
Eigen: A Step Towards Conversational AI

William H. Guss
Machine Learning at Berkeley

University of California, Berkeley
wguss@ml.berkeley.edu

James Bartlett
Machine Learning at Berkeley

University of California, Berkeley
james@ml.berkeley.edu

Phillip Kuznetsov
Machine Learning at Berkeley

University of California, Berkeley
philkuz@ml.berkeley.edu

Piyush Patil
Machine Learning at Berkeley

University of California, Berkeley
ppatil@berkeley.edu

Abstract

In this document we outline the data collection methods, system, and experiments
we ran during the course of this project. We aim to shed light on what drove the
development of our bot and the techniques we used to power our bot in the course
of the conversation.

1 Introduction

Automated dialogue systems have been a holy grail in the artificial intelligence research commu-
nity. Dialogue systems already form the basis behind many customer support hotlines, chatbot user
interfaces, and digital personal assistants like Amazon Alexa. Despite the sophistication of these
technologies, their backbone relies exclusively on a set of predefined rules, preventing these tech-
nologies from scaling without significant human intervention. The reemergence of neural networks
at the beginning of the decade holds promise towards improving the state of these dialogue agents,
as neural networks have accelerated technologies in the domains of image recognition [Krizhevsky
et al., 2012], machine translation [Wu et al., 2016], and speech recognition [Hannun et al., 2014].
These models also hold promise for generative dialogue models, as shown in Serban et al. [2016b]
and Serban et al. [2016a].

Despite the success of these models, they require extremely large and varied datasets to mimic
typical human speech and often succumb to mode-collapse, despite attempts to add stochasticity
to these models. To alleviate this issue with generative dialogue models, we propose a method of
categorizing turns of conversation into what we call Modes of Conversation (MOC). We define an
MOC as the building block to turn-by-turn conversation. Our system attempts to avoid the problems
of mode collapse by creating generative models for every mode of conversation, while also using
a discriminator on the input sentence to find the appropriate generative model for a specific task.
By reducing the scope of a generative model to a single mode of conversation, we significantly
reduce the complexity that a single generative model needs to handle, allowing for easier incremental
improvements in the system than with an entirely end-to-end learning system.

1.1 Overview and Goals

The core idea behind the Eigen system is that conversation can be broken into several different modes
of conversation (MOCs). A mode of conversation dictates the kinds of information our bot needs to
know to formulate a response, as well as the types of future responses we predict might occur in the
next few turns of the conversation. Furthermore, in a conversation, we can bin each turn or set of
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turns into one of these modes and predict the most appropriate next mode given a list of previous
utterances in a conversation. In combination, the Eigen system combines expert level modules in
each mode by virtue of the discriminator in addition to a joint optimization between the modules.

1.2 Modes of Conversation

Modes of conversation are the most essential unit of modular computation in the Eigen system. The
following high level MOCs serve essentially to provide a very fine description of different modal
interactions in conversation and not directly the modules which best act to encapsulate each mode.
The MOCs we used are: answer, clarification, conversational_formality, declaration, empathy, humor,
identity, influence, other, question, and understanding.

2 Data

Our first goal was to acquire a broad range of conversational data. As such, we created a monolithic
corpus by collating and standardizing numerous corpora from the natural language generation
literature. A list and short description of each dataset is provided below.

Conversational Datasets Collated

• Switchboard Switchboard (Godfrey and Holliman [1993]) is a collection of two-sided
phone calls. We utilized the transcripts of these phone calls. This dataset has very relevant
data, and unlike other datasets has only two-sided conversations. However, the dataset is
relatively small.

• r/ChangeMyView r/ChangeMyView is a subreddit community focused on having civilized
arguments on controversial topics. We collected comment data from this subreddit. Whilst
the data is mostly high quality text, it does suffer from profanity issues at times and is a
comment thread and not a two-sided conversation, which limits is utility.

• Reddit Comment Corpus This corpus is similar to the r/ChangeMyView one, except it
is a collection of all comments on all subreddits on Reddit, rather than just r/Change-
MyView. While this provides a huge collection of conversational data, it suffers severely
from malformed and profane text, and much of the conversations are not on relevant topics.
Additionally, it is not structured in a two-sided conversational format.
• Supreme Court Dialogue Corpus The Supreme Court Dialogue Corpus (Danescu-

Niculescu-Mizil et al. [2012]) is a collection of transcripts from Supreme Court cases.
While this text is well-formed and eloquent, it is not conversational as it is mostly formal
arguments.

