multiple dialogues, we have to decide which one should be executed. This decision is made by the
topic-level DM.

The advantage of Structured Topic Dialogues is the ability to maintain and react to the context of
the dialogue. Context can be directly encoded into the structure of the state graph. Structured Topic
Dialogues can also utilize the context by choosing different transitions in states.
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We developed a simple YAML syntax, which can be used to create a response by a random combina-
tion of predefined response parts. It also supports swapping in specific entities for placeholders. This
allows us to create a graph of the dialogue and lets our system to generate the actual response. The
disadvantage of this approach is that the in-depth Structured Topic Dialogues is difficult to maintain
and test. On the other hand, it allows us to precisely control system’s responses.

Personal information and opinions The personal information module handles questions about
the bot personality (bot favorite color, age, movie preference, . . . ). These messages do not require
to be processed as a Structured Topic Dialogue. Instead, a list of handcrafted responses is used to
answer a subset of questions. The most similar question is selected using a TF-IDF as described
in 4.2.3. The opinion related questions (i.e. “What’s your opinion on the latest Super Bowl”) are
processed in the same way.

Generative Networks The generative neural networks are used for a chit-chat dialogue. Chit-chat
is a typically a conversation with no specific topic or any required knowledge about a set of entities.
This is for example conversation about user’s (bot’s) mood, a question about the day, etc. It is
triggered when the chit-chat module is recognized or if no other module generates a response.

We use sequence-to-sequence [22] network architecture to generate the responses. This framework is
commonly used for machine translation but was recently proposed as a conversational model as well
[1]. This model consists of encoder and decoder. The encoder transforms the input sentence with
variable length into a fixed size representation, and the decoder decodes the fixed size vector into an
output sentence.

We use easy_seq2seq7 implementation of the sequence-to-sequence model. The parameters were
empirically selected as follows. We set the size of both encoding and decoding vocabulary to 50,000,
the number of LSTM cells is 1024 in each layer, and the number of layers is 3. Additionally, we set
the batch size to 64 and learning rate to 0.8.

As a training data, we used the discussions from Reddit8. Various topics from January 2015 to May
2015 were processed. We removed messages with special characters and those longer than 20 words
from the dataset. The preprocessing step resulted in the dataset of 3,735,209 message-response pairs,
and we created a training split consisting of 3M samples. The rest of the samples ware used as a
validation data.

Question answering The question answering module is used whenever the user asks a factoid
question. These questions are recognized by the module recognizer. The actual process of generating
answers is delegated to three systems: YodaQA [19], Evi9 and a system for answering questions
about a news article. For YodaQA, we use version based on d/movies branch. This version uses
only a RDF database as an answer source and does not use free text sources. It makes the system
significantly faster. Also, we use the new version of Label-lookup which eliminates additional
SPARQL queries and speeds up the process. Additionally, the modifications proposed in [23] are
included. If YodaQA fails to answer, the question is answered by Evi.

The last system is used in the Structured Topic Dialogue about the news. This system works in
three stages. The first stage simplifies the article’s sentences which is done by generating triples
from the sentences using [24], and joining these triples into simpler sentences. The second stage
generates questions from the new article using [25]. The generated question-answer pairs are stored
in a database. Both of these stages happen before the user accesses the article. A question posed by
a user is matched to the most similar (based on cosine similarity) question in the database and the
answer to it is returned.

5 Experiments

Objective evaluation of the end-to-end dialogue system is a difficult task. Several metrics such as
BLEU [26] were adopted, but they do not reflect the real quality of the dialogue [27]. We consider

7https://github.com/suriyadeepan/easy_seq2seq
8https://www.reddit.com/r/datasets/comments/3bxlg7/i_have_every_publicly_

available_reddit_comment/
9www.evi.com
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the length of the dialogue (either time in seconds between the first and last utterance or a number of
utterances) and the diversity of responses as the aspects of the high-quality dialogue. We present the
experiment results of experiments on various sub-tasks of the bot as well as the average user rating
for a given time period.