• Internet Argument Corpus The Internet Argument Corpus (Walker et al. [2012]) is a
collection of arguments from various internet forums. Much like r/ChangeMyView data, it
is well-formed and generally fairly eloquent, however it is not a two-sided conversation.

• Cornell Movie Dialogs Corpus The Cornell Movie Dialogs Corpus (Danescu-Niculescu-
Mizil and Lee [2011]) is a collection of movie transcripts from various blockbuster films.
This data is fairly well-formed and for the most part very conversational, however it is not a
two-sided conversation.

• Santa Barbara Corpus of Spoken American English The Santa Barbara Corpus of Spo-
ken American English (Du Bois et al. [2000-2005]) is a corpus of various spoken interactions
from across the US. It is very diverse and is mostly structured two-sided conversations,
however many of the topics are not very relevant to colloquial conversation and it is a
relatively small corpus.

• Ubuntu Dialogue Corpus and Ubuntu Chat Corpus Ubuntu Dialogue Corpus and Ubuntu
Chat Corpus (Lowe et al. [2015]) is a corpus of conversations collected from Ubuntu IRC
support forums. Although it is very colloquial and is a very large corpus, it is almost
exclusively focused on technical support which is not very relevant and suffers from the
presence of rare pronouns and URLs.

In order to facilitate transfer learning, we saw it necessary to also collate English language datasets.
This way we can pretrain models on a huge English language dataset, in the hopes that the models
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would learn English from this dataset and then could use the conversational datasets just to alter their
understanding of English to fit in with conversational norms. A list of each English language dataset
with short descriptions is provided below.

English Language Datasets Collated

• British National Corpus The British National Corpus (Clear [1993]) is a collection of 100
million words from various sources of English language.

• Google Books Corpus The Google Books Corpus is a collection of English language
sentences from various books.

• Wikipedia Data Dump This corpus contains every single English Wikipedia page. We
removed all non-text pieces of the pages.

• Blog Authorship Corpus The Blog Authorship Corpus (Schler et al. [2006]) consists of
almost 20000 different blog authors’ blog posts from a single year. This provides a large
dataset of fairly colloquial English language.

• Project Gutenberg This corpus contains every single English book available on Project
Gutenberg (a project to provide free books).

2.0.1 Preprocessing

To train models on a variety of conversation and textual data, it’s necessary for the data to conform to
one shared schema, depicted in the next section. To process the above datasets to fit this schema, we
make use of Python’s Natural Language Toolkit (NLTK). We tokenize raw text into paragraphs, and
further decompose each paragraph into sentences which are then tokenized into words and punctuation.
This tokenization process is fast and simple - paragraphs are delimited by newline characters, and
sentences by standard sentence disambiguators such as periods, not part of abbreviations, followed by
capital letters. We also make use of NLTK’s named entity recognition capabilities to replace named
entities with a special identifying token, to enforce the model’s avoidance of learning lexemes or
semantics based on specific, individual entities rather than viewing them as syntactical placeholders.

2.0.2 Standard Format

In order to facilitate easier processing during training of models, we transformed all datasets into
a standard format. We used different schemas for conversational data and English language data.
For conversational data, we stored each turn of conversation in a list where one turn is one speaker
talking. The conversational schema is shown in Listing 1 in the Supplementary Materials. For English
language data, we stored a list of paragraphs where each paragraph is represented by a list of sentences
in that paragraph. The English language schema is shown in Listing 2 in the Supplementary Materials.
Both schemas store sentences as both raw text and as tokens. These tokens are described above in
Section 2.0.1. Additionally, for conversation data the MOC labels, acquired through Mechanical Turk
as described in Section 2.2, are appended to each turn.

Although we collated numerous datasets into a larger corpus, we realized that many of these corpora
did not represent the broad spectrum of standard two-party conversation because they were either
focused in a niche area (Ubuntu corpus) or were not a structured two party conversation (Reddit
data). We believed that the best path forward would be to develop such a dataset of natural two party
conversations. We desired to develop a crowd-sourcing solution to this problem by exploring two
directions - Bot Or Not and Mechanical Turk.

2.1 Bot or Not

Bot or Not is a website we developed to collect dialogue data. We built out a lightweight chat service
that would connect one user to another "dialogue agent". This dialogue agent could either be a chat
bot or another human. The user’s objective is to hold a conversation with the agent and determine
based on that conversation whether their chat partner was a chatbot or a human, and were prompted
to vote "Bot" or "Not" at the end of their conversation.

Motivation We wanted to create an experience that would be enjoyable for users. We could have
easily framed this as a Mechanical Turk experiment, following the data collection method of the
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Figure 1: Left: The Bot or Not landing page. Right: A sample chat page from Bot or Not. Live demo
at http://beta.botornot.ml/

Visdial Dataset [Das et al., 2016]. However, we believed this method is rather slow, expensive, and
yields a limited amount of data. Our goal of making an inverse reinforcement learning system would
require a large variety of dialogues, and Mechanical Turk would not be feasible in this specific
context.

Instead we looked towards the crowd-sourcing techniques used by Galaxy Zoo [Willett et al., 2016]
and QuickDraw [Ha and Eck, 2017]. These techniques successfully sourced extremely large datasets,
facilitated by the ease of the task, the gamified experience, and their viral releases to the public.

Experience We aimed to mimic the simplicity and the wide reaching audience of [Willett et al.,
2016] and [Ha and Eck, 2017]. We made entering a chat room the most visible part of the landing
page, meaning a user could load the page and start chatting within seconds. A chat room could either
start empty or with a prompt related to one of the five conversation domains. The users would then
chat for 5 turns, at which point the "rate now" button in the top right of the screen would become
clickable and a user could end the conversation and input their guess for whether their conversation
partner was a bot or not. Upon selecting an option, the user would receive a notification of what the
other user rated them as and whether or not they correctly guessed their partner’s identity.

Gamification We looked towards gamification techniques that utilized a level system along with
leaderboards to encourage users to yield more conversations, return to the website, and encourage
them to share the website with their friends. Mekler et al. [2013] finds that websites using gamification
elements like points, levels, and leaderboards positively increase the engagement of users in an
image annotation task. To mimic these results, we created a points system based on the number of
conversations a user had and the length of those conversations. The user was also further rewarded
for guessing the identity of their conversation partner correctly. As a caveat, however, we randomized
the label of the conversational partner. We wanted to ensure that our users would believe that we
had created very convincing artificial intelligence - otherwise they would be inclined to believe that
every conversational partner was a human and would quickly finish playing the game. However, we
realized that users would only continue playing if they had a notion that they were getting better at
the game. We thus set the probability of changing a conversational users’ identity such that it was
inversely related to the user’s level. This way, a user with a higher level would believe that they are
actually improving at the game.

Evaluation Framework Aside from data collection, Bot or Not can also function as a chat bot
evaluation framework. We ran an early version of our conversational bot on the platform as a way to
get a metric for the quality of our bot. For every bot we ran, we collected bot/not rating percentages
and could use this information to compare the conversational appeal between two bots - a bot that
could fool more users into believing that it was human would likely also perform better in the
conversational settings.

Reward Signal In addition to using Bot or Not for evaluation, we have considered using the bot/not
ratings on our chatbot as our reward signal for reinforcement learning. We have yet to use these
results for training.
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Figure 2: Left: The main screen seen by Turkers in the EigenTurk task. Right: A menu for choosing
the sub-MOC for the bolded utterance on the main screen.

2.2 MOC Annotation

In order to achieve the desired partitioning of conversational action space into modes of conversation,
the corpora of conversation data collected through Bot or Not and our data aggregation needed to be
labeled according to their particular mode of conversation. Given the scope and the scale of the data,
we considered several techniques to label the modes of conversation in each turn.

Structured Labeling The first mechanism relies on an ensemble of weak learners. In this regime,
several hundred sparse, heuristic labeling functions are applied to the data to generate a partitioning
of the space, which is noisy and not necessarily all-encompassing. We then formally consider the
labelers as instantiations of a generative model subject to different conditions, the original labeler can
be recovered. Instead of manually determining labels, structured labeling enables the completion of
unlabeled datasets with a roughly constant number of programmed heuristics. Despite the success of
Bach et al. [2017] in heuristic based label collection, we were unable to agree on objective heuristic
parititonings; that is, each individual heuristic proposed was itself not self-consistent.