Intent detection One of the most important parts of our dialogue system is the intent detection
used in dialogue manager. We report the accuracy of four methods we tested to recognize intent in
the user’s message. Results are shown in the table 1. Tested methods of intent detection are:

• TF-IDF: We use the TF-IDF implementation from the scikit-learn library [28]. We found
the hyper-parameters of TF-IDF by grid search. They are following, analyzer: word,
ngram_range: (1,2), max_df: 0.9, min_df: 0.0, norm: l1, smooth_idf: False, sublin-
ear_tf: True. The rest of parameters has default values.

• Embeddings: We use pre-trained GloVe [29] vectors. We convert training examples to
vector representation by calculating the average of embeddings of example’s words. We
normalize vector representations of training examples to unit length. We do the same for the
user’s input. We calculate cosine similarity of user’s input to each training examples and use
the label of the most similar training example as the recognized intent. We achieved the best
accuracy with the glove.42B.300d variant of vectors.

• Logistic regression: We use the scikit-learn implementation with default parameters and
balanced classes. The input is the vector of word uni- and -bi grams concatenated with the
vector of POS uni- and bi-grams.

• Neural network: We use GloVe embeddings of dimension N = 300 for input words (both
message and focus) and a multi-channel convolution [30] with channels of size 1 to 5 for
message input and 1 to 3 for focus phrase input. The number of convolutions is set to N/2,
the activation function is tanh, and max-pooling is over the whole sentence. Since the
convolutions of message and focus input are separate layers, the resulting vectors are then
concatenated. Additionally, the label predicted for the previous message is concatenated
to the vector as well. The concatenated output is then fed into a dense layer with output
dimension equal to 300, followed by dropout with rate 0.5 and finally with softmax activated
dense layer with output dimension equal to a number of classes.

Table 1: Accuracy of intent detection

Method Accuracy

TF-IDF 0.883
Embeddings 0.897
Logistic regression 0.926
Neural network 0.927

Average rating and time of Structured Topic Dialogues We selected average user’s rating and
average time spent as a quality metric for our Structured Topic Dialogues. The average rating is
calculated as follows. We collect user’s ratings (one to five stars) of the whole conversation. The rating
of conversation is assigned to all Structured Topic Dialogues which were used in the conversation.
We calculate the average of assigned ratings. Time spent in the dialogue and the number of dialogue
turns are measured since the start of Structured Topic Dialogue until a different module is recognized
by the DM. The average ratings, times and dialogue turns are presented in the table 2.

6 Conclusion

We have described the open domain dialogue system named Alquist. It is focused on engaging
dialogue based on current topics and general knowledge. Users can chat about books, games, gossip,
holidays, movies, music, news, sport, general knowledge or make simple casual conversation without
an additional external knowledge. The system combines machine learning (Sequence-to-Sequence
Models) and rule based modules (Structured Topic Dialogues) for response generation.
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Table 2: Average rating, time and number of dialogue turns of Structured Topic Dialogues

S. T. dialogue Rating Time Turns S. T. dialogue Rating Time Turns
Books 3.774 83 s 6.151 Jokes 3.931 50 s 4.131
Fun facts 3.972 64 s 3.823 Movies 3.669 69 s 6.199
Games 3.828 93 s 6.979 Music 3.823 35 s 2.947
General chat 3.616 40 s 2.509 News 3.763 102 s 5.655
Gossip 3.761 66 s 4.315 Recommendation 3.575 15 s 1.403
Help 3.509 24 s 1.025 Repeat 2.429 14 s 2.392
Holidays 3.740 26 s 2.495 Sports 3.767 50 s 4.007
Initial chat 3.437 44 s 3.959 Stop 3.682 44 s 2.745

We evaluated average user rating and average dialogue duration in different phases of the dialogue.
The most successful conversations (in both rating and duration) are about the topics which are handled
by Structured Topic Dialogues. These dialogues incorporate interesting facts about the corresponding
entities and additionally, they suggest a related entity or recommend to switch a topic. This helps
keeping the user engaged, unlike the chit-chat and question answering which only reply with a single
closed response. These closed replies often lead to an early end of the conversation as the user does
not know how to respond.

The rule based topic-level DM is a good solution how to implement a new topic without a corre-
sponding dataset. Additionally, we use the DMs to collect data for each topic which can be used as a
training set for a neural network DM. The advantage of the neural network based DM that it can be
partially transferred from one topic to another. Rule based system, on the other hand, needs to be
rewritten almost from scratch.
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