EigenTurk In answer to the problem of consistency within MOCs, a strong enough partitioning
of dialogue into subproblems is one that on average, appears to be differentiating to actual conver-
sationalists. In other words, although there aren’t objective heuristics, separating turns of dialogue
that humans perceive as drastically contained in different MOCs is sufficient for simplifying the
learning task for a dialogue module in each partition. Motivated by the foregoing logic, we built a
Mechanical Turk task called EigenTurk for annotating randomly selected subsets of conversations
from our aggregated corpus.

The Mechanical Turk task is as follows. Users are presented withN lines of dialogue from a randomly
selected corpus as in Figure 2.2. They must navigate between each utterance as separated by the
aforementioned NLTK processing step. At each utterance a context menu appears on the side of the
particular dialogue which contains a hierarchical selection scheme for the particular MOC annotation
for the utterance. After the annotation is selected, the user moves to the next utterence and continues
until the entire document is completed. In general, the user only sees a small subset of a full dialogue
so as to make the labeling robust in expectation.

3 System Design

3.1 MOC Models

Our system chose to create separate models for each of our Modes of Conversation (MOC). To fit in
the paradigm of our MOC division, we decided to make a separate model for each individual MOC.
For some of the above MOCs there are corresponding models whose state of the art performance is
acceptable. However, many other modes of conversation remain open areas. To make use of each
mode of conversation, we realized that we need to use a discriminative model to map from text to
mode of conversation.
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3.2 Discriminator

Formally, we built the discriminator to solve the following two problems. Let M be a set of
conversational modes and Dt = ((si, xi))

t
i=1 be a list of dialogue up to time step t where si is the

speaker and xi is the string (utterance) spoken at time i.

• Given a new utterance u = (s′, x′), we would like to find a map d : (Dt, u) 7→ m ∈ M;
that is, we would like to classify utterances as MOCs.

• Furthermore, we would like to learn the conditional probability P (m|(Dt, u)); that is we
would like to establish a posterior on the mode of conversation for time t + 1 given a
conversation up to time t. Then we call s : (Dt, u) 7→ m ∼ P (m|(Dt, u)) the selector for
the next most probable mode.

Alternatively: Suppose each conversationalist is an agent in an environment EMOC where their
action space isM. We would like to learn the action-value function, Qπ((Dt, u),m)), for one agent
in the conversation, π, and define our selector s : (Dt, u) 7→ argmax

m
Qπ((Dt, u),m). Effectively,

select the action which most maximizes the reward of the conversationalist, and in this case, we avoid
dealing with a multi-modal selector, or an underconstrained problem. (See inverse reinforcement
learning for conversation).

Task (1) is useful as we would like to label conversation data according to its MOC and then train
each module for that MOC only on data specifically labeled as that MOC. Furthermore, once task (1)
is complete, Task (2) yields a selector which essentially selects the next best/probable MOC to use
after a dialogue.

3.2.1 Design

Featurization . Given some raw utterance text x we would like to find a map φ : x 7→ φ(x) ∈ Rn
for use in some discrimination model. Therefore we propose the following featurizations in order of
increasing complexity:

• Standard word2vec. Let φ(x) =
∑length(x)
i=1 word2vec(xi). Then φ(x) ∈ R∼100.

• Convolved word2vec. In this case we can vectorize the text by first con-
catenating sequential tuples of word2vec embedded words; that is let ct =

[word2vec(x(1)t ),word2vec(x(2)t ),word2vec(x(3)t )] and then using some weight matrix W
map ct → h ∈ R∼100.
• Composed recurrent utterance embedding. For an utterance u = (s, x), we con-

sider a neural approach as follows. Generate a text vector for each word, τ =
[word2vec(x(1)), · · · ,word2vec(x(n))] where x(k) is the kth word in x. Then apply a
recurrent model to τ at each embedded word, yielding a hidden state vector h(k). Then let
φ(x) = h(n); that is, let the embedding in this case be the last hidden state vector of the
recurrent model applied to the sequence τ .

Model. With a reasonable embedding for utterances given we give three different model schemas
with increasing complexity. First and foremost, the simplest model is context free. The model
essentially takes some embedding φ(x) and maps it to a MOC label. In this case x is the particular
dialogue utterance to be classified, and no other information is therefore accounted for.

For the second iteration of the discriminator, we use the entire dialogueDt and the current utterance u
to produce an MOC on u. In this scheme, we apply the embedding to every utterance in the dialogue
history Dt and produce a vectorized history, Dφ

t = ((si, φ(xi)))
t
i=1. Then for each utterance

(embedded text-speaker pair) in Dφ
t , we apply a recurrent model to the embedded text and the one-hot

vector of the speaker. The recurrent model is bifurcated for two types of inputs; the first being these
hidden content vectors, and then the second being the embedded current utterance uφ = (s, φ(x)).
This model trains end to end and yields a prediction on the MOC.

The final instantiation of the model is a hybridization of the dynamic memory networks proposed by
Kumar et al. [2015]. Replacing the question module with the current utterance embedding and the
answer module with a MOC prediction module.
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The Selector. The models previously specified for the discriminator may be adapted to perform
the task of the selector s, by augmenting the featurization of each dialogue piece with the MOC
under which it was classified, and then requiring that the model predict the most likely next MOC
for a future piece of dialogue instead of having some “current utterance” which it needs to classify.
Formally this is as follows: Given some Dφ

t = ((si, φ(xi)), µi)
t
i=1 we learn a model from any of the

three aforementioned schemes so that the model predicts µt+1 without a prior on (st+1, xt+1).

3.3 Generators

3.3.1 Baseline

We began each mode of conversation with a baseline model using AIML, a markup language that
matches an input piece of dialogue with a predefined response. AIML files are loaded into an
interpreter. Whenever the interpreter is fed a dialogue query, the interpreter finds a matching two-turn
dialogue where the first turn matches the query with a set of pre-defined responses. Special templating
is set up to store nouns or verbs from the query and these stored values can be invoked through
the AIML. The model’s rigid restriction to mostly two-turn conversations, with the exception of
conceptual templating that was often haphazard, this model managed to provide very interesting
conversations upon our internal tests with the model.

3.3.2 Extended Memory Networks

Background Having decomposed the dialogue history Dt = (si, xi)
t
i=1 into an appropriate MOC

m ∈ M, we now pass the dialogue through a model trained on conversation data restricted to
the MOC m. The approach we take to architect and train these models is as follows. Recurrent
models, in particular LSTM variants, have proven adept at learning the latent linguistic structures
necessary to perform benchmark tasks in conversational AI, such as language models. Though such
models consistently outperform other approaches, such as n-gram based techniques, when applied to
conversational tasks, the networks struggle to track context and long-term logical dependencies. A
stronger approach is to augment the recurrent model with a memory matrix, inspired by neural turing
machines Graves et al. [2014].

This is the approach taken in Sukhbaatar et al. [2015], which is characterized by memory
hop layers. Given a set of input sentences {xi} and a query sentence q, represented as a sequence of
one-hot word vectors, a memory hop layer passes each xi through an embedding layer which encodes
the sentences into a vector mi, and stores each in a memory matrix. This is followed by taking q,
embedding it in a different space as a vector u, and computing the cosine similarity between u each
mi. The resulting vector is passed through a softmax with the intent of getting the model to learn a
probability vector p over the input words. We combine p with each xi, embedded in a new space as
ci, by summing them, weighted by their probability of relevance pi, to obtain a response vector o.
The layer’s output is a simple combination of the response vector and the embedded query, o+ u.
By stacking multiple memory hop layers on top of each other and passing the final output through
a weight matrix and softmax, this model is shown to perform well in synthetic question-answer
experiments.

Modified Approach Memory networks were initially designed to target synthetic question-answer
experiments, wherein a sequence of factual statements is stored in memory, a question is passed
as the query, and a single word answer is outputted. The model can be adapted to perform well in
word-level language modeling tasks by passing in a window of previous sentences as a sentence
context to be stored in memory in order to predict the next word, with the query sentence fixed to an
arbitrary constant vector. The model performs at state-of-the-art level on both tasks.

Our approach is to first extend the memory network from learning a probability distribution
over words in the vocabulary to learning one over embedded sentences instead. Given N sentences,
we embed the first N − 2 into memory as the sentence context and embed the second to last
sentence in as the query, with the intention of predicting the final sentence. We use a position
encoding scheme to embed sentences, by embedding each word in the sentence with the same
embedding and summing in a way that weights each word according to its position in the sentence.
To appropriately modify the memory network for this task, we pass the output of the final memory
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hop layer through a linear transformation before passing through a dropout-regularized LSTM
recurrent network that transforms the embedded output back into a sequence of one-hot vectors.
The RNN stacked on top of the final memory hop layer is essentially meant to work with the
underlying memory network to learn how to invert the embedding as necessary for supervised training.

Finally, we use a custom loss function designed with the following considerations in mind.
The default sequence-to-sequence loss on one-hot vectors commonly used is inadequate for learning
a sentence-level language model due to its artificially high sensitivity to frameshift errors. Further,
most loss functions that act on sequences of one-hot vectors act through some similarity measure on
the tokens composing the sentence, as opposed to a loss function which tries to measure the distance
between two sentences in a way that accounts for the sentences’ respective underlying meanings
instead of just their semantic composition. To this end, we compute the loss as the sum of two loss
functions - one which computes the average cosine distance between corresponding words in the
sentences, after each word has been re-embedded (either in the same space as the initial memory
embedding or using a pre-trained embedding such as word2vec), and another which computes the
cross entropy loss on sentence embeddings. We train the entire model end-to-end.

Transfer Learning for Conversation Generation Having trained a model to predict the sentence
following a window of previous sentences, we now apply transfer learning techniques to shift the
focus of the model from prediction to generation, by re-training a trained model on conversation data.
We pass the dialogueDt−1 in as the sentence context and the immediately previous response xt as the
query. By forcing the model to predict the next response, it learns to generate meaningful responses
to queries through a methodology that accounts for the contextual history of the conversation up to
that point. Transfer learning is an instrumental component of the training process, simply due to the
immense disparity in the amount of available data for learning a language model - for which raw
text is suitable - and that information available for conversational AI - which is highly unstructured,
diverse, and comparatively rare. We theoretically justify this approach through the intuition that
having been trained to predict sentences on large amounts of structured text, the model is forced
to learn to represent sentences in a continuous, meaningful way that captures some notion of the
sentence’s underlying linguistic meaning and relationship to neighboring lexemes and linguistic
constructs. By fixing the embedding matrices as constant, the network is now able to learn to generate
responses to queries in a supervised way that takes into account, a priori, both the meaning of
sentences in the conversation history as well as their relationship to each other.

4 Infrastructure for Scalable Conversational AI

We approached the engineering side of our Alexa Prize bot with three basic tenets in mind: modularity,
scalability, and reliability. We call the system Eigen Brain. The modularity of Eigen Brain allowed us
to easily achieve both scalability and reliability. We also decided to ensure that Eigen Brain was a
stateless application, storing its state only in a database, rather than in memory, which allows us to
make use of server-less architectures such as AWS Lambda. This means we can rely on Lambda’s
robust scaling system rather than one one that we build - significantly reducing the number of potential
uncaught bugs.

4.1 Modules

Eigen Brain is made up of four kinds of modules: generator, discriminator, state management and
logging modules. The general arrangement of these modules is described in Figure 4.2. Generator
modules are responsible for the actual generation of conversational text. Typically, each generator
module is designed to respond to one MOC, however, the system is general and doesn’t depend on
this. Discriminator modules determine what MOC the conversation is in, and therefore what response
type is appropriate. Depending on the output of discriminator modules, different generator modules
will be run. The state management modules are responsible for extracting state information from
incoming dialogue, so that generator modules can utilize this information in crafting responses. As
an example, one state management module might be responsible for determining whether there is
a swear word in the text. If there is, then it would add a flag to the state and the generators would
recognize this flag and respond appropriately. Finally, the logging modules are responsible for storing
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any information that would be useful in analyzing the system at a later date or determining the origin
of a poor response or bug.

4.2 Architecture

Because of the modularity of Eigen Brain, there is ample flexibility in the design of the infrastructure
that Eigen Brain runs on. For example, if one particular module is computationally expensive it can
be given its own server, possibly with GPUs to accelerate its computation, or multiple less expensive
modules can all be run on the same server. In the end, we decided upon having one AWS Lambda
function to run all the discriminator and state management modules, a central MongoDB database
to store the state that can be accessed by any of the Lambda functions or servers, and individual
dedicated servers and AWS Lambda functions for each generator module. This enables scalability and
reliability because any individual module can easily be scaled up separately from the entire system,
and if any one module goes down, so long as at least one module of its type remains, the system will
still stay online. For example, if one generator module goes down, the system will continue to work,
it will just produce less diverse responses. Additionally, this architecture reduces latency because
each generator module can be queried asynchronously and then the fastest response can be redirected
to the user without needing to wait for all the generators to finish crafting a response.

Figure 3: System Architecture Illustrated.
